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Tourism green production efficiency serves as the foundation for assessing the
mutual coupling performance of the tourism economy and the ecological
environment. In this paper, the tourism carbon sink is included in the
measurement framework, and the TGPE of 41 cities in the Yangtze River Delta
region from 2011 to 2019 is estimated by the Super-SBM model. Furthermore,
kernel density estimate, spatial autocorrelation, Markov chain and spatial Durbin
model are further integrated to explore its spatio-temporal evolution process,
spatial effects and influencing factors. The results show that 1) TGPE in the Yangtze
River Delta has been increasing during the study period. The high-efficiency and
low-efficiency areas of the TGPE have a bipolar pattern characterized by “low–low
convergence” and “high–high convergence.” 2) There is considerable spatial
variation in TGPE from north to south. The number of hot spots and sub-hot
spots increases in volatility, whereas the number of sub-cold spots and cold spots
decreases. 3) Although cities with low levels of TGPE have a higher probability of
moving to the next level, grade transformation across hierarchies is difficult to
attain. When considering the factor of adjacent types and the influence of spatial
lag on the transfer probability. 4) The positive spatial spillover effects of TGPE is
significant. At the same time, economic development level, transport accessibility
and tourism industry agglomeration have positive spillover effects on neighboring
cities. Conversely, urbanization level and openness level have negative spillover
effects.
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1 Introduction

As the scale of tourism continues to expand, the tourism
industry has become disconnected from the concept of a
“smokeless industry.” While this rapid development has brought
economic benefits to cities, it has also resulted in environmental
pollution, particularly in terms of carbon emissions, which
constitute 8%–10% of the global total. Prior to the COVID-19
pandemic, carbon emissions from China’s tourism industry were
increasing annually, directly impacting China’s “dual-carbon” goals.
Meanwhile Transport, which accounts for more than 90% of
tourism carbon emissions, has already made a major threat to
human health (Li and Yue, 2023). However, scholars find that
existing policies are insufficient to meet current needs and that
there are significant deficiencies in climate change adaptation
policies (Yu and Chen, 2022; Stephan et al., 2023). Therefore,
“dual-carbon” goals have been incorporated into the overall
framework of constructing an ecological civilization.
Furthermore, the Chinese government has called for promoting
green and low-carbon economic and social development as a key
point in achieving high-quality development. The existing literature
has found the circular business model is introduced as the pillar to
achieve the goals of the circular economy to limit the exploitation of
natural resources and waste generation (Thanh et al., 2022). For
tourism industry, it is a dominant industry to promote the green
transformation of China’s economy, so it should take the lead in
returning to the essence of green industries, and play a leading role
in efforts to reduce carbon emissions. Tourism green production
efficiency (TGPE) refers to the integration of resources and
environmental factors into the efficiency measurement
framework to reflect the development of tourism economy, the
core idea of which is to maximize economic benefits and minimize
ecological damage with minimal input of tourism resources (Yao
and Chen, 2016). Compared with other indicators on tourism
development level, this indicator can measure the efficiency and
quality of tourism development, represent the coupling and
coordination degree between tourism system and ecological
environment system, and directly reflect the low-carbon and
sustainable development level of tourism industry. Therefore, in
order to more accurately measure the TGPE, this paper further
modifies the measurement framework, that is, the carbon sinks of
tourism are taken into account, which is a theoretical contribution of
this paper.

As an essential base for regional economic integration, the
Yangtze River Delta region has the highest degree of regional
openness, making it one of the most vibrant areas for China’s
tourism economy. Alongside the development of the tourism
economy in the region, there is a persistent issue of increasing
carbon emissions, which hinders the industry’s sustainable growth
(Yao et al., 2021). Given the high degree of integration within the
Yangtze River Delta region, the extensive coverage and strong
interdependence of the tourism industry, TGPE in the region
may be affected by spatial spillover effects from neighboring
regions (Lü et al., 2020). Therefore, achieving ecological
development in the region’s tourism industry requires
collaboration among cities and their neighbors. In light of the
integrated development of tourism and the construction of an
ecological civilization in the Yangtze River Delta region, it is of

great significance to measure TGPE in the region and describe its
spatial–temporal evolution trends, grade transformations, and
spatial spillover effects from a geographical proximity perspective.
It can be seen that this paper constructs a logical framework of
spatial effects exist - transfer process of spatial effects—influencing
factors of spatial effects, while most of the existing literature focuses
on the influence of spatial effects, which is another theoretical
contribution of this paper.

2 Literature review and theoretical
framework

2.1 Literature review

The current mainstream research paradigm of the TGPE follows
the approach of “efficiency measurement–spatial evolution–reason
analysis,” with data envelopment analysis (DEA) being the primary
method for measuring efficiency. In particular, there is a tendency to
employ the Slacks-Based Measure model (SBM) (Peng et al., 2017)
in current literature, which takes into account non-radial and non-
angular outputs and incorporates unexpected outputs (Wang et al.,
2022a). Cheng et al. (2023) used the Super-SBM to calculate the
TGPE of 12 cities in the Hanjiang River Basin from 2010 to 2019 and
measured its spatiotemporal evolution, and found that the
distribution of TGPE exhibited obvious spatial clustering and
dependence. Wu and Liang (2023) also used Super-SBM to
measure the TGPE of 31 provinces from 2010 to 2019 in China
and analyzed the comprehensive impact of environmental
regulation on TGPE. They found that there were high and low
differences in the efficiency among provinces and regions with
uneven distribution. This technique requires the construction of
an input–output framework as a prerequisite. In most studies, input
indicators include capital, resources, and energy consumption, while
output indicators include total tourism revenue and tourism carbon
emissions (Tsionas and Assaf, 2014). However, the aforementioned
framework does not completely account for the positive externalities
of tourism development. As a green industry, tourism not only
generates carbon emissions but also possesses the abilities of carbon
sinks. Carbon sinks are actions, activities, or mechanisms that fix
and absorb carbon dioxide in the air (Wei and Shen, 2022). Tourism
destinations comprise the entirety or a portion of mountains, waters,
forests, farmlands, lakes, grasslands, and deserts as a complex
system. Carbon emissions associated with tourism may be
partially mitigated by the carbon sequestration capabilities of
ecosystems such as forests, grasslands, wetlands, and oceans.
Some academics have acknowledged the importance of
measuring tourism carbon sinks (Dong et al., 2018; Zhu and
Wang, 2022). Neglecting the carbon sequestration function of the
tourism industry may lead to inaccurate TGPE measurements.
Therefore, incorporating tourism carbon sinks and reconstructing
the measurement framework of TGPE are the primary scientific
challenges addressed in this study.

