
The impacts of digital value chain
embeddedness on trade-related
carbon emissions intensity

Yanfang Lyu1*, Yun Xiang2 and Dong Wang3*
1School of Statistics and Institute of Quantitative Economics, Huaqiao University, Xiamen, China, 2School
of Economics and Finance, Huaqiao University, Quanzhou, China, 3School of Business, Minnan Normal
University, Zhangzhou, China

Objective: Digitalization supported by digital technology presents a potential
solution for improving the efficiency of resource utilization. However, the impacts
of digitalization on trade-related carbon emissions intensity have not been
studied systematically.

Methods: Based on panel data of 41 countries and regions over the period
2000–2014, this study examines how different types of digital value chain
embeddedness can affect carbon emissions intensity using a semi-parametric
partially linear model.

Results: Research findings indicate that there is an invertedU-shaped relationship
between digital domestic value chain embeddedness and carbon emissions
intensity embodied in domestic trade; only when digitalization reaches a
threshold of approximately 0.88, does the effects on carbon emissions
intensity become negative. In addition, the impacts of digital global value
chain embeddedness on carbon emissions intensity embodied in import trade
and export trade are recognized as being non-linear; the thresholds of
digitalization are approximately 0.1 and 0.3 for import trade and approximately
0.03 and 0.21 for export trade. Although participating in global value chains is
conducive to accelerating digital technology diffusion, the actual environmental
effects are constrained by a country’s absorptive capacity and high economic
system complexity. Compared with developed countries, developing countries
lag behind in entering the downward stage of the inverted U-shaped curve,
thereby gaining environmental benefits from digital value chain embeddedness.
Moreover, in terms of utilizing digital value chain embeddedness to improve
energy efficiency, measures include optimizing trade conditions, adjusting
energy structure, and increasing trade scale, which can play an active role.

Value: This study sheds light on the exploration of the potential of digitalization
and the facilitation of economic development in a more environmentally
friendly manner.
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1 Introduction

The advent of global value chains (GVCs) has significantly
changed international trade patterns (Meng et al., 2018). Depending
on comparative advantages, the production of a commodity can be
undertaken in different regions, and intermediate products may be
traded across borders many times (Grossman and Rossi-Hansberg,
2008; Baldwin and Venables, 2013; Antràs and Gortari, 2020). Under
the trend of international production fragmentation, some side effects
arise from trade activities, especially environmental issues such as
increased carbon dioxide (CO2) emissions. It is estimated that
approximately a quarter of global carbon emissions are derived
from international trade, with a serious asymmetry in
environmental costs between developed and developing countries
(Peters et al., 2011; Huang and Zhang, 2023). Therefore,
participating in GVCs in a more environmentally friendly way is
becoming increasingly important, among which improving energy
efficiency is regarded as key to balancing steady economic growth and
carbon emissions reduction (Sun et al., 2019; Li et al., 2022; Zhang
et al., 2023).

Digitalization supported by digital technology has been
considered as a potential driver for sustainable economic
development (Gouvea et al., 2020; Ren et al., 2021). Encouraging
and promoting cleaner production is conducive to reducing carbon
emissions (Nguyen et al., 2020). On the other hand, some researchers
argue that environmental degradation may also occur (Moyer and
Hughes, 2012). In recent years, with the continuous penetration of
digital technology into the real economy, GVCs have undergone
drastic changes. A new channel of digitally driven globalization has
arisen (van der Marel, 2021; Blazquez et al., 2022), which is defined as
digital value chain embeddedness in this study. Concerning the
interaction between digital technology and GVCs, a large body of
research has been carried out to analyze the impacts of digitalization
on productivity, economic growth, and GVC specialization (Niebel,
2018; Szalavetz, 2019; Lahouel et al., 2021; Banga, 2022). However,
there has only been a very limited attempt to link digitalization, GVCs,
and carbon emissions intensity together (Wiedmann and Lenzen,
2018). With the rapid digital transformation of GVCs, carbon
emissions embodied in international trade might be altered due to
the change in trade patterns. Moreover, as domestic trade accounts for
a considerable proportion of overall trade in some countries, the
environmental effects of digitalization along domestic value chains
have also yet to be investigated. In this regard, the study aims to clarify
the impacts of digital value chain embeddedness on carbon emissions
intensity, which is critical for fully utilizing the energy-saving effects of
digitalization and identifying the probable pressures during a low-
carbon transition process.

