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Accurate rainfall-runoff modeling is crucial for disaster prevention, mitigation, and
water resource management. This study aims to enhance precision and reliability
in predicting runoff patterns by integrating physical-based models like HEC-HMS
with data-driven models, such as LSTM. We present a novel hybrid model, Ia-
LSTM, which combines the strengths of HEC-HMS and LSTM to improve
hydrological modeling. By optimizing the “initial loss” (Ia) with HEC-HMS and
utilizing LSTM to capture the effective rainfall-runoff relationship, the model
achieves a substantial improvement in precision. Tested in the Yufuhe basin in
Jinan City, Shandong province, the Ia-LSTM consistently outperforms individual
HEC-HMS and LSTM models, achieving notable average Nash-Sutcliffe Efficiency
(NSE) values of 0.873 and 0.829, and average R2 values of 0.916 and 0.870 for
calibration and validation, respectively. The study shows the potential of
integrating physical mechanisms to enhance the efficiency of data-driven
rainfall-runoff modeling. The Ia-LSTM model holds promise for more accurate
runoff estimation, with wide applications in flood forecasting, water resource
management, and infrastructure planning.
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1 Introduction

Rainfall-runoff modeling is essential in hydrology, especially for tasks like reservoir
management, flood forecasting, and water resource planning (Chen and Adams, 2006;
Young and Liu, 2015). Despite significant progress, accurately predicting runoff remains a
big challenging due to the complex, nonlinear, and dynamic nature of the rainfall-runoff
process (Wang et al., 2006; Xie et al., 2019). This complexity is further compounded by
various influencing factors, including rainfall patterns, initial soil moisture, terrain, land
cover, and infiltration (Wang and Ding, 2003; Perera et al., 2019). Sudden rainstorms further
emphasize the need for a comprehensive understanding of primary rainfall patterns (Xie
et al., 2023a; Xie et al., 2023b). The impact of urban imperviousness on runoff and flooding
dynamics has also emerged as a crucial factor in recent studies (Shukla et al., 2020; Mehr and
Akdegirmen, 2021).

Vegetation and soil properties play a significant role in regulating the hydrological cycle,
impacting various processes such as interception, infiltration, evaporation, and surface
depression storage (Shukla et al., 2018). Notably, initial loss or initial abstraction (Ia)
represents the rainfall occurring before the initiation of surface runoff. Ia is influenced by
factors like vegetation cover, soil infiltration capacity, and antecedent moisture condition in
the soil. Its magnitude is closely tied to both climatic conditions and moisture level in the
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watershed, making accurate estimation Ia for runoff determination
and flood management (Zheng et al., 2020).

Rainfall-runoff models are broadly classified into physically-
based models and data-driven models (Devia et al., 2015; Bartoletti
et al., 2018; Mohammadi et al., 2022). Physically-based models, such
as the Hydrologic Engineering Center-Hydrologic Modeling System
(HEC-HMS) (Feldman, 2000), Xinanjiang (XAJ) model (Zhao,
1992), soil and water assessment tool (SWAT) (Arnold et al.,
1998), MIKE-SHE (Jaber and Shukla, 2012), and HSPF (Bicknell
et al., 1997), employ mathematical equations to represent
hydrological processes. While these models provide valuable
insights, their development demands a deep understanding of
hydrological processes and extensive basin parameters, leading to
a complex and time-consuming development process (Fenicia et al.,
2008; Chen et al., 2022). The Hydrologic Modeling System (HMS),
designed by the Hydrologic Engineering Center (HEC) of the
United States Army Corps of Engineers, is a widely adopted
rainfall-runoff analysis tool worldwide. The physical processes are
so complex in hydrological models that it is difficult to discover the
information from the available inputs.

Data-driven models offer a compelling alternative, establishing
relationships between input and output data without the need for
detailed understanding of underlying physical processes (Noori and
Kalin, 2016; Yaseen et al., 2016; Lees et al., 2021). These models rely
on historical rainfall and runoff data, making them suitable for
handling non-linear and stochastic systems (Hu et al., 2018; Kratzert
et al., 2018; Gao et al., 2020). Prominent data-driven methods for
rainfall-runoff modeling include artificial neural networks (ANN)
(Haykin and Network, 2004), support vector machines (SVM)
(Cortes and Vapnik, 1995), genetic programming (Savic et al.,
1999; Danandeh and Nourani, 2018), random forests (Breiman,
2001), fuzzy logic (Hundecha et., 2001) and regression in the
reproducing kernel hilbert space (RRKHS) (Safari et al., 2020).
These models use historical data to identify patterns and
associations, enabling them to make precise predictions or
estimates based on observed data patterns.

In recent years, deep learning, as a type of data-driven modeling,
has gained substantial attention in hydrology due to its adaptability
and minimal data requirements (Beven, 2020; Gu et al., 2020; Zhou
et al., 2023). Among various deep learning approaches, Long Short-
Term Memory (Hochreiter and Schmidhuber, 1997) networks have
proven their effectiveness in various hydrological applications,
including rainfall prediction (Barrera-Animas et al., 2022), flood
forecasting (Hu et al., 2018; Rahimzad et al., 2021), and river water
table prediction (Kim et al., 2022). As emphasized by Kratzert et al.
(2018), the strength of the LSTM models lies in their capacity to
capture long-term dependencies between the input and output.