Numerous researchers have measured TFPE at various spatial
scales, encompassing the entire nation (Wang et al., 2018), provinces
(Yao et al., 2016), urban agglomerations (Shi et al., 2022), tourist
destinations and scenic areas (Medina et al., 2012; Tang et al., 2022).
These comprehensive assessments have advanced the field of
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research. However, intermediate regions such as the Yangtze River
Delta region have received less attention, and there is a scarcity of
studies focusing on individual cities within the region. Cities, being
the most active unit in tourism, have shifted their development path
from a “single-city” approach rooted in central place theory to a
“connected cities” paradigm based on spatial network theory. The
role of cities within the spatial network is crucial for achieving
regional reductions in tourism-related carbon emissions.
Furthermore, numerous scholars have focused on “spatial
interaction” in relation to TGPE. The literature has revealed the
presence of spatial correlation in TGPE (Wang et al., 2020), namely,
the existence of spatial spillover effects by global and local spatial
autocorrelation (Zheng and Yang, 2020). In addition, extensive
research has focused on the analysis of factors affecting TGPE.
Some researchers have employed spatial econometric models to
determine the magnitude of spatial spillover effects, enabling a better
understanding of the direct and indirect effects of influencing
factors, for example, the Moran’s index and spatial Durbin model
(SDM) were adopted to explore the spatial distribution and
determinants of TGPE by Gao and Tsai (2023). It is evident that
previous studies have primarily established the existence of spatial
spillover effects and have swiftly moved on to measuring these

effects, without elucidating the impact of neighborhood types on
regional transitions during spatial evolution. This procedural
disconnect in spatial econometric analysis highlights the
inadequacy of the current system for analyzing spatial spillover
effects on TGPE. Consequently, research must systematically
interpret spillover effects in accordance with the logic of “effect
testing–process of action–influencing factors,” which is the second
essential scientific issue addressed in this study.

To sum up, there is a lot of existing research on TGPE, which has
laid a theoretical foundation for the paper. However, there are still
the following limitations. First, the existing TGPE measurement
framework is not systematic and has not fully considered the
positive externalities of tourism, that is, tourism carbon sinks
have not yet been included in the measurement system as an
indicator of expected output. Second, current scholars mostly
focus on the analysis of spatiotemporal evolution trend and
spatial spillover effects of TGPE. However, the system is not
perfect, and there is no research based on the logical sequence of
judgment of the existence of spatial effect, analysis of the process of
spatial effect, and identification of influencing factors of spatial
effect. So it is difficult to clarify the process and mechanism of the
spatial impact of neighboring areas on the TGPE of the region.

FIGURE 1
The theoretical framework of the paper.
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In view of this, this paper incorporates the tourism carbon sinks
as the expected output into the reconstructed measurement model,
employs the Super-SBM model to estimate TGPE in the Yangtze
River Delta region from 2010 to 2019, and uses the spatial analysis
methods to describe its spatiotemporal evolution characteristics.
Finally, the spatial Durbin model is employed to explore its spatial
spillover effects and influencing factors.

2.2 Theoretical framework

In order to understand the spatio-temporal evolution of TGPE
in the Yangtze River Delta and identify its spatial effects, this paper
constructs the following theoretical framework (Figure 1).

3 Research design

There are three parts in the section, including the introduction
of the research area, construction of index system and description of
research methods. For the research methods, this paper measures
TGPE with the help of Sup-SBMmodel, makes use of kernel density
estimation and Exploratory Spatial Data Analysis (ESDA) to
describe the spatial–temporal evolution characteristics of TGPE
in the region, selects the Markov chain to describe the process of
spatial action, and identifies the direct and indirect effects of factors
affecting TGPE by spatial Durbin model.

3.1 Study area

The Yangtze River Delta region is situated in the flood plain of
the lower reaches of the Yangtze River in China and comprises

Shanghai city, Zhejiang province, Jiangsu province, and Anhui
province (Figure 2). There are seven World Heritage sites,
including West Lake, Huangshan Mountain, and the Beijing-
Hangzhou Grand Canal, as well as over 2,000 A-class scenic
locations in the region. The government formulated The Plan for
the “Yangtze River Delta Urban Agglomeration Development Plan”
in 2016, and pointed out that the Yangtze River Delta region would
to be created to a national economic growth pole and world-class
city cluster with global influence. The integrated development of the
Yangtze River Delta has been the national strategy since 2019, and it
was emphasized again to promote the cooperation capacity of inter-
regional tourism supply and jointly construct an internationally
renowned tourist destination in the new document. According to
statistics, the total tourism revenue in the region reached 3.9 trillion
yuan in 2019, accounting for 68.4% of the national and 9.8% of the
global total tourism revenue, indicating that the region has become a
tourism development hot spot in China and the world.

3.2 Construction of an indicator system

The TGPE reflects the development status of tourism and
ecology, and its measurement should fully measure the
combination of input and output factors of tourism and ecology
environment. A measurement indicator system for TGPE for TGPE
(Table 1) was constructed based on scientific, systematic, and
exhaustive principles, as well as the requirements of the Super-
SBM model for multiple inputs, expected outputs, unexpected
outputs, and previous research (Wang et al., 2020; Zheng and
Yang, 2020; Cheng et al., 2021). The specific construction process
is as follows.

In the economic sense, the input of production factors mainly
includes capital, land, labor and other factors. Combining tourism
characteristics with reference to existing research (Wang et al., 2020;
Cheng et al., 2021), the labor input indicator is represented by the
number of employees in the tourism industry. According to the
research byWang and Liu (2019), the capital investment indicator is
represented by the original amount of investment in fixed assets in
the tourism industry. Meanwhile, drawing on Fang and Huang
(2020)’s research, the capital investment indicator is represented by
the original amount of investment in fixed assets in the tourism
industry.

The energy input indicator is represented by the energy
consumption of the tourism industry. Notably, China’s energy
statistics do not separately account for energy consumption in
the tourism industry; therefore, referring to Wang et al (2020)
research, the necessary data from energy statistics were extracted,
and specific research methods about tourism industry’s energy
consumption (2013) are referenced by Huang and Huang. (2022),
Irfan et al. (2023) and Katircioglu et al. (2019).

Drawing on Wang et al. (2020) and Huang and Huang (2022)’s
research, output indicators in the measurement indicator system
comprise expected and unexpected outputs. Based on existing
literature analysis (Wang et al., 2020; Cheng et al., 2021),
expected outputs include tourism carbon sinks, total tourism
reception, and total tourism revenue. The calculation of tourism
carbon sinks follows a common calculation method that considers
land use data and carbon absorption coefficients to estimate the

FIGURE 2
The regional division of the Yangtze River Delta.
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overall carbon sequestration of a city. Then tourism carbon sinks are
derived from the overall carbon sequestration based on the degree of
tourism development, and the specific calculation methods refer to
the literature of Zhu and Wang (2022). Unexpected outputs are
represented by carbon emissions from tourism. The calculation of
carbon emissions from tourism follows the methodology proposed
by scholars like Wang et al. (2013a).