Although digitalization is generally perceived as an engine for a
low-carbon economy, controversy remains about the role of
digitalization in trade-related carbon emissions (Danish, 2019;
Lin and Huang, 2023). According to the study of Copeland and
Taylor (1994); Antweiler et al.(2001), the environmental effects of
trade bring into play due to trade scale, trade embedded technique
and trade composition. One view suggests that digitalization induces
large-scale data trading, and the supporting operation of digital
industries increases carbon consumption (Jones, 2018; Xiao et al.,
2020; He and Xie, 2022). The direct effects of a cyclic process of
digitalization, as well as the indirect effects of an expanding

economy, tend to increase carbon emissions (Lange et al., 2020).
Moreover, the rebound effect also leads to a surge in carbon-
intensive product consumption (Peng et al., 2023). By contrast,
another view supporting the emission reduction effects of
digitalization suggests that through technological progress,
learning by exporting, and trade barrier pushback (Banga, 2022),
it will bring significant energy savings. In addition, several studies
have confirmed that digitalization promotes technological
innovation and further optimizes energy utilization structures
(Ollo-López and Aramendía-Muneta, 2012; Usman et al., 2015;
Bastida et al., 2019; Xu et al., 2022), which contribute to carbon
emissions reduction. From the perspective of countries of different
economic development levels, developing countries are at a
disadvantage in terms of the trade environment (Wang et al.,
2021), and even become a “pollution refuge” by taking part in
global production networks (Peng, 2020; Li et al., 2021). Although
the relationship between digital value chain embeddedness and carbon
emissions intensity is intricate, most scholars identify with the energy
saving effects for developed countries (Danish et al., 2019; Qayyum
et al., 2021; Shi et al., 2022). Furthermore, apart from the above two
opposite propositions on the carbon emission effects of digitalization, it
is also argued that the relationship between digitalization and
environmental performance is probably non-linear (Higon et al.,
2017). However, based on the viewpoint of energy efficiency, the
potential non-linear relationship between digitalization and carbon
emissions intensity has been investigated less (Bekaroo et al., 2016; Li
and Wang, 2022).

A challenge to achieving a consensus on the relationship between
digitalization and energy efficiency is the accounting framework. A
large body of literature has applied the “consumption-based carbon
accounting” method to compute carbon emissions, which is a
modification of the conventional “territorial-based carbon
accounting” method (Su et al., 2010; Liddle, 2018). Both measures
are based on gross trade statistics, which would give rise to the issue of
double counting and non-conformity with the System of National
Accounts. As an improvement, the accountingmethod of value-added
trade provides powerful tools for calculating carbon emissions
embodied in trade (Meng et al., 2018). On this ground, existing
efforts have been made to trace the carbon footprint from the point of
life-cycle assessment, and the methods are mainly based on bilateral
trade input-output models or single regional input-output models
(Fan et al., 2021). Additionally, some scholars have conducted
research on GVCs and carbon emissions embodied in trade
separately (Dolter and Victor, 2016; Pothen, 2017; Jiborn et al.,
2018). However, these attempts did not distinguish the carbon
content difference between imported and domestic intermediate
goods, causing the measurement results to deviate from the actual
situation (Xu et al., 2011; Liu et al., 2013). With the worldwide
prevalence of intra-product trade, applying multiregional input-
output models (MRIOs) to track carbon emissions back to the
production sector is gradually becoming mainstream. As Jin et al.
(2020) have pointed out, although CO2 emissions are probably
increasing year-on-year, the energy utilization efficiency indicator
characterized by carbon emissions intensity might show different
results and more convincingly evaluate the performance of energy
conservation.