The integration of physically-based and data-driven models in
rainfall-runoff modeling has received considerable interest, driven
by their complementary strengths (Tian et al., 2018; Sun et al., 2019;
Zhou et al., 2022). Several hybrid models have exhibited promise in
this domain. For instance, the XAJ-LSTM model, proposed by Cui
et al. (2021), combines the Xinanjiang (XAJ) conceptual model with
LSTM neural networks for multistep-ahead flood forecasting. This
hybrid model utilizes the model forecast results of XAJ as input
variables for LSTM, thus enhancing the physical mechanisms of
hydrological simulation. By incorporating discharge forecasts from
the XAJ model, the XAJ-LSTM hybrid model overcomes the

limitations of LSTM’s input variables, resulting in notably
improved performance. Similarly, Gholami & Khaleghi (2021)
conducted a comparative analysis of ANN and HEC-HMS
models in rainfall-runoff simulation. Narayana Reddy and
Pramada, (2022) integrated HEC-HMS with ANN to enhance
daily discharge simulation and yearly peak discharge prediction.
Farfan et al. (2020) used streamflow series forecasts from a
conceptual model as input for back-propagation neural networks,
leading to markedly improved streamflow predictions. Hitokoto and
Sakuraba (2020) successfully integrated a rainfall-runoff model with
a feed-forward artificial neural network to predict real-time water
level processes. These instances highlight the effectiveness of hybrid
models in enhancing predictive accuracy.

While previous research has made significant progress in
rainfall-runoff modeling, there remains a critical need for
innovative approaches to address the limitations of current
models. Notably, the absence of physical mechanism poses a
substantial obstacle in applying machine learning methods, which
typically rely on labeled observations (Xie et al., 2021). The
consideration of initial loss (Ia) within a deep learning network
for rainfall-runoff simulation has received limited attention. Ia
represents a crucial stage in the rainfall-runoff process. To
address these challenges, this study proposes the hybrid rainfall-
runoff model, integrating initial loss and LSTM. This integration
harnesses the strengths of both physically-based and data-driven
approaches, offering the potential for substantial advancements in
accurately predicting and managing rainfall-induced runoff events.

The main objectives of this study are: 1) to develop the Ia-LSTM
hybrid model, combining the advantages of the widely used
hydrologic model, HEC-HMS, with the predictive capabilities of
LSTM; 2) to conduct a comprehensive evaluation of the
performance of the proposed hybrid model against the individual
HEC-HMS and LSTMmodels. To assess the model’s effectiveness, a
case study is undertaken in the Yufuhe Basin, located in Jinan City,
Shandong Province. The integration of the HEC-HMS model with
LSTM enables a more comprehensive representation of the rainfall-
runoff process, considering both the physical processes and
historical data patterns. The incorporation of initial loss
estimation and LSTM aims to improve the accuracy and
reliability of runoff forecasting.

The contributions of this paper can be summarized as follows.
First, it introduces the Ia-LSTMmodel, a novel rainfall-runoff model
based on the integration of initial loss and LSTM. Second, the model
is applied to the tasks of individual rainfall-runoff modeling in the
Yufuhe basin, demonstrating its effectiveness.

The paper is organized as follows: Section 2 provides an
overview of the study area and the data utilized. It also briefly
describes the HEC-HMS model, LSTM network, and Ia-LSTM
hybrid model. Section 3 presents the research results and
discussions. Finally, Section 4 concludes the paper by
summarizing the key findings.

2 Materials and methods

This section provides an overview of the study area and data
(Section 2.1), introduces the HEC-HMS model (Section 2.2),
explains the LSTM model structure (Section 2.3), presents the
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proposed framework based on the LSTM (Section 2.4), and outlines
the evaluation metrics of model performance (Section 2.5).

2.1 Study area and data

This study focuses on the Yufuhe basin, located upstream of the
Wohushan Reservoir in Jinan city, Shandong Province, China.
Encompassing an area of 557km2, the basin exhibits vulnerability
to floods and droughts due to its unique natural and geographical
conditions. Notably, both 2007 and 2013 witnessed large-scale
floods resulting in significant economic losses in Jinan (Zhang
et al., 2016). The basin plays a critical role in flood control and
water management, featuring diverse topography including
mountains, hills, and a complex river network.

The study area is characterized by a sub-humid continental
monsoon climate, with an annual average temperature of 14.3°C and
an average annual precipitation of 670.0 mm. Rainfall is
concentrated within the flood season from June to September,
marked by intense, short-duration rainfall events. The flood
season accounts for approximately 70% of the annual
precipitation, posing flood risks in the basin.

Within the Yufuhe basin, there are seven rain-gauge stations and
one Wohushan stream flow gauge station located at the basin outlet.
Figure 1 illustrates the location of the watershed, elevation,
distribution of rainfall and flow gauging stations, as well as the
streams. The land use and land cover (LULC) map for the Yufuhe

basin in 2020 was sourced from the Institute of Geographic Sciences
and Resources of the Chinese Academy of Sciences (http://www.
resdc.cn/), offering a detailed representation at a 30-m resolution.
The basin is characterized by abundant vegetation, with agricultural
land accounting for approximately 38% and forests covering 35% of
the total area (Figure 2).