3.3 Research method

3.3.1 Super-SBM model based on unexpected
outputs

Tourism development not only produces positive externalities,
such as the increase of tourism revenue, but also negative
externalities, such as tourism carbon emissions, that is,
undesirable output. The Super-SBM model proposed by Tone
(2001) addresses the limitations of the Data Envelopment
Analysis (DEA) model (Farrell, 1954). While the DEA model
does not account for unexpected outputs, the SBM model
overcomes this limitation. However, it faces challenges in dealing
with multiple units with relatively effective efficiencies, resulting in
poor comparability between measurement units. Therefore, Tone
(2002) developed a super-efficiency model for SBM (Super-SBM) to
more effectively address the issue of ineffectual ranking by relaxing
ineffective Decision Making Units (DUM) variables, and this model
is also chosen as a speed measuring tool in this paper. The structure
of the model is as follows:

Min ρ* �
1
m
∑m
i�1

�x

xik
( )

1
r1 + r2

∑r1
s�1

�yd

�yd
sk

+∑r2
q�1

�yu

�yd
qk

⎞⎠⎛⎝
�x≥ ∑n

j�1,≠k
xijλj; �y

d ≤∑n
j�1
yd
sjλj

�yd ≥ ∑n
j�1,≠ k

yd
qjλj; �x≥ xk

�yd ≤yd
k ; �y

u ≥yu
k

λj ≥ 0,i� 1, 2, . . . ,m; j� 1, 2, . . . ,n
s� 1, 2, . . . ,r1; q� 1, 2, . . . ,r2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

In this model, n represents the decision-making unit, ρ*
represents TGPE in the region and 41 cities, m represents the
number of inputs required for tourism development, and r1 and
r2 represent the number of expected and unexpected outputs of
tourism.

3.3.2 Kernel density estimation
The kernel density estimate is an estimate of the probability

density of the population data based on a finite sample of data
(Parzen, 1962). Its biggest advantage is that it can visually show the
shape of the data distribution and help identify outliers. Therefore, it
was used to investigate the dynamic distribution and evolution of
TGPE in the Yangtze River Delta. Assuming that f(c) is the density
function of TGPE, the following formula is as follows:

f c( ) � 1
nρ

∑n
i�1
K

ci − �c

ρ
( ) (2)

In Formula 2, K(c) denotes the kernel function, Ci denotes
independent and identically distributed observations, c denotes
the mean, and ρ denotes the bandwidth. Furthermore, the
commonly used Gaussian kernel function is chosen to estimate
the dynamic distribution of TGPE in the Yangtze River Delta. The
kernel function can be expressed as follows:

K c( ) � 1
2π

√ exp −c
2

2
( ) (3)

3.3.3 Exploratory spatial data analysis (ESDA)
In order to better describe the spatial distribution, spatial pattern

and spatial interaction implied by TGPE, exploratory spatial data
analysis (ESDA) is introduced in this study. ESDA mainly uses two
analysis tools, global spatial autocorrelation analysis and local spatial
autocorrelation analysis. Among them, global spatial
autocorrelation analysis is based on the overall perspective to
determine whether the spatial elements of different regions are
interrelated or independent, which is represented by Moran’s I
index. And the Moran’s Ⅰ index is computed as follows:

Moran,s I � n

∑n
i�1
∑n
j�1
wij xi − �x( ) xj − �x( )

∑n
i�1
∑n
j�1
wij∑n

i�1
xi − �x( )2

(4)

In Formula 4, xi and xj represent themeasured values of TGPE in
the ith and jth cities,‾x represents the average value of TGPE, wij is
the spatial vector matrix, and n is the number of cities in the Yangtze
River Delta.

In view of the fact that Moran’s I index is described from a global
perspective, which leads to a large degree of average differences
among units within a region, local spatial autocorrelation analysis is
introduced to describe whether there is agglomeration among units
within a region, that is, Getis-Ord G*i index characterization. The

TABLE 1 TGPE measurement index system.

Indicator type Concrete index Primary parameter

Input Labor input Number of tourism employees

Capital input Investment in fixed assets for tourism

Energy input Tourism energy consumption

Output Desirable output Tourism carbon sinks, total tourism reception, total tourism revenue

Undesirable output Tourism carbon emissions
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index can visually express regional cold and hot spots, and the
specific formula is as follows:

G*
i d( ) �

∑n
i�1
∑n
j�1
wijxixj

∑n
i�1
∑n
j�1
xixj

i ≠ j( ) (5)

The formula for standardizing Gi* is as follows:

Z G*
i( ) � G*

i −
E G*

i( )
Var G*

i( )√ (6)

In Formula 6, Var(Gi*) and Z(Gi*) represent the coefficient of
variation and the expected value of Gi*, respectively. A positive
Z(Gi*) value indicates that the region is a hot spot and a negative
value indicates that the region is a cold spot.

3.3.4 Markov chain
The traditional Markov chain refers to the random evolution

process of the research object which is discrete in time and state and
has nothing to do with history and future, which reflects the non-
after-effect of the research object. The TGPE also has no after-effect
in its evolution process, so the Markov chain method can be used to
explore its upward or downward transfer mobility characteristics.

The fundamental principle of this method is to discretize the
research object into K different states at various time intervals, and
calculate the distribution probabilities and transition characteristics of
the various states, and then approximating them as a Markov process.
In this study, TGPE at time t is represented by a 1 × k state probability
vector Ht = [H1,t, H2,t, . . . , Hk,t]. The transition of TGPE at different
periods can be represented by a k × kmatrixM. Based on the principle
of close numerical values, TGPE in the Yangtze River Delta is divided
into four types according to quartiles (0.25, 0.50, 0.75), represented by
k = 1, 2, 3, 4. MatrixM is the Markov transition probability matrix for
TGPE, with the element Pij representing the probability of transitioning
from the i-state region at time t to the j-state region at t + 1, which is
estimated using the following formula:

Pij � Aij

Ai
(7)

In Formula 7,Ai represents the total number of regions belonging
to type i during the research period. Aij represents the total number of
regions belonging to type i at time t and type j at time t + 1.

Although traditional Markov chain overcomes the limitation, it
cannot show dynamic distribution, and its assumed region is
isolated and fails to consider specific spatial factors. From a
spatial perspective, spatial units are not viewed as isolated entities
but rather exist as spatial collateral effects during the interaction
process. To capture spatial spillover effects on state transitions, the
spatial Markov chain is employed. By introducing the concept of
“spatial lag,” this model converts the transition probability matrix of
a conventional Markov chain into k conditional probability matrices
of size k × k. Specifically, the formula is as follows:

Laga � ∑n
b�1
YbWab (8)

In Formula 8, Yb denotes the observed value of region b, Laga
denotes the spatial lag value of region a, n denotes the total number

of cities, and the spatial weight matrix Wab represents the spatial
relationship between two regions. In this study, the spatial relationship
between cities was established based on the principle of adjacency.
Specifically, when examining the island effects of Zhoushan, previous
research findings were referred to, and the city closest to Zhoushan was
identified as its adjacent city (Wang et al., 2020).

3.3.5 Spatial econometric model
In general, the traditional regression model cannot solve the

spatial problem, mainly because it assumes that different samples are
independent. Under this assumption, spatial autocorrelation will
affect the results of regression analysis, resulting in inaccurate
regression coefficient and even false correlation phenomenon.
The spatial Durbin model considers not only the characteristics
of the research object, but also its effect on neighboring regions.
Consequently, this model has been extensively utilized in spatial
effect analysis (Li and Wu, 2017; Feng et al., 2019; Han et al., 2020;
Ge et al., 2021; Wang et al., 2021). The specific formula is as follows:

Yit � βXit + ρ∑41
j�1
WitYit +∑41

j�1
φWitYit + ui + vi + εit (9)

In Formula 9, Yit and Xit respectively represent the observed
values of the ith city’s TGPE and explanatory variables in period t, ρ
is the spatial autoregressive coefficient of the city’s TGPE, φ
represents the spatial spillover coefficient, and Wij is the 41 ×
41 spatial weight matrix.