Overall, there is room for improvement in existing studies. In terms
of measurement, digital value chain embeddedness is not clearly
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reflected by the statistical indicators, such as the digital input ratio and
digital development index. These pertinent measures provide a limited
reference for the real level of digital value chain embeddedness. As for
the potential non-linear relationship between digital value chain
embeddedness and carbon emissions intensity, it has received less
attention, and the evolvement of the marginal effect has not been
investigated either. Furthermore, the phenomenon of the digital divide
across countries is probably an influential factor inmediating the effects
of digitalization on energy efficiency, which needs to be further verified.
In this study, based on panel data of 41 economies over the period
2000–2014, we construct the carbon emissions intensity indicator to
reflect adversely on domestic and international trade-related energy
efficiency. In addition, we identify digital economy sectors from all
sectors and establish the measurement and decomposition framework
of digital value chain embeddedness. Furthermore, we use a semi-
parametric partially linear model to test the non-linear effects of digital
value chain embeddedness on carbon emissions intensity, with the
purpose of emphasizing the evolvement of the marginal impact
concerning different digital development levels. Compared with
other econometric models, on the one hand, it avoids the weakness
of setting a specific functional relationship subjectively and can better
grasp the true impacts of digital value chain embeddedness on carbon
emissions intensity; on the other hand, the marginal effect graph can
directly show the effects of the core explanatory variable on the
dependent varible. The empirical results prove that there is an
inverted U-shaped relationship between digital domestic value chain
embeddedness and carbon emissions intensity. We identify a threshold
of 0.88 that divides the range of digitalization into two intervals; when it
is in the low range of digital domestic value chain embeddedness, its
marginal effect on carbon emissions intensity is positive; when it is in
the higher range, the impact is reversed. Comparatively, we recognize
two thresholds in the case of digital GVC embeddedness, which are
0.1 and 0.3 for import trade and 0.03 and 0.21 for export trade. This
reveals that a country’s pertinent absorptive capacity lags behind in
digital technological development as the enhancement of the adaptive
capability needs to take a dynamic process.

The marginal contributions of this study are reflected in three
aspects: first, compared with the single indicator of CO2 emissions
that is based on the absolute quantity perspective, in this study, we
construct carbon emissions intensity indicators to reflect adversely on
energy efficiency. Specifically, through the lens of value chains, we
focus on carbon emissions intensity embodied in domestic trade,
import trade, and export trade. Additionally, the digital domestic
value chain embeddedness and digital GVC embeddedness are
measured. This study provides statistical backing for the research
fields of digitalization and its environmental effects. Second, in the era
of the digital economy, the relationship between value chain activities
and environmental impacts may shed some new light. However,
relevant research that combines digitalization, GVCs, and carbon
emissions intensity is still lacking. By integrating them into a unified
framework, this study provides a novel insight into boosting
decarbonization through digital value chain embedding while
enhancing steady economic growth. Third, different from existing
studies that focus on the linear environmental effects of digitalization,
based on theoretical analysis of probable non-linear effects, this study
applies a semi-parametric partially linear model to explore the non-
linear relationship between different types of digital value chain
embeddedness and carbon emissions intensity. The findings reveal

that only when digital value chain embeddedness reaches a certain
value, it has virtual impacts on energy saving. Targeted policy
implications are thus put forward, especially that each economy
should adjust its digital transformation strategy based on its stage
of economic development and the technology absorptive capacity.