Hourly flow runoff data from the Wohushan hydrological
station and hourly precipitation data from seven gauges were
collected from 1973 to 2020. After data preprocessing, 30 rainfall
and runoff events, including 6136 one-hourly rainfall and runoff
records, were selected for this study. Among these flood events,
20 were used for model calibration, and the remaining 10 were used
for model validation.

2.2 HEC-HMS model

The HEC-HMS model, developed by the U.S. Army Corps of
Engineers (USACE), can accurately predict streamflow, runoff
volume, and other hydrologic parameters. It incorporates
inputs such as land use, soil types, channel networks, and
rainfall data. HEC-HMS offers variood, unit hydrograph
method, Snyder unit hydrograph method, and others
[(USACE 2000us hydrologic modeling methods, including
the Soil Conservation Service (SCS) curve number meth].
These methods are selected based on the specific
characteristics of the modeled watershed.

FIGURE 1
Elevation and distribution of rainfall stations in the study area.
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The HEC-HMS model comprises four main components: the
basin model, meteorological model, control specifications, and time
series model. The rainfall runoff process is delineated through four
modules: loss, transformation, routing, and baseflow. Detailed
information on the model’s structure and processes can be found
in the Technical Reference Manual (USACE-HEC, 2000) and the
User’s Manual of HEC-HMS.

2.2.1 Initial and constant loss method
The initial and constant loss method estimates surface losses

in rainfall runoff modeling and is suitable for watersheds with
limited soil data. This method requires two parameters: initial
loss and constant rate. Initially, all rainfall is absorbed until the
specified initial loss volume is attained, after which rainfall is lost
at a constant rate. It considers antecedent moisture conditions
and losses prior to reaching ultimate infiltration capacity. This
method assumes a single soil layer for estimating moisture
content changes, making it ideal for event simulation,
particularly in data-scarce watersheds. The initial loss is
influenced by antecedent moisture conditions and losses
before reaching the ultimate infiltration capacity. It is worth
noting that the initial loss parameter should be calibrated using
observed data, although it is often estimated based on the soil
moisture state at the beginning of the simulation and an assumed
active layer depth. Throughout the simulation, a constant
maximum potential rate of precipitation loss, fc, is assumed.

The net rainfall, Pet, at time t, is calculated using the following
equation (USACE, 2000b):

Pet �
0 if∑Pi < Ia
Pi − fcΔt if∑Pi > Ia andPi >fc

0 if∑Pi > Ia andPt <fc

⎧⎪⎪⎨⎪⎪⎩ (1)

where Pet represents the net rainfall (mm), Ia denotes the initial loss
(mm), Pi represents cumulative rainfall from time t to t+Δt (mm),
and fc represents the average infiltration rate (mm/h).

Optimal values of the initial loss and the constant loss rate are
determined during the calibration of HEC-HMSmodel, primarily to
match the depths of effective precipitation and direct runoff.

2.2.2 Direct runoff calculation
The Snyder unit hydrograph method is used to estimate surface

direct runoff resulting from excess precipitation. It utilizes a
standardized unit hydrograph incorporating parameters like peak
lag time, peak flow, and total duration. These parameters play a
crucial role in understanding the hydrological response of a
watershed to rainfall events.

The standard unit hydrograph relates rainfall duration (tr) to
basin lag time (tp) as follows:

tp � 5.5tr (2)

The Snyder Unit hydrograph method requires specifying input
parameters such as the basin lag time (tp) and peak coefficient (Cp).
Peak lag time is calculated using the following formula:

tp � CCt L LC( )0.3 (3)
in which L is the length of the main stream from outlet to the divide
(km); Lc is the length along the main stream to the nearest point of
the watershed centroid; Ct is a coefficient (usually 1.8–2.2); C is a
conversion constant (0.75 for SI units).

2.2.3 Baseflow calculation
Baseflow calculation involves accounting for the flow through

a channel or the influence of groundwater in a hydrological
system. HEC-HMS offers two methods for baseflow

FIGURE 2
Land use map in the study area.
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calculation: recession and constant monthly. The recession
method, utilized in this study, represents the drainage process
from natural storage within a watershed. It employs an
exponential decay function (Knebl et al., 2005) to relate the
baseflow (Qt) at a specific time (t) to an initial value (Q0). The
equation is defined as:

Qt � Q0K
t (4)

where K represents the exponential decay constant.

2.2.4 Flood routing
Flood routing in HEC-HMS provides various options for

routing flood hydrographs through different reaches. The
Muskingum method is commonly used for general flood routing.