The spatial Durbin model considers the endogenous interaction
effects between the explanatory and dependent variables of both the
local and neighboring areas. The model allows to examine the direct
effects of the explanatory variables on the dependent variable within
a spatial unit and the indirect effects of the explanatory variables on
the neighboring areas, known as spatial spillover effects (LeSage and
Pace, 2009). Partial differential equations are used to further
decompose the coefficients estimated by Formula 9 to obtain the
following formula:

Yit � I − βW( )−1kIN + I − βW( )−1 Xtβ +WXtβ( ) + I − βW( )−1ε*t
(10)

In Formula 10, kIN represents the spatial error term, and Xt
represents theN×M-dimensional explanatory variable matrix. Other
variables are defined as in Formula 9. By taking the partial
differentiation of the kth explanatory variable in Formula 10, the
formula is as follows:

∂Y
∂x1k

×
∂Y
∂xNk

[ ] � I − ρW[ ]−1 × Iβk +Wβk[ ] (11)

In Formula 11, the average of the diagonal elements on the right-
hand matrix represents the direct effects, whereas the average of the
off-diagonal elements represents the residual effects. The cumulative
effects equal the sum of the two effects.

3.4 Data sources

The original data used in this study were obtained from various
sources, including China Statistical Yearbook, China Culture and
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Tourism Yearbook, and China Energy Statistical Yearbook from
2010 to 2019. Provincial and municipal statistical yearbooks as
well as the “National Economic and Social Development
Statistical Bulletin” were considered. Some data were obtained
through consultations with tourism bureaus and statistical
bureaus in various cities. For missing data, interpolation
techniques using Stata software 2016 were applied. To adjust for
inflation, the relevant value data were deflated using 2010 as the base
year. Geographic data were sourced from the National
Administration of Surveying, Mapping, and Geoinformation of
China’s 1:1,000,000 national fundamental geographic database.

4 Results

4.1 Analysis of spatial–temporal evolution
characteristics of TGPE in the region

4.1.1 Dynamic analysis of temporal characteristics
In terms of temporal dynamics, TGPE in the Yangtze River

Delta region exhibited a clear upward trend during the study period,
with an average increase of 9.3% in the first 5 years (Figure 3). After
2015, the average growth rate accelerated by 18.8%, rising from
0.2405 in 2010 to 0.8066 in 2019 (Figure 3). The standard deviation
of TGPE in the region also increased marginally (Figure 2).
Specifically, the standard deviation of TGPE increased from
0.1526 in 2010 to 0.2758 in 2019, indicating a modest increase of
0.1322. It can be seen that in recent years, the relationship between
the tourism industry and the ecological environment in the region
has continued to develop in a coordinated direction, which has
significantly improved the TGPE, but it has not yet risen to the
optimal production frontier. In addition, the standard deviation of
TGPE in the region increased slightly, indicating that the dispersion
of efficiency values at the end of the study period has expanded. It
may be that cities with high TGPE have a “siphon effect” on
surrounding cities due to the energy level, magnitude and
industry correlation of their own tourism industry, that is, the
production factors of TGPE flow into these cities, thereby
widening the differences between cities.

Kernel density estimation was used to determine the three-
dimensional map of TGPE. In terms of distribution location and

form, the center position of the overall distribution curve and the
range of fluctuations shifted toward the right (Figure 4), which
showed that the TGPE in the region was increasing year by year.
From the perspective of distribution pattern, the overall peak height
exhibited an inverted V-shaped trend and the width of the main
peak continued to expand (Figure 4), indicating that the distribution
of TGPE in cities in the region was gradually dispersed, and regional
differences were enlarged. Concerning distribution extensibility, the
left tail phenomenon of the curve substantially weakened, whereas
the right tail phenomenon became more pronounced and gradually
increased (Figure 4), indicating that the TGPE of urban tourism in
low-low agglomeration areas has further improved, while cities in
the high-efficiency stage continued to maintain an absolute lead
during the study period. From the perspective of distribution
polarization, the curve distribution maintained a unimodal form
from 2010 to 2018, and transformed into a bimodal distribution
form with a lower peak height in 2019 (Figure 3), which showed that
the TGPE in the region has a tendency to transform from a unipolar
situation to a polarized pattern of “low-low convergence” and “high-
high convergence,” that is, there is “club convergence.”

4.1.2 Spatial evolution analysis
To elucidate the spatial pattern changes of TGPE in the Yangtze

River Delta, 4 years for spatial visualization: 2010, 2013, 2016, and
2019 were selected. Using the Getis-Ord Gi* index and the natural
break point method, TGPE in the Yangtze River Delta was divided
into four efficiency zones (Figure 5): hot spots, sub-hot spots, sub-
cold spots, and cold spots.

Throughout the research period, the overall spatial pattern of
TGPE in the Yangtze River Delta displayed a ranking order of
Shanghai > Zhejiang > Jiangsu > Anhui, forming a decreasing semi-
circular layer spatial pattern from Shanghai to the adjacent areas
(Figure 4). There was also a degree of spatial aggregation, and a
north–south differentiation pattern was observed, with the
“Hangzhou–Huzhou–Wuxi–Suzhou–Shanghai” line serving as the
boundary (Figure 5).

Specifically, 1) The number of hot spots exhibited an upward
trend followed by a downward trend. In 2010, there was only one
TGPE hot spot in Shanghai, but the number increased to nine in
2013 and 2016 in the adjacent areas of Shanghai and the central-
southern portion of Zhejiang. In 2019, the number decreased to six,
with dispersed concentrations emerging in the northwest of Anhui
(Figure 5). It can be seen that the evolution of hot spots was
dependent on tourism central cities, and it also drived the TGPE
of surrounding areas to converge towards high values, such as
Shanghai and Suzhou with developed tourism economy and high
degree of tourism intensification, Jinhua with rich tourism resources
and Lishui with vigorous development of ecological tourism. 2) The
number of sub-hot spots exhibited a decreasing trend followed by an
increasing trend, ultimately increasing from 11 in 2010 to 16 in 2019,
primarily concentrated in Zhejiang province, including cities like
Hangzhou, Huzhou, Jiaxing, and Taizhou, with occasional
distribution in central and northern Anhui and southern Jiangxi
(Figure 5). This showed that many cities with medium and low
efficiency had experienced the stage of tourism development’s stress
on the ecosystem, and the extensive tourism development mode had
reduced the sub-hot spots to some extent since 2010. However, with
the deepening of the concept of low-carbon tourism, the tourism

FIGURE 3
Time trend of TGPE in the Yangtze River Delta from 2010 to 2019.
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industry has gradually transformed towards intensification and
efficiency. The tourism industry has achieved remarkable results
in energy conservation and emission reduction, thus eventually
forming a continuous urban belt with high efficiency value since
2013. 3) The number of sub-cold spots steadily decreased from 15 in
2010 to 8 in 2019, with sporadic distribution in Zhejiang in certain
years. The area of sub-cold spots gradually decreased, eventually
converging in Anhui and Jiangsu (Figure 4), indicating that sub-cold
spot areas gradually transformed into hot spots and sub-hot spots
and TGPE showed convergence in space, which was the same as the
previous kernel density estimation results. 4) The cold spots mainly
clustered in the outer circle of Jiangsu and Anhui, exhibiting a
patchy distribution. The number of cold spots decreased slowly with
time, from 14 in the early years of the study period to 11 in later
years, including Yancheng, Lianyungang, Huangshan, and other
cities (Figure 5). This phenomenon may be influenced by the
“backflow effect” caused by the outflow of development elements.
As a result, these cities have been in the cold spot area for a long
time, which has widened the gap between cities in the region to a
certain extent.