2 Theoretical analysis

Compared with conventional industries, digital industry is much
more environmentally friendly, with the advantages of high energy
efficiency (Amri et al., 2019). It is well-recognized that digitalization
provides a new impetus for technological progress. As intermediate
inputs, digital elements contribute to upgrading conventional
manufacturing industries and improving the efficiency of R&D.
Thus, digitalization is conducive to reducing carbon emissions
intensity. However, the effectiveness of digitalization is constrained
by its connectivity characteristics (Lin and Huang, 2023). Conditional
on different levels of digital value chain embeddedness, both the
energy consumption impact and the energy saving benefit of
digitalization take effect. The net impact depends on which
mechanism prevails, and a simple linear assumption would not be
valid (Ren et al., 2021). To inspect the win-win influence of
digitalization in facilitating economic growth and carbon emissions
reduction (Xu et al., 2022), the indicator of carbon emissions intensity
is chosen to manifest the environmental performance, which is more
comprehensive than that of the absolute carbon emissions indicator.
Concerning the mixed effects of digitalization, we refer to the studies
of Lange et al. (2020) and Azam et al. (2021) and propose that digital
value chain embeddedness has a complex non-linear relationship with
carbon emissions intensity.

From a perspective of technology adoption life cycle, the process
of digital technology diffusion takes place gradually (Rao and Kishore,
2010). As Bai et al. (2023) have pointed out, there are innovators, early
adopters, early majority, late majority, and laggards according to the
adoption stages. While it is in a low range of digital value chain
embeddedness, the construction of digital supportive resources is
insufficient. The host country’s absorption capacity is limited because
of the low degree of digital embedding (Huang et al., 2022). To sustain
digital connectivity, many energy-intensive applications, such as data
centers, electronic equipment, and data transmission networks,
require massive energy consumption (Galvin, 2015; Bieser and
Hilty, 2020). Owing to a high dependence of digital infrastructure
on electric power, carbon emissions and carbon intensity increase
when digital value chain embeddedness is in the early development
stage (Morley et al., 2018; Jin and Yu, 2022). In addition, the rebound
effect that refers to the production expansion of other industries
incurred by digitalization poses another threat to energy efficiency
endeavors (Joyce et al., 2019; Lin and Zhu, 2021). Additionally, digital
trade operations have reshaped traditional trade models by expanding
market reach and enhancing trade efficiency, which promotes
economic growth (Zheng et al., 2023). In this regard, we conclude
that digital value chain embeddedness indirectly increases carbon
emissions intensity by broadening the economy.

As digital technology progresses, the ability of host countries to
make use of advanced technologies is enhanced, and it will result in a
declining trend in energy consumption. The deep integration of digital
elements with conventional industries can decrease carbon emissions
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intensity by facilitating technological innovation, alleviating resource
distortion, upgrading industrial structures, and accelerating the
accumulation of human capital (Lin and Zhou, 2021; Zhong et al.,
2022; Zhang et al., 2023). Based on innovation and signaling theory,
participating in GVCs enhances the flow of digital elements, which is
beneficial for technology spillovers. Positive externalities of internal
and external communications about the knowledge-intensive
technology provide impetus for the low-carbon transformation.
From the perspective of manufacturing industry servicing, digitally
enabled services can be traded by overcoming the constraints of
geographical distance (Zhou et al., 2018; Blazquez et al., 2023). More
varieties of high-quality services are available for manufacturers to
make use of, which not only contributes to the growth of value-added
trade but also enhances the environmental benefits.

Overall, owing to the overlap of direct and indirect environmental
influences of digital value chain embeddedness, there may be an
intricate relationship between digital value chain embeddedness and
carbon emissions intensity. Energy consumption is often larger than
the energy savings in the early stage of digitalization, and the energy
saving effect takes precedence when the digitalization surpasses a
certain level during its exponential growth path. Given the
abovementioned analysis, we put forward the first hypothesis:

H1. There is an inverted U-shaped relationship between digital value
chain embeddedness and carbon emissions intensity.