In this study, the Muskingummethod is adopted to compute the
outflow from each reach during flood routing. This method is based
on the following equation:

Qj+1 � C1Ij+1 + C2Ij + C3Qj (5a)
where

C1 � Δt − 2KX

2K 1 −X( ) + Δt (5b)

C2 � Δt + 2KX

2K 1 −X( ) + Δt (5c)

C3 � 2K 1 −X( ) − Δt
2K 1 −X( ) + Δt (5d)

where C1, C2 and C3 are the routing coefficients for the
concerned reach; Ij, Ij+1 are the inflows to the reach at the
beginning and end of the computation interval △t, respectively,
Qj and Qj+1 correspond to the outflows from the reach at the
beginning and end of computation interval, respectively. K
denotes the travel time through the reach, and X is the
Muskingum weighting factor (0 ≤ X ≤ 0.5). The coefficients
C1, C2, and C3 must satisfy the condition that their sum
equals 1.0.

2.2.5 Parameter optimization methods
Calibrating the parameters of HEC-HMS model is a crucial step

for improving the agreement between model results and observed
data. The primary objective is to determine the most appropriate
parameter values that yield the closest match between computed and
observed hydrographs. This involves quantifying the match using an
objective function, which compares the simulated and observed flow
data. The objective function serves to assess the accuracy of the
model’s performance.

To execute parameter calibration, HEC-HMS provides two
search methods: the Univariate Gradient algorithm (UG) and the
Nelder-Mead algorithm (NM). These algorithms assist in
minimizing the objective functions and determining the
parameter values that provide the best fit.

In this study, the Peak-Weighted Root Mean Square Error
(PWRMSE) function is chosen as the objective function for
parameter calibration. The Nelder-Mead algorithm is employed
to optimize the model parameters and obtain the most suitable
values, ensuring accurate simulation results.

2.3 Long short-term memory (LSTM)
network

The Long Short-Term Memory (LSTM) network was selected
due to its exceptional ability to handle extended data sequences, a
challenge commonly faced by conventional Recurrent Neural
Networks (RNNs) (Hochreiter and Schmidhuber, 1997). In
hydrological modeling, where processes like rainfall-runoff
relationships exhibit complex temporal patterns, LSTM’ capability
to capture long-term dependencies is crucial.

Specifically, LSTM excels in preserving vital information over
extended periods, allowing it to accurately model complex water-
related processes. This type of deep learning model is designed to
address challenges encountered by traditional RNNs, such as
gradient exploding or vanishing problems. It achieves this

FIGURE 3
The structure of a LSTM cell.
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through specialized gate mechanisms that control information flow,
proving highly effective in processing sequential data.

The basic unit of the LSTM network includes a memory and
three types of gates: input gate, forget gate, and output gate. These
gates play a crucial role in managing memory and capturing relevant
features by controlling information flow within the LSTM unit.
Figure 3 provides a visual representation of the structure of an
LSTM cell.

The forget gate, represented by ft, determines how much of the
previous memory to discard, based on the current input xt and the
previous cell state ct-1. The input gate, represented by it, controls the
information to be stored in the cell state ct. The output gate,
represented by ot, filters the output variable ht. The equations for
the gates are given as follows (Kratzert et al., 2018):

ft � σ Whfht−1 +Wxfxt + bf( ) (6)
it � σ Whiht−1 +Wxixt + bi( ) (7)
ot � σ Whoht−1 +Wxoxt + bo( ) (8)

~ct � tanh Whcht−1 +Wxcxt + bc( ) (9)
ct � ft ⊙ ct−1 + it ⊙ ~ct (10)
ht � ot ⊙ tanh ct( ) (11)

where xt denotes the input, ft is a forget gate, it is an input gate, ot is
an output gate, ct is the cell state at time t; σ is Sigmoid function,
⊙denotes the element-wise multiplication of two vectors, bf, bi, bo,
and bc are the corresponding bias;Whf,Wxf, Whi,Wxi, Who,Wxo,Whc

and Wxc are the network weights matrices; tanh is hyperbolic
tangent function; ht-1 is the output of hidden state of previous
step; and xt is the input.

To train the LSTM model, it is crucial to configure the
hyperparameters that govern the training process (Tian et al.,
2018). Several hyperparameters, including learning rate, loss
function, optimizer, dropout rate, batch size, and number of
epochs, were tested and evaluated to determine the optimal
values that give the best evaluation metrics. The final selected
hyperparameters were as follows: a time step of 10, 256 neurons
in the hidden layer, dropout rate of 0.20, and a batch size of 32. The
Root Mean Square prop (RMSprop) optimizer with a decay
coefficient of 0.8 and a learning rate of 0.0001 was utilized for
model training. The training process involved 1000 iterations. The
mean squared error (MSE) served as the loss function, measuring
the average squared difference between the predicted values and the
actual values.

To ensure accurate data analysis and enhance the efficiency and
performance of the model, it is essential to preprocess the input data
and map their attribute values to the range [0, 1]. Normalizing the
input variables eliminates the influence of magnitude, thereby
improving the accuracy and efficiency of network learning.

In this study, the rainfall and runoff data were preprocessed
using min-max normalization method, which can be defined by
Eq 1:

xnorm � xi − x min

x max − x min
(12)

where xnorm, xi, xmin, xmax represents the normalized, observed,
minimum and maximum values of rainfall or runoff, respectively.
This normalization process ensures that the input variables are

scaled appropriately and enables effective analysis and learning
by the network.