4.2 Convergence analysis

4.2.1 Spatial autocorrelation analysis
As observed in Table 2, the global Moran’s I index exhibited a

zigzag pattern with an initial increase followed by a decrease when
considering the geographic adjacency weight matrix. The highest
and lowest values recorded were 0.5244 and 0.3034, respectively.
Moran’s Ⅰ index of each year passed the significance test at the 1%
level, demonstrating the relatively variable spatial agglomeration of
TGPE in the region. A high positive spatial autocorrelation of TGPE
was observed in the region, i.e., areas with high efficiency tended to
congregate, whereas areas with low efficiency were relatively close in
terms of layout. This finding suggested that TGPE not only
depended on the degree of coupling between the tourism

industry and the resource environment but also had a significant
correlation with neighboring cities. This verification confirmed the
existence of spatial spillover effects in the region, making the region
suitable for analyzing spatial Markov transition probability matrices
and spatial econometric models to investigate its mechanism of
action in greater detail.

4.2.2 Traditional Markov chain analysis
We created both the conventional Markov transition

probability matrix and the spatial Markov transition
probability matrix based on the spatial adjacency matrix to
comprehensively analyze the spatial effects of TGPE in the
region. We divided TGPE into four discrete categories,
corresponding to k = 1, 2, 3, 4: low intensity, relatively low
intensity, relatively high intensity, and high intensity. The
transitions from low values to high values were classified as
upward transitions, whereas those from high values to low
values were classified as downward transitions. The results of
the calculations (Table 3) were as follows: 1) The off-diagonal
probabilities were all lower than those on the diagonal. The
maximum and minimum values were 100% and 61.76%,
respectively, which suggested that the lowest probability of
maintaining the original state during the inspection period is
about 60%, which showed that the transformation of tourism
green production efficiency type in the region was stable and the
probability of maintaining the original state was relatively high.
Additionally, the probabilities of the low-intensity and high-
intensity types remaining unchanged were 72.82% and 100%,
respectively, indicating the possibility of “club convergence”
toward the low- and high-intensity types of TGPE. 2) The
stability of the low- and high-intensity types at both ends of
the diagonal was substantially greater than that of the
intermediate low- and high-intensity types (61.76% and
68.13%, respectively). In contrast, the probability of a
downward transition for intermediate types (0.00% and 2.2%,
respectively) was lower than that of an upward transition

FIGURE 4
Dynamic evolution of TGPE in the Yangtze River Delta from 2010 to 2019.
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(61.766% and 68.13%), indicated that there was the excellent
development potential of regions with intermediate types of low
and high intensity, however, a decline should be avoided. 3) The
probabilities on both sides of the diagonal were relatively low,
with the probabilities of upward and downward transitions being
0.98% and 1.10%, respectively, which suggested that the
improvement of TGPE in 41 cities in the region was a

continuous and gradual process, and that achieving rapid
leaps was challenging.

Furthermore, we conducted a hypothesis test to determine
whether the effect of neighboring cities on the development of a
city’s TGPE was statistically significant. The null hypothesis
states that regional TGPE types are spatially independent and
unrelated to spatial latency types. Using the model

FIGURE 5
Spatial evolution of TGPE in the Yangtze River Delta in (A) 2010, (B) 2013, (C) 2016, and (D) 2019 year.

TABLE 2 Moran’s Ⅰ index of TGPE in the Yangtze River Delta from 2010 to 2019.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Moran’s Ⅰ 0.3088*** 0.3505*** 0.3031*** 0.3908*** 0.4731*** 0.5244*** 0.4616*** 0.4159*** 0.4930*** 0.4152***

Z-value 3.4392 3.3604 3.0200 3.5328 4.1368 4.4982 3.9530 3.5881 4.1879 3.5357

***, **, and * represent significance at the 1%, 5%, and 10% levels, respectively.
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Pij(L)]nij(L){ }, the test result yielded a

value of Db = 53.02. After removing the element with transfer
probability of 0 from the matrix, the matrix freedom df was 25,
and Db = 53.02 > 2(25) = 46.93 at the confidence level α = 0.005.
Therefore, we rejected the null hypothesis that the level transition of
TGPE in the Yangtze River Delta was spatially independent.

We incorporated spatial latency conditions into the
conventional Markov chain transition probability matrix to
generate a spatial Markov transition probability matrix. Through
a comparative analysis of the transition probabilities of TGPE under
various neighborhood contexts, we explored the role of
neighborhood context in the level transition process. The
findings from Table 4 are as follows: 1) The geographical context
significantly influenced the transfer process of TGPE in the region.
By comparing the traditional Markov transfer probability matrix, we
observed substantial changes in the transfer probability of TGPE in
the region in response to various geographical contexts. 2) A
complementary relationship was observed between the type of
TGPE of the metropolis and the types of surrounding cities.
When the neighborhood type was set to 1, the number of cities

in the low-intensity type at time t was considerably greater than the
number of cities in the other types. When the neighborhood type
was set to 4, the number of cities in the high-intensity type at time t
was substantially greater than the number of cities in other types,
indicating a “club convergence” local spatial pattern for TGPE in the
region. 3) The probability of downward transfer of TGPE types from
the city increased for neighboring areas with low TGPE values. The
probability of upward transfer increased for neighboring areas with
high TGPE values.

4.3 Spatial econometric model

4.3.1 Selection of influencing factors
We developed a spatial econometric model to precisely quantify

the direction and degree of the factors influencing TGPE. Various
factors related to the economy, society, and technology were
considered as potential influences on TGPE. Considering the
composite characteristics of the tourism industry system, the
conditions and trends of tourism industry development in the
Yangtze River Delta, and the comprehensive research results
from the literature (Tang et al., 2014; Shi and Li, 2018; Sun et al.,
2022), we used the following variables influencing the spatial
spillover effects of TGPE: economic development level (EDL),
measured by per capital GDP, reflecting the overall economic
prosperity of the region; transport accessibility (TRA),
represented by road density, indicating the ease of movement
and connectivity within the area; urbanization level (UR),
measured as the urban population as a percentage of the total
population, indicating the degree of urban development and
concentration; openness level (OE), captured through the actual

TABLE 3 Types of TGPE in the Yangtze River Delta from 2010 to 2019
(traditional Markov transfer probability matrix).

t\t + 1 n 1 2 3 4

1 103 0.7282 0.2718 0.0000 0.0000

2 102 0.0000 0.6176 0.3725 0.0098

3 91 0.0110 0.0110 0.6813 0.2967

4 73 0.0000 0.0000 0.0000 1.0000

TABLE 4 Types of TGPE in the Yangtze River Delta from 2010 to 2019 (spatial Markov transition probability matrix).