In addition to the threshold environmental effect of digital value
chain embeddedness, developing and developed countriesmay exhibit
significant differences in practice. Depending on their contrastive
ways of embedding GVCs, developing countries typically take part in
GVCs through backward embedding, which puts them in a position to
generate more carbon emissions (Zhang et al., 2017). Participation in
GVCs provides developing countries with opportunities to obtain
advanced technologies and knowledge (Hummels et al., 2001; Wang
et al., 2021). However, as developing countries are constrained to the
lower end of the value chain, they are disadvantaged in upgrading
industrial structures because they lack key technologies. There are
significant gaps in digital technology between developing and
developed countries. Compared with conventional production
technology, it is more difficult to learn digital technology through
demonstration and observational learning. Under the conditions of
the core technologies grasped by developed countries (Huang et al.,
2022), developing countries have to strengthen their absorption
capacity, which depends on the accumulation of human capital,
R&D ability, and the institutional environment.

Based on the standpoint of “pollution heaven” (Copeland and
Taylor, 1994), pollution-intensive industries are shifted from developed
countries to developing countries. Through importing intermediate
products and exporting high-pollution final goods, developing
countries generally gain low additional value and become net
exporters of carbon embodied in trade (Xing, 2018; Liu et al., 2020).
To cope with the pressure of carbon emissions reduction while realizing
economic growth, improving environmental efficiency is more urgent
for developing countries. In the global production network, long-term
dependence on gaining technology spillovers from developed countries
means it is difficult for developing countries to form independent
intellectual property rights. As the application of digital technology
requires substantial catch-up cosst for developing countries, it is
challenging to improve GVCs by relying on the introduction of

digital technology (Huang and Zhang, 2023). Furthermore, when
confronted with digital technical blockades, such as digital patent
protection strategies (Sun et al., 2019), developing countries lag
further behind in exploiting the potential of digitalization. As a
result, the risks of locking in low-end value chains are magnified in
the digital era. In summary, we put forward the second hypothesis:

H2. Compared with developing countries, developed countries take
the initiative in utilizing the energy-saving effects of digitalization.

3 Measurement

3.1 Measurement of carbon emissions
intensity

We calculate trade-related carbon emissions intensity following
the MRIO framework. In a global multi-regional input-output table
comprising G countries, with each having N sectors, the basic row
balance relation can be expressed as (Leontief, 1936):

X � AX + Y0X � I − A( )−1Y � BY (1)
where X is the gross output, a GN × 1 vector; A represents the direct
consumption coefficient matrix, a GN×GN matrix; Y denotes the
demand for the final goods, a GN×G matrix; and I is an identity
matrix with the same dimensions of GN×GN. Define
B � (I − A)−1 � (I + A + A2 +/), which is the Leontief
inverse matrix.

To measure the transfer of carbon emissions embodied in
domestic and international trade, this study set the coefficient
vector of carbon emissions as follows:

CRi � CRk
i{ } � CEk

i /Xk
i (2)

where CEk
i and Xk

i denote the direct carbon emissions and gross
output of sector k in country i, respectively. The coefficient CRk

i

refers to the carbon emissions embodied in the unit gross output of
sector k in country i. According to the study by Peters et al. (2011),
by considering the indirect carbon flow induced by the demand for
intermediate and final goods, a carbon flow matrix Cir{ } can be
constructed. For simplicity, referring to the study by Fan et al.
(2021), we selected three economies (economies 1, m, and G) as an
example to show the following relationship:

C11 C1m C1G

Cm1 Cmm CmG

CG1 CGm CGG

⎛⎜⎝ ⎞⎟⎠ �
CR1( )′ 0 0
0 CRm( )′ 0
0 0 CRG( )′

⎛⎜⎝ ⎞⎟⎠

×
B11 B1m B1G

Bm1 Bmm BmG

BG1 BGm BGG

⎛⎜⎝ ⎞⎟⎠ Y11 Y1m Y1G

Ym1 Ymm YmG

YG1 YGm YGG

⎛⎜⎝ ⎞⎟⎠
(3)