2.4 Ia-LSTM hybrid model

This study proposes an Ia–LSTMmodel to improve the accuracy
of hourly runoff discharge predictions using LSTM. The model
incorporates HEC-HMS model for dataset generation, using the
effective rainfall data series obtained by subtracting the initial loss
(Ia) from the total rainfall data. By considering the influence of Ia,
the LSTM model is trained to predict flow discharge sequences,
resulting in improved precision in rainfall-runoff predictions.
Figure 4 illustrates the overall workflow of the Ia-LSTM the
hybrid model. The Ia-LSTM hybrid model optimizes the
determination of Ia using HEC-HMS and considers factors such
as infiltration, vegetation interception, and evaporation that impact
rainfall-runoff dynamics.

The development of the Ia-LSTM hybrid model involves the
following steps:

(1) Data preparation: Historical rainfall-runoff data for the study
area are collected and organized into rainfall-runoff data
sequences.

(2) Dataset generation: The HEC-HMS model is used to optimize
and accurately estimate the initial loss (Ia) by considering
factors such as rainfall-runoff, land use, soil type, and DEM
data. The effective rainfall data is derived by subtracting Ia from
the total rainfall. This step involves generating a dataset
comprising effective rainfall-runoff pairs.

(3) LSTM model construction and training: The LSTM model is
constructed, with effective rainfall data serving as the input
variable and the corresponding runoff data as the output. The
model is trained to capture the hidden mapping relationship
between the inputs and outputs. Throughout the training
process, various parameter combinations are explored to
identify the optimal settings that enhance performance and
efficiency.

(4) LSTM model forecasting: The trained LSTM model is used to
predict runoff by inputting the effective rainfall data sequence.
As a reference, the LSTM model is also trained on the original
rainfall-runoff sequence. The performance of the LSTM rainfall-
runoff prediction model, accounting for Ia, is evaluated and
compared.

2.5 Evaluation metrics of model
performance

The performance of the developed models is assessed using four
widely used metrics in other hydrological studies: Nash-Sutcliffe
efficiency (NSE), root mean square error (RMSE), relative error of
peak discharge (REP), and coefficient of determination (R2).

NSE is extensively used for evaluating rainfall-runoff simulation
(Kumar et al., 2016). It quantifies the agreement between simulated
and observed data by comparing their variances. NSE is calculated
using the following formula:
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NSE � 1 − ∑N
i�1 Oi − Pi( )2∑N
i�1 Oi − �O( )2 (13)

where Oi and Pi represent the observed and predicted runoff at the
time step i, respectively; �O is the average observed runoff, and N is
the total number of observations. NSE ranges from - ∞ to 1, with
1 indicating a perfect match between the predictions and
observations.

Root mean square error (RMSE) measures the effectiveness of
the model and is the average of the squared difference between
model simulated and observed values. RMSE is used to represent the
model’s ability to predict flood events. RMSE can be calculated by:

RMSE �
��������������
1
N
∑N

i�1 Oi − Pi( )2
√

(14)

A lower RMSE indicates better model simulation performance,
with an RMSE of 0 indicating an exact match simulated and
observed values.

REP assesses the accuracy and uncertainty associated with peak
discharge estimation. It is calculated as:

REP � Op − Pp

∣∣∣∣ ∣∣∣∣
Op

× 100% (15)

where Op and Pp represent the observed and predicted peak river
flow discharge, respectively. A lower REP value indicates better
performance, indicating that the model’s predictions are closer to
the actual observed results.

The coefficient of determination (R2) quantifies the degree of
correlation between the simulated and observed runoff
(Kumarasamy and Belmont, 2018). It is calculated using the
formula:

R2 � ∑N
i�1 Oi − �O( ) Pi − �P( )������������∑N

i�1 Oi − �O( )2√ �����������∑n
i�1 Pi − �P( )2√⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2

(16)

where �O and �P represent the average value of observed and predicted
runoff,Op and Pp are the observed and predicted runoff, respectively.
R2 values range from 0 to 1, with higher values indicating a better fit
between the model outputs and the target outputs. Higher R2 values
suggest greater predictive power. An R2 equal to 1 denotes an ideal

FIGURE 4
The flowchart of Ia-LSTM Hybrid Model.
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fit. Model performance is categorized as very good (0.7 < R2 < 1),
good (0.6 < R2 < 0.7), satisfactory (0.5 < R2 < 0.6), or unsatisfactory
(R2 < 0.5) (Ayele et al., 2017).

These metrics collectively provide a comprehensive assessment
of the model’s performance, encompassing simulation quality,
accuracy of peak discharge predictions, and the correlation with
observed data.

3 Results and discussion

3.1 Estimation of initial loss

To accurately estimate initial losses, the Yufuhe basin was
divided into sub-basins (S1, S2, S3, S4, S5) as shown in Figure 5.
Table 1 provides key characteristics of these sub-basins, including
their areas, average slopes, and stream lengths. This subdivision
allowed for a precise assessment of initial losses. The initial and
constant loss method requires the specification of parameters
including the percent impervious area, initial loss (Ia), and
constant loss rate. The Thiessen polygon method was employed
to estimate the average rainfall for the entire watershed, and specific
runoff parameters for each sub-basin were determined.