Neighborhood type t\t + 1 n 1 2 3 4

1 1 60 0.8000 0.2000 0.0000 0.0000

2 21 0.0000 0.8571 0.1429 0.0000

3 4 0.0000 0.2500 0.7500 0.0000

4 0 0.0000 0.0000 0.0000 0.0000

2 1 30 0.6333 0.3667 0.0000 0.0000

2 45 0.0000 0.6000 0.4000 0.0000

3 18 0.0556 0.0000 0.7222 0.2222

4 1 0.0000 0.0000 0.0000 1.0000

3 1 11 0.6364 0.3636 0.0000 0.0000

2 25 0.0000 0.5600 0.4000 0.0400

3 55 0.0000 0.0000 0.6909 0.3091

4 32 0.0000 0.0000 0.0000 1.0000

4 1 2 0.5000 0.5000 0.0000 0.0000

2 11 0.0000 0.3636 0.6364 0.0000

3 14 0.0000 0.0000 0.5714 0.4286

4 40 0.0000 0.0000 0.0000 1.0000
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utilization of foreign investment, reflecting the level of openness to
international economic activities; tourism industry agglomeration
(TIA), assessed using tourism revenue location entropy, measuring
the concentration or dispersion of the tourism industry within
the region; and technological innovation level (TEC), reflected by
the total number of three types of patent authorizations, indicating
the level of technological advancement and innovation in the area.

To address potential heteroscedasticity, the time-series data of the
selected variables were logarithmically transformed.

4.3.2 Model testing and identification
Prior to conducting our spatial econometric analysis, a model

selection process was performed through a series of experiments
(Table 5). Both LM-Lag and robust LM-Lag, as well as LM-Error and
robust LM-Error, passed the hypothesis tests at the 1% significance
level, indicating that the spatial Durbin model with spatial lag and
spatial autocorrelation effects should be selected. Using the Wald
and LR tests, we determined that both tests were significant at the 1%
level, further supporting the selection of the spatial Durbin model as
the best model. The Hausman test yielded a result of 47.52, rejecting
the null hypothesis of random effects at the 1% significance level.
Compared with time and space fixed effects, double fixed effects
were rejected at the 1% significance level. Accordingly, we chosed the
spatial Durbin model with double fixed effects as the appropriate
model to fit and estimate TGPE in the Yangtze River Delta.

As can be seen from Table 6, the model achieved an Adj.R2 of
0.8965. Moreover, the Log-L value was 363.5008, supporting the
suitability of the spatial Durbin model as the most accurate
estimation model. The spatial spillover coefficient (ρ) was
0.1692 and was significant at the 5% level, indicating that there
was substantial positive spatial spillover effects of TGPE in the
region, namely, the presence of clustering and demonstration effects
in the coordinated development of adjacent area. However, the
elasticity coefficient and its significance may not provide a complete
understanding of the marginal effect of TGPE. Accordingly, we
employed the SDM partial differentiation method to further divide
the spatial effects into direct, indirect, and total effects.

4.3.3 Model estimation results and analysis
From the perspective of spatial effect decomposition, the

analysis revealed the following based on the Table 7:

(1) the coefficients of the direct and indirect effects of EDL were
0.2801 and 0.7371, respectively, and both were significant at the
1% level, indicating that EDL acts as a driving force for
improving TGPE in the region, and it can promot the
improvement of tourism green development performance in
neighboring cities. On the one hand, economic development
provides the economic foundation for tourists to have
disposable income, which is essential to engage in tourism
activities, thereby stimulating the growth of local and
neighboring tourism demand. On the other hand, frequent
business exchanges and trade increase the region’s visibility
and influence, thereby increasing the scale of tourism flows
between regions. To a certain extent, economic development
can promote the rationalization and upgrading of the tourism
industry’s structure. Through a large influx of capital, it can
provide a material basis for enhancing the ecological
environment.

(2) The coefficients of the direct and indirect effects of TRA were
0.0922 and 0.3324. However, only the indirect effects were
statistically significant at the 5% level, which suggested that
TRA positively promoted TGPE in surrounding cities. As an
important vector of regional radiation, the increase in transport
network density dismantles urban boundaries, drastically

TABLE 5 Selection test of spatial metrology model.

Test method Test indicator Statistic value

LM test LM-spatial lag 127.413***

Robust LM-spatial lag 14.298***

LM-spatial error 175.601***

Robust LM-spatial error 62.486***

Wald test Wald test spatial lag 22.73***

Wald test spatial error 26.81***

LR test LR test spatial lag 22.26***

LR test spatial error 26.60***

Hausman test Hausman test 47.52***

***, **, and * represent significance at the 1%, 5%, and 10% levels, respectively.

TABLE 6 Regression results of dual fixed effect space Durbin model.

Variable Elasticity coefficient

Coefficient Z-value

ln EDL 0.2567*** 2.64

ln TRA 0.0748 0.89

ln UR −0.0964 −0.53

ln OE −0.0155 −0.86

ln TIA 0.5713*** 13.60

ln TEC −0.0561*** −2.63

W×ln EDL 0.5927*** 2.82

W×ln TRA 0.2719 1.54

W×ln UR −0.8772** −1.96

W×ln OE −0.0915** −2.33

W×ln TIA 0.1076 0.99

W×ln TEC 0.0521 1.23

Rho 0.1692** 2.41

Sigma2_e 0.0098*** 14.28

Time fixed YES

Individual fixed YES

Log-L 363.5008

N 410

R2 0.8965

***, **, and * represent significance at the 1%, 5%, and 10% levels, respectively.
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reduces the spatial and temporal distance between tourism
source and destination, and facilitates the rapid movement of
people, goods, and capital between regions. Besides, tourism
transport is the primary source of tourism carbon emissions.
Regions with higher road network density generate more
tourism transport carbon emissions, and the construction of
transport infrastructure may also occupy carbon sink land.
Thus, the local tourism industry may endure the brunt of the
impact of tourism transportation carbon emissions, as it may be
decoupled from tourism economic development.

(3) The coefficient of the direct effects of UR was −0.1445, which
failed the significance test. The coefficient of the indirect effects
at −1.0994 was significant at the 5% level, indicating that
urbanization development in the region has impeded the
enhancement of TGPE, with more pronounced effects on
neighboring regions. In the process of urbanization, the
Yangtze River Delta region has experienced high
urbanization rates and developed a comprehensive urban
infrastructure. However, it has not yet transitioned to green
urbanization. First, in the process of tourism urbanization, the
development of resource-intensive tourism infrastructure has
shifted from economic centers such as Shanghai and eastern
Zhejiang to regions such as northern Jiangsu and southern
Anhui to reduce costs. This shift has resulted in increased
energy consumption and carbon emissions. In addition, it
has led to a decrease in wetland scenic areas in northern
Jiangsu and southern Anhui. Second, urbanization involves
the migration of rural populations to urban areas, with the
entry and departure of neighboring and tourist populations. The
large influx of people increases the population density in urban
areas, resulting in a heavy burden on land carrying capacity,
high costs associated with supplying tourism resources, and
difficulties in environmental governance.