In Eq. 3, Cm1 refers to the carbon emissions of country m
induced by the final demand of country 1. The first subscript denotes
the exporting country, and the second subscript represents the
importing country. By categorizing traded goods into
intermediate goods and final goods, we distinguished the carbon
emissions embodied in exported and imported trade along GVCs, as
shown in the following equations:
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Cimport
i � ∑

r≠i
Cimport

ri

� ∑
r ≠ i

CRr( )BrrAirXi︸︷︷︸
imported carbon of intermediate goods

+ ∑
r ≠ i

CRr( )BrrYir︸︷︷︸
imported carbon offinal goods

(4)

Cexport
i � ∑

r≠i
Cexport

ir

� CRi( )Bii∑r ≠ i
AirXr︸︷︷︸

exported carbon of intermediate goods

+ CRi( )Bii∑r ≠ i
Yir︸︷︷︸

imported carbon offinal goods

(5)

Thus, the net carbon flow of a country is given as:

Cnet
i � Cexport

i − Cimport
i (6)

Similar to the construction of carbon flow matrix, when the
matrix of CRi in Eq. 2 is replaced by the value-added factor matrix
Vi, which refers to the value-added per unit of the gross output.
Accordingly, we could obtain a global value-added flow matrix
VAir{ }. As the carbon flows can be categorized into three types,
carbon flow in the local region (Cii), carbon flow of import trade
(Cimport

i ), and carbon flow of export trade (Cexport
i ), according to the

flow direction (Yan et al., 2020; Chen et al., 2022), the related carbon
intensity indicators were constructed, respectively.

CIlocali � Cii/VAii i � 1, 2,/G( ) (7)
CIimport

i � Cimport
i /∑

r≠i
VAri i, r � 1, 2,/G( ) (8)

CIexporti � Cexport
i /∑

i≠r
VAir i, r � 1, 2,/G( ) (9)

where CIlocali denotes carbon emissions intensity of local region I
and CIimport

i and CIexporti represent carbon emissions intensity
incurred by the import and export trade of region i, respectively.

3.2 Measurement of digital value chain
embeddedness

Based on where goods are consumed, the direct consumption
coefficient matrix (A) could be divided into AD � aii{ } and
AF � aij, i ≠ j{ }. Thus, the gross output of a country could be
expressed as X � ADX + YD + AFX + YF, where ADX + YD

represents a country’s domestic use and AFX + YF represents a
country’s gross exports.

With reference to the study by Ma et al. (2023), by using
superscript to separate the digital (d) sectors from the non-digital
(n) sectors of an economy, the domestic direct consumption

coefficient matrix was given as AD �

add11 adn11 / 0 0

and11 ann11
..
. ..

.

0 0 1 0 0
..
. ..

.
addGG adnGG

0 0 / andGG annGG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Moreover, for the purpose of emphasizing the purely digital or
non-digital sectors of the domestic economy, we defines a matrix

ADD that was denoted by ADD �

add11 0 / 0 0

0 ann11
..
. ..

.

0 0 1 0 0
..
. ..

.
addGG 0

0 0 / 0 annGG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. The

element on the diagonal of matrix ADD is akkii , where k represents

a digital or non-digital sector and i denotes the specific country.
Based on the definition of matrix AD, we defined the domestic

Leontief inverse matrix L � (I − AD)−1 =

ldd11 ldn11 / 0 0

lnd11 lnn11
..
. ..

.

0 0 1 0 0
..
. ..

.
lddGG ldnGG

0 0 / lndGG lnnGG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which reflects the technological-economic linkages between
domestic sectors. Therefore, the gross output of a country
could be simplified as X � LYD + LE. Referring to the economic
implications of matrix ADD, the matrix L could be further
decomposed into H and L-H, where H � I − ADD( )−1 �
hdd11 0 / / 0
0 hnn11 0

..

.
1 ..

.

..

.
hddGG

..

.

0 0 / / hnnGG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and L −H �

ldd11 − hdd11 ldn11 / 0 0

lnd11 lnn11 − hnn11
..
. ..

.