The value of initial loss (Ia) depends on the topography and land
use conditions within the watershed. Typically, it is set at 10%–20%

of the total rainfall for forested areas. In this study, based on the soil
and land use characteristics, the Ia value was determined as 30 mm,
while the constant loss rate ranged from 0.30 mm/h to 1.16 mm/h.

The optimization procedure involved using a search method to
minimize an objective function and find optimal parameters. To
determine the optimal values of Ia for different flood events, the
parameters were optimized using the Nelder-Mead optimization
algorithm, with the peak-weighted root mean square as the objective
function. The resulting optimized values are presented in Table 2.
The analysis of Table 2 reveals the following conclusions regarding
the relationship between rainfall and initial loss values:

FIGURE 5
Divisions of the Yufuhe basin.

TABLE 1 Key characteristics of sub-basins in the Yufuhe basin.

Sub-basin Area (km2) Average slope Stream
length (km)

S1 227.5 0.023 20.4

S2 58.6 0.020 7.9

S3 16.4 0.020 34.1

S4 11.9 0.095 5.6

S5 242.6 0.021 32.4

TABLE 2 Optimization of initial loss (Ia) values for different flood events.

Flood No. Precipitation
(mm)

S1 S2 S3 S4 S5

19730715 101.0 19.1 21.5 18.5 21.3 18.3

19740801 105.1 18.8 19.4 19.8 17.2 19.4

19740812 47.3 9.8 12.6 11.3 15.0 13.5

19770716 38.5 15.8 13.5 16.1 12.9 16.1

19780701 97.4 14.4 17.3 14.7 16.6 14.0

19780713 51.5 8.8 9.7 9.4 10.6 8.0

19800629 169.2 24.1 22.9 22.7 19.3 19.3

19850729 240.8 12.3 12.7 11.9 11.8 12.7

19900709 31.8 14.3 17.0 16.3 15.1 14.3

19900720 58.2 7.0 6.5 10.8 8.1 96

19900814 73.4 12.5 14.0 14.7 11.5 10.2

19910727 65.2 17.1 19.4 16.5 17.5 18.6

19940702 90.9 18.1 17.5 20.6 19.0 17.3

19940712 53.8 8.3 9.8 9.6 8.7 7.8

19950815 18.2 12.4 13.3 11.4 12.2 12.6

19950902 65.5 10.2 8.9 9.5 10.4 10.8

19960803 94.2 12.4 13.3 11.4 12.2 12.6

19980702 37.9 10.9 11.2 9.3 9.9 9.9

19980802 113.1 21.3 17.9 20.7 20.7 21.1

20000809 162.8 13.0 16.3 14.2 13.7 14.7

20030828 58.0 8.3 9.8 9.6 8.7 7.8

20040729 65.1 12.1 14.9 15.6 17.2 18.0

20050918 156.5 18.1 15.6 16.3 16.7 17.9

20110811 50.4 19.2 15.4 17.3 19.9 14.6

20110831 42.3 10.9 11.2 9.3 9.9 11.9

20120714 82.7 17.0 16.2 16.6 20.7 17.1

20130723 124.5 10.8 13.5 11.6 13.5 12.2

20160715 24.0 12.0 16.5 14.2 13.3 11.4

20190815 123.0 9.5 11.4 10.2 9.3 12.0

20200807 56.0 13.9 15.6 13.3 12.5 12.2
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Different sub-basins exhibit varying initial loss values for the
same flood event. For example, in the flood event on 19730715 with
a rainfall of 101 mm, the corresponding initial loss values for the

sub-basins are as follows: S1-19.1 mm, S2-21.5 mm, S3-18.5 mm, S4-
21.3 mm, and S5-18.3 mm.

The magnitude of initial loss values is not solely determined by
the amount of rainfall. Other factors, such as the surface condition,
rainfall characteristics, topography and slope, soil type and moisture
content, and antecedent rainfall, play a significant role in
determining initial loss values. These factors interact and
collectively influence the extent of initial rainfall loss.

There is no clear linear relationship between rainfall and initial
loss values in Table 2. This suggests that the estimation of initial loss
values cannot solely rely on the amount of rainfall. Instead, a
comprehensive understanding and consideration of the various
factors influencing initial loss is necessary for accurate estimation.

3.2 Performance comparison

Flood events No. 20000809 and 20050918 were selected for
model calibration, while flood events 20130918 and 20190815 were
used for model validation. Figure 6 presents a comparison of
simulated and observed discharges for four flood events in the
Yufuhe basin using three models: HEC-HMS, LSTM, and Ia-
LSTM. The figure shows that these models can generally capture
the overall runoff process during the rainfall-runoff forecasting.
However, some discrepancies exist in accurately simulating localized
peak values. Despite this, the predicted values exhibit consistent
trends with the observed values.