(4) The coefficients of the direct and indirect effects of OE
were −0.0173 and −0.1079, respectively, which showed the
negative impact of the current level of foreign investment on
TGPE in both local and neighboring cities. It is speculated that
the current role of foreign investment in the Yangtze River Delta
on TGPE is still in the suppression stage of the Environmental
Kuznets Curve. The influx of foreign capital has been directed
toward resource-intensive and labor-intensive industries,
resulting in excessive pollutant emissions, which partially

offsets the positive effects of tourism development. A strong
spatial correlation exists between the concentration of foreign
investment and environmental degradation, both exhibiting
spatial spillover effects. Regions with high pollution levels
may experience “pollution leakage,” thereby inhibiting TGPE
in adjacent regions.

(5) The coefficients of the direct and indirect effects of TIA were
0.5703 and 0.2337, respectively, which passed the significance
tests at the 1% and 5% levels. These findings suggest that TIA
plays a crucial role in promoting the development of TGPE in
both local and surrounding areas, with the local area
experiencing the most pronounced effects. The high
concentration of the tourism industry in the Yangtze River
Delta has contributed to its regional brand advantage and cost
advantage. By leveraging the potential for economies of scale,
the local tourism industry fully utilizes its input factors,
resulting in increased competitiveness. Moreover, through the
sharing and opening up of resources, a favorable external
environment is created for various sectors such as
transportation, wholesale and retail, accommodation, and
catering. In turn, it promotes the formation of regional
tourism industry chains and industrial ecosystems, creating
the conditions for the modernization of the tourism industry
in neighboring regions.

(6) The coefficient of the direct effects of TEC was −0.0527, which
passed the significance test at the 5% level, and the coefficient
of the indirect effects was 0.0516, which failed the significance
test. The results indicates that technological advancements
have not enhanced the ecological quality of tourist
destinations and may even have had a negative effect.
Technological advancements have the potential to enhance
the level of intelligence of tourism infrastructure and
personnel services, and facilitate the development of
tourism products. However, the negative effects may be
attributed to the fact that the current focus of technological
research and development is not well integrated with tourism
development and environmental protection in the region.
Insufficient investment in research funding and direction
specifically focused on tourism green development has led
to a less harmonious relationship between technological
innovation and low-carbon development of tourism, with a
slightly negative impact.

TABLE 7 Regression results and effect decomposition of spatial Dubin model.

Variable Direct effect Indirect effect Total effect

Coefficient Z-value Coefficient Z-value Coefficient Z-value

ln EDL 0.2801*** 2.91 0.7371*** 3.25 1.0173*** 4.41

ln TRA 0.0922 1.01 0.3324** 2.00 0.4246** 2.16

ln UR −0.1445 −0.86 −1.0994** −2.18 −1.2439** −2.37

ln OE −0.0173 −0.89 −0.1079** −2.23 −0.1252** −2.40

ln TIA 0.5703*** 12.19 0.2337** 2.19 0.8040*** 6.81

ln TEC −0.0527** −2.54 0.0516 1.01 −0.0011 −0.02

***, **, and * represent significance at the 1%, 5%, and 10% levels, respectively.
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5 Discussion

We calculated TGPE for 41 cities in the Yangtze River Delta
from 2010 to 2019 to examine the temporal and spatial
characteristics of TGPE. By calculating the global Moran’s I
index, we confirmed the presence of spatial agglomeration
characteristics in the region. We then used a spatial Markov
transition probability matrix to investigate the spatial spillover
effects of TGPE in the Yangtze River Delta. Furthermore, we
employed the spatial Durbin model to measure the spatial
spillover effects of influencing factors. This section discusses the
results of the research methodology described above.

First, we recognized that the extant measurement framework for
TGPE was not systematic, which did not consider the positive
externalities of tourism, such as tourism carbon sinks. Because of
overlooking the ecological benefits of tourism development, the
measurement of TGPE may be not accuracy. To solve the problem,
the measurement framework of TGPE by incorporating tourism
carbon sinks was reconstructed. Therefore, the first theoretical
contribution of this paper is to construct the index system of
measurement TGPE including tourism carbon sinks, which
provides a new research method for the subsequent research on
tourism green development. Furthermore, the TGPE showed an
increasing trend in the Yangtze River Delta during the study period,
however, Sun and Hou (2021) argued that the TGPE of the Yangtze
River Delta exhibited a fluctuating trend (i.e., downward, then
upward, then downward) during the research period. The
reasons for the different results may be attributed to the authors’
failure to include tourism carbon sinks in their measurement system.
For different study areas, Li and Zhang (2022) found that the TGPE
in the Beijing-Tianjin-Hebei region was increasing year by year, but
there was still a big gap between the efficiency value and 1, that is, the
TGFE was smaller than that of the Yangtze River Delta region, which
was related to the regional tourism resource endowment and
development mode, and may also be related to the lack of
inclusion of tourism carbon sinks in its measurement.
Meanwhile, the government does not have a comprehensive
understanding of the green development of the tourism industry,
because the current measurement of the TGPE does not take into
account tourism carbon sinks. Therefore, based on the TGPE
measured in this paper, the formation of suggestions on the
green development of tourism industry may be more helpful for
the government to implement policies on the sustainable
development of the tourism industry. Besides, due to the limited
availability of data, carbon emissions were only included from the
tourism industry as the ecological output variable. However, TGPE
is a complex system that encompasses factors such as vegetation,
water bodies, and natural disasters, which are difficult to measure
directly. To deal with the issue, future research could explore the use
of python to mine hard-to-obtain data and machine learning to
simulate and evaluate the data of missing variables.

Second, the analysis of TGPE in the region using the Getis-Ord
Gi* index and the natural break method demonstrated the formation
of a north–south differentiation pattern, with the
“Hangzhou–Huzhou–Wuxi–Suzhou–Shanghai” line serving as the
boundary. This finding is consistent with the result of Xu et al.
(2023), which revealed the spatial pattern of TGPE is higher in
central and lower in north and south in the Yangtze River Delta.

However, unlike the current literature, in addition to the cities
around Shanghai, the hot spots are also distributed in the southwest
of Zhejiang and the northwest of Anhui, which is closely related to
the rich local tourism resources and large-scale tourism investment.
These provides evidence for the government to identify the regional
growth poles of green tourism development in regional tourism
planning. Besides, within a certain spatial–temporal range, the
transition of TGPE types in the Yangtze River Delta tends to
form a hierarchical agglomeration pattern, which can be
attributed to the influence of neighborhood types. This provides
some inspiration for local governments to formulate tourism
development strategies. The government’s development strategies
are mostly based on the perspective of the city, and rarely from the
perspective of urban cooperation. In the end, the spatial effects of
TGPE between regions wasmeasured from a geographical proximity
perspective, without analyzing its complex network features, which
makes it difficult to determine the role of each unit in the regional
ecology. Future research could employ social network analysis to
assess the connectivity of each unit within a region. By analyzing the
network node advantages and core-edge characteristics of urban
individuals, this approach could provide valuable insights into the
overall network structure and dynamics of regional tourism.