0 0 1 0 0
..
. ..

.
lddGG − hddGG ldnGG

0 0 / lndGG lnnGG − hnnGG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. Simply put, the

matrix H was constructed to reflect the intrasectoral production
linkages in the purely digital sectors or non-digital sectors, whereas
the matrix L-H was used to represent the intersectoral production
linkages. Therefore, the expression of the value-added vector could
be reorganized as:

VA � VLYD + VLE � VLYD + VL AFX + YF( )
� VLYD + VL AFBY + YF( )
� VHYD + V L −H( )YD + VHAFBY + V L −H( )AFBY

+ VHYF + V L −H( )YF

� VHYD + V L −H( )YD + VHYF + V L −H( )YF + VHAFLY

+ V L −H( )AFLY + VLAF B − L( )Y
(10)

According to the nature of the sector that is digital or non-
digital, domestic value added by country i could be divided into
digital domestic value added (VAd

i ) and non-digital domestic value
added (VAn

i ). Taking VAd
i as the analysis object, it includes two

main components: the direct and indirect value-added effect of the
digital economic sectors. Referring to the study by He and Xie
(2022), we divided each component into four parts as follows:

(1) the digital value added by final goods to meet domestic
demands (VA1)

direct VA1di � Vd
i h

dd
ii Y

d
ii (11)

indirect VA1di � Vd
i lddii − hddii( )Yd

ii + ldnii Y
n
ii[ ] (12)

The direct VA1 (direct VA1di ) and indirect VA1
(indirect VA1di ) correspond to the first and second components
of Eq. 10, respectively. The lowercase variables, including hddii , l

dd
ii ,

and ldnii , represent the according element of matrixes H, L, and L,
respectively (similarly hereinafter).
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(2) The digital value added by exports of final goods (VA2)

direct VA2di � Vd
i h

dd
ii ∑G

j ≠ i

Yd
ij (13)

indirect VA2di � Vd
i lddii − hddii( )∑G

j ≠ i

Yd
ij + ldnii ∑G

j ≠ i

Yn
ij

⎡⎢⎢⎣ ⎤⎥⎥⎦ (14)

The direct VA2 (direct VA2di ) and indirect VA2
(indirect VA2di ) correspond to the third and fourth components
of Eq. 10, respectively, where Yd

ij denotes the export of digital final
goods from country i to country j, and Yn

ij represents that of non-
digital final goods.

(3) The digital value added that returns to the domestic
country (VA3)

direct VA3di � Vd
i h

dd
ii ∑G

j ≠ i

∑
r∈ d,n{ }

adrij ∑
m∈ d,n{ }

lrmjj Y
m
ji (15)

indirect_VA3di � Vd
i
⎡⎢⎢⎣ lddii − hddii( )∑G

j ≠ i

∑
r∈ d,n{ }

adrij ∑
m∈ d,n{ }

lrmjj Y
m
ji

+ ldnii ∑G
j ≠ i

∑
r∈ d,n{ }

anrij ∑
m∈ d,n{ }

lrmjj Y
m
ji

+ ∑
r∈ d,n{ }

ldrii ∑G
j ≠ i

∑
s∈ d,n{ }

arsij∑G
k�1

∑
m∈ d,n{ }

bsmjk − lsmjj( )Ym
ki
⎤⎥⎥⎦

(16)
The direct VA3 (direct VA3di ) corresponds to part of the fifth

component of Eq. 10, and the indirect VA3 (indirect VA3di )
corresponds to part of the sixth and seventh component of Eq.
10. VA3 manifests exports of intermediate goods that are traded
across multiple countries and eventually go back to the producer
country i.