Regarding the comparison of relative error of peak discharge
(REP) for the three models, Table 3 shows that different models
exhibit varying performance in simulating peak discharge for each
flood event. The LSTMmodel exhibits relatively large relative errors,
particularly exceeding 20% for the flood event on 20130918. In
contrast, both the Ia-LSTM and HEC-HMS models demonstrate
significantly smaller relative errors, with all four flood events falling
within the acceptable range. Notably, the Ia-LSTM model
outperforms the other models, with a mere 1.3% error for the
peak discharge during the flood event on 20190815. On average,
the HEC-HMSmodel has a relative error of 9.8%, while the Ia-LSTM
model has 8.1% for the peak discharge across all four flood events.
These findings highlight the superior performance of the Ia-LSTM
model in simulating peak discharge.

Table 4 presents the errors in peak time for different flood events
predicted by the HEC-HMS, LSTM, and Ia-LSTM models. For the
flood event on 20190815, the LSTM model exhibited a peak time
error of 2 h. Conversely, for the flood event on 20130918, both HEC-
HMS model and LSTM had a peak time error of 1 h. In contrast, the
Ia-LSTM model achieved accurate peak time predictions for three
out of the four flood events, with a maximum peak time error of 1 h.
Notably, the Ia-LSTM model outperformed the other models by
accurately simulating the temporal pattern of peak discharge
propagation.

Table 5 presents a comprehensive comparison of three models
(HEC-HMS, LSTM, and Ia-LSTM) based on key performance
metrics: Nash-Sutcliffe Efficiency (NSE), Root Mean Square
Error (RMSE), and Coefficient of Determination (R2). Notably,
during the flood event on 20000809, all models demonstrated
exceptional performance with NSE coefficients above 0.86,
RMSE values ranging from 7.234 to 14.503, and R2 coefficients

FIGURE 6
Comparison of observed and simulated discharge using three
models: (A) flood No. 20000809, (B) flood No. 20050918, (C) flood
No.20130723, (D) flood No.20190815.
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exceeding 0.90. The HMS model showed heightened accuracy in
predicting the flood event on 20190815, potentially due to its
detailed consideration of the rainfall process. Additionally, the Ia-
LSTM model consistently displayed commendable performance
across various flood events, with NSE coefficients ranging from
0.755 to 0.923, RMSE values between 2.314 and 7.234, and R2

coefficients from 0.798 to 0.941. Importantly, the Ia-LSTM model
consistently outperformed the LSTM model, highlighting its
effectiveness in flood prediction and modeling.

The Ia-LSTM model consistently outperforms in various flood
events, showing lower RMSE, and higher NSE and R2 values. This
highlights its effectiveness in flood prediction, especially compared
to the LSTM model, emphasizing the importance of initial loss
incorporation for accurate simulations.

3.3 Impact of initial loss

The analysis of initial loss in the proposed hybrid model
provides valuable insights for improving rainfall-runoff
predictions. By integrating initial loss estimation with LSTM
neural networks, the Ia-LSTM model captures the complex
interactions among various hydrological components, including
rainfall, vegetation, soil, and runoff. This integration allows for a
more comprehensive representation of the rainfall-runoff process,
leveraging the strengths of physically-based and data-driven
modeling approaches.

Consistent results demonstrate the superiority of the Ia-LSTM
hybrid model over the individual HEC-HMS and LSTM models in
estimating peak discharge, predicting peak time, and achieving
higher NSE, lower RMSE, and greater R2 values. The
incorporation of initial loss estimation enhances the model’s
ability to simulate runoff dynamics. This leads to improved
accuracy and reliability. In the Yufuhe basin case study, the Ia-
LSTM model demonstrates an average improvement of 6.05% and
13.7% in peak discharge estimation compared to the HEC-HMS
model and LSTM, respectively.

These findings emphasize the importance of accurate initial loss
estimation in rainfall-runoff modeling, particularly for flood
management and forecasting. Accurate initial loss estimation
provides a clearer understanding of the initial loss processes and
their impact on runoff generation. Through the optimization of
initial loss values obtained from the HEC-HMS model, the Ia-LSTM
model achieves heightened accuracy and reliability in simulating
rainfall-runoff dynamics.

3.4 Comparison with previous studies

The Ia-LSTM hybrid model represents a significant
advancement in rainfall-runoff modeling. Previous studies in the
Yufuhe basin have employed various methodologies and models.
For instance, Zhang et al. (2016) developed a distributed flood
forecasting model based on sub-basins, river reaches, and
reservoirs, achieving high performance with a Nash-Sutcliffe
Efficiency (NSE) exceeding 0.70 and a Relative Error of Peak
Discharge (REP) below 10%. Similarly, Yang et al. (2013) focused
on the application of the SWAT distributed hydrological model,
yielding satisfactory results with NSE and R2 exceeding 0.70, and a
relative error in peak flow below 15%. Their work highlights the
effectiveness of their model in capturing key influencing factors of
floods within the Yufuhe basin.

In recent years, machine learning models, particularly those
based on LSTM, have exhibited promise in runoff forecasting. For
instance, Xiang and YanDemir, (2020) proposed an LSTM-
sequence-to-sequence rainfall-runoff model, demonstrating
notable predictive power for short-term flood predictions. The
LSTM model produced NSE values of 0.72, 0.80, and 0.93 for the
Tripoli, Independence, and Anamosa stations, respectively.
Additionally, an LSTM network was applied to build a data-
driven model for streamflow prediction in an urban watershed.