Third, previous studies have either focused on examining the
existence of spatial spillover effects in the region (Shi et al., 2021) or
directly measured the spillover effects without clarifying the impact
of neighborhood types on regional shifts during the spatial evolution
process (Shen et al., 2022). Thus, there is a lack of a comprehensive
system for analyzing spatial spillover effects on TGPE. Accordingly,
we systematically clarified the spatial spillover effects following the
logical sequence of “effect testing process–action influencing
factors–spatial effect influencing factors,” which is also an
important theoretical contribution of this paper. In terms of
influencing factors, our findings align with the studies of scholars
such as Yang et al. (2022), indicating that the improvement of TGPE
in cities within the Yangtze River Delta is related to its tourism
development conditions and is significantly influenced by
neighboring cities. And the direct and indirect effects of other
influential factors in our study are consistent with previous
research (Jia, 2021; Wang et al., 2023), such as the positive direct
and indirect effects of TIA, which showed that the tourism
development strategy of the Yangtze River Delta should focus on
the construction of tourism industry clusters rather than the design
and planning of single tourism products. Unlike previous research
(Shi, 2020; Li et al., 2023), we found that EDL has a greater effect on
the TGPE of neighboring cities than on the TGPE of the city itself,
indicating that there is high degree of economic integration in the
region, and it is necessary to further enhance the level of economic
integration from the perspective of industrial chain. We also found
that only the indirect effects of TRA were statistically significant,
indicating that on the basis of improving the local transportation
infrastructure, the cities in the region should pay more attention to
the accessibility of inter-city transportation lines. Wang et al.
(2013b) suggested that the direct and indirect effects of OE had
no impact, whereas we discovered there was negative impact. The
reasons may be that the degree of OE in other regions of China was
lower than that in the Yangtze River Delta, and it means that when
introducing foreign investment to the Yangtze River Delta region, it
should focus more on the development of low-carbon and green

Frontiers in Environmental Science frontiersin.org13

Shi et al. 10.3389/fenvs.2023.1260949

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1260949


industries rather than high-energy-consuming industries. In
addition, the negative effect of the TEC should also be paid
attention to, indicating that the Yangtze River Delta region lacks
the guidance for the coordinated development of tourism and
science and technology industry, and the next step should
formulate a plan for tourism science and technology innovation.
In the end, this paper explored the spatial effect of regional TGPE
from the perspective of the city, and the data granularity is large.
Next, the spatial effect of TGPE should be explored from the
perspectives of counties and towns.

6 Conclusion and recommendations

6.1 Conclusion

The conclusions of this study are as follows. 1) From 2010 to
2019, TGPE in the Yangtze River Delta exhibited a gradual upward
trend, indicating a better balance between economic development
and ecological protection. However, it has not yet reached the
optimal production frontier. While low-efficiency values
converged to the mean, an increasing disparity and a trend
toward a “dual-core” pattern were observed. 2) In terms of
spatial evolution, TGPE in the Yangtze River Delta exhibited a
north–south differentiation pattern with the
“Hangzhou–Huzhou–Wuxi–Suzhou–Shanghai” line as the
boundary, indicating significant spatial clustering effects. The
number of hot spots increased before decreasing, while the
number of sub-hot spots exhibited the opposite trend. The
number of cold spots and sub-cold spots decreased gradually. 3)
For spatial correlation, the TGPE displayed high positive spatial
autocorrelation, indicating that cities with similar levels of TGPE
tended to cluster together. Level transitions frequently occurred
between adjacent types. After accounting for neighborhood-type
factors, the transition probability was influenced by spatial latency
types, resulting in “club convergence.” 4) In the Yangtze River Delta,
TGPE and its influencing factors exhibited substantial spatial
spillover effects. Regarding direct effects, EDL and TIA had
significant growth-promoting effects on local TGPE, while TIL
had growth-inhibiting effects. EDL, TRA, and TIA exhibited
significant positive spillover effects on the growth of TGPE in
neighboring cities, whereas UR and OE exhibited negative
spillover effects.

6.2 Policy suggestions

In view of the fact that the TGPE in the Yangtze River Delta has
spatial spillover effect and changes of hot and cold of TGPE, and that
Shanghai, Jiangsu, Zhejiang and Anhui have only signed the
Framework Agreement on High-Quality Integrated Development
of Culture and Tourism in the Yangtze River Delta, which does not
involve the spatial layout of tourist cities, it is suggested that the
Tourism and Culture Development Committee should be
established as soon as possible in this region, which should
prepare to compile the “Yangtze River Delta Culture and
Tourism Green Development Plan.” In the planning, the layout
of different levels of growth poles and the coordinated development

of urban tourism should be emphasized. Concretely speaking, the
region should capitalize on the comparative advantages of Shanghai,
Hangzhou, Suzhou, continually enhancing their size and energy
levels and fostering the core growth poles for the green development
of tourism, and it is necessary to cultivate the cities in northwest
Anhui and southwest Zhejiang into secondary growth poles. In
addition, considering that there is a big difference between the north
and the south in the TGPE for the Yangtze River Delta region, and a
continuous belt of cities with high value of TGPE, an ecological
tourism metropolitan circle should be constructed from east to west
in the Yangtze River Delta. The first stage is to promote the joint
development of the Shanghai metropolitan circle, the
Suzhou–Wuxi–Hangzhou metropolitan circle, and the Hangzhou
metropolitan circle. The second step is to establish regional radiation
mainlines, expanding the scope of secondary hot spot regions via
axes and belts, especially, Southern Anhui, central Anhui, and
northern Jiangsu should strengthen their regional ties with the
Ningbo–Hangzhou ecological economic belt via the
Beijing–Hangzhou Grand Canal.

Considering the positive spatial spillover effect of economic
development, transport accessibility and tourism industry
agglomeration, it is suggested that under the guidance of the
“Outline of the Yangtze River Delta Regional Integrated
Development Plan,” provincial and municipal governments such
as Shanghai, Jiangsu, Zhejiang and Anhui should formulate plans for
the economic integration, transportation integration and industrial
coordinated development of the Yangtze River Delta as soon as
possible. Additionally, taking into account the negative spatial
spillover effect of openness level, the region should improve the
regulatory system for the foreign investment market, shut down
highly polluting foreign-funded enterprises, and promote the
transformation of the foreign investment market into high-tech
and low-pollution industries. Meanwhile, considering the negative
spatial spillover effect of urbanization level, we suggest that the
region should strengthen the construction of social space, especially
the renewal and improvement of public facilities, and build tourism
cultural space shared with tourists. In the end, because of the
negative direct effect of technological innovation, we suggested
that Shanghai and Nanjing should maximize their talent
resources and research platforms, take the lead in constructing
low-carbon technology research and transformation highlands in
tourism, establish tourism low-carbon equipment production bases
in neighboring cities, and collaborate with neighboring cities in the
low-carbon development of tourism transportation, scenic spots,
and activities.
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