While deep learning algorithms may not fully capture the
rainfall-runoff process, they can be used to discern streamflow
patterns and to identify effective variables, making them the
preferred choice for modeling in data-poor catchments.

In our study, the Ia-LSTM model outperforms previous models,
exhibiting NSE coefficients ranging from 0.755 to 0.923, RMSE
values between 2.314 and 7.234 m3/s, and R2 coefficients from
0.798 to 0.941. These results signify substantial advancements in
rainfall-runoff modeling.

This research builds upon earlier works by incorporating initial
loss estimation and utilizing the powerful Ia-LSTM hybrid model.
This approach significantly enhances accuracy and reliability in
simulating rainfall-runoff dynamics, particularly in terms of
estimating peak discharge and predicting peak time.

The findings of this study have important implications for flood
forecasting and water resource management. The Ia-LSTM hybrid
model demonstrates superior performance in simulating peak
discharge and predicting peak time compared to individual HEC-
HMS and LSTMmodels. This suggests its potential for accurate and
reliable rainfall-runoff modeling, which is crucial for disaster
prevention, mitigation, and water resource management.

TABLE 3 Comparison of relative error of peak discharge (REP) for three models.

Flood
No.

Observed flow
(m3/s)

HEC-HMS LSTM Ia-LSTM

Predicted flow
(m3/s)

Relative
error %

Predicted flow
(m3/s)

Relative
error %

Predicted flow
(m3/s)

Relative
error %

20000809 387.22 362.62 −6.4 310.94 −19.7 345.86 −10.7

20050918 179.37 205.92 14.8 142.23 −20.7 164.65 −8.2

20130918 360.00 321.77 11.1 274.18 −23.8 314.46 −12.1

20190815 92.92 99.39 7.0 78.42 −15.6 94.13 1.3
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Additionally, the integration of initial loss estimation with
LSTM neural networks represents a significant advancement in
rainfall-runoff modeling. This approach captures complex
interactions among various hydrological components, providing a
more comprehensive representation of the rainfall-runoff process.

The Ia-LSTM hybrid model shows promise for a wide range of
applications, including flood forecasting, water resource management,
and infrastructure planning. Its effectiveness in data-driven rainfall-
runoff modeling with integrated physical mechanisms can significantly
enhance the efficiency of flood prediction and management.

4 Conclusion

This study presents a hybrid rainfall-runoffmodel combining initial
loss estimation with LSTM networks, significantly enhancing runoff
forecasting accuracy. Effective runoff, obtained by subtracting initial loss
from total rainfall through HEC-HMS simulations, was used as the
input for the LSTM network. The Ia-LSTM hybrid model, integrating
physically-based and data-driven modeling approaches, outperforms
both individual HEC-HMS and LSTM models, as evidenced by case
studies in the Yufuhe basin.

The integration of physically-based and data-driven modeling
techniques in the Ia-LSTM hybrid model offers a comprehensive
representation of the rainfall-runoff process. This integration
significantly improves the model’s ability to capture the complex
dynamics of rainfall-runoff, resulting in enhanced peak discharge
estimation. The optimized initial loss values derived from the HEC-
HMSmodel contribute to the increased accuracy of the Ia-LSTMmodel.

The case studies conducted in the Yufuhe basin demonstrate the
effectiveness of the Ia-LSTM model in simulating peak discharge and
accurately predicting peak time for the flood events. The performance of
Ia-LSTM model was evaluated with Nash-Sutcliffe Efficiency (NSE),
root mean square error (RMSE), relative error of peak discharge (REP)
and coefficient of determination (R2). The Ia-LSTM model, in
particular, shows an average improvement of 6.05% and 13.7% in
peak discharge estimation compared to the HEC-HMS model and
LSTM, respectively. The model achieves NSE values ranging from
0.755 to 0.923, RMSE values between 2.314 and 7.234 m3/s, and R2

coefficients from 0.798 to 0.941. This demonstrates the consistent
outperformance of the Ia-LSTM model across various flood events,
as indicated by lower RMSE, and higher NSE and R2 values.

These findings highlight the importance of accurate initial loss
estimation and the potential of hybrid modeling approaches in
improving rainfall-runoff predictions. Accurate estimation of initial
loss enables a better understanding of the runoff generation process and
its influence on peak discharge. The integration of initial loss estimation
with LSTM in the hybrid model contributes to its superior performance
in simulating peak discharge and capturing the temporal pattern of peak
flow propagation. These findings offer promise for enhancing the
accuracy and reliability of hydrological forecasting models.

While LSTM has been effective in rainfall-runoff forecasting,
there’s room for improvement. Extending the output sequence
length using historical rainfall-runoff data will significantly
enhance long-term predictions.

Simplifying the complex process of initial loss estimation, which
currently relies onHEC-HMS, is crucial. Future research can explore
efficient techniques like the SCS curve method, considering factorsTA
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such as soil type, pre-rainfall soil moisture, and the CN parameter.
This streamlined approach makes initial loss estimation practical
and applicable in real-world scenarios.
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