(4) The digital value added that meets the foreign market
demand (VA4)

direct VA4di � Vd
i h

dd
ii ∑G

j ≠ i

∑
r∈ d,n{ }

adrij ∑
m∈ d,n{ }

lrmjj ∑G
p ≠ i

Ym
jp (17)

indirect VA4di �Vd
i
⎡⎢⎢⎣ lddii −hddii( )∑G

j≠ i
∑

r∈ d,n{ }
adrij ∑

m∈ d,n{ }
lrmjj ∑G

p ≠ i
Ym

jp

+ ldnii ∑G
j≠ i

∑
r∈ d,n{ }

anrij ∑
m∈ d,n{ }

lrmjj ∑G
p≠ i

Ym
jp

+ ∑
r∈ d,n{ }

ldrii ∑G
j≠ i

∑
s∈ d,n{ }

arsij∑G
k�1

∑
m∈ d,n{ }

bsmjk − lsmjj( )∑G
p≠ i

Ym
kp
⎤⎥⎥⎦

(18)
The direct VA4 (direct VA4di ) corresponds to part of the fifth

component of Eq. 10, and the indirect VA4 (indirect VA4di )
corresponds to part of the sixth and seventh component of Eq.
10. Different from VA3, VA4 denotes exports of intermediate goods
that satisfy the foreign market demand.

In a similar way, the value added from the non-digital sector in
country i could also be categorized into eight parts, denoted as
direct VA1ni ~ direct VA4ni and indirect VA1ni ~ indirect VA4ni ,

respectively. To fully reflect the development of digitalization in
country i, both the direct digitalization of the digital sectors and the
indirect digitalization of the non-digital sectors should be
considered. According to which component belongs to the
domestic value chain or the category of GVC, it is meaningful to
account for the ratio of digital value added to a country’s total value
added (Peng et al., 2023). This study further constructed the
indicators of digital domestic value chain embeddedness (DCd

i )
and digital GVC embeddedness (DCg

i ), which could be expressed as:

DCd
i �

direct_VA1di +direct_VA2di +indirect_VA1di +indirect_VA2di
VAi

(19)

DCg
i �

directVA3di + directVA4di + indirectVA3di + indirectVA4di
VAi

+ indirectVA3ni + indirectVA4ni
VAi

(20)

In light of the connotation of digital economy, and the
availability of related data, this study referred to the study by Lyu
et al. (2020) about digital economy sector classification. The digital
economy was categorized into three parts: digital infrastructure,
digital media, and digital trading; the details are shown in Table 1.

4 Empirical design

4.1 Model setting

As illustrated above, there is no specific functional relationship
between digital value chain embeddedness and carbon emissions
intensity. If a parameter estimation method is applied, a prior
parameter model needs to be determined. Thus, the parameter
method is very sensitive to the selected model, which may lead
to the misspecification of the problem (Li andWang, 2019; Du et al.,
2020). In this regard, the non-parametric method has attracted
increasing attention due to its flexibility and accuracy, and its
specific functional form does not need to be determined in
advance. However, it should be noted that this highly data-
dependent method easily leads to an overfitting phenomenon,
which, in particular, incurs the issue of the “curse of
dimensionality” (Li and Racine, 2006).

In view of this, we selected the semi-parametric model to analyze
the non-linear effects. As both linear parameter and non-parametric
components are included in themodel, it can improve the explanatory
power of the model and effectively overcome the drawbacks of
overfitting (Härdle et al., 1998). The most commonly used semi-
parametric models are semi-parametric partially linear models, which
have some additional advantages (Li and Liang, 2015): First, they
allow for amore flexiblemodel that can adapt to different types of data
and relationships. Second, they offer a wider range of link functions
and analytical forms compared with traditional parametric or non-
parametricmodels. Third, the smoothing parameters can be estimated
using generalized cross-validation techniques, which is a robust
method for parameter estimation.

This study constructed the following semi-parametric partial
linear model to test the impacts of digital value chain embeddedness
on carbon emissions intensity:
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CIit � G DCit( ) + βXit + λi + μt + εit (21)

where G(DCit) is an unknown function that measures the marginal
effect of digital value chain embeddedness, Xit represents the
collection of control variables, and λi and μt denote country
effects and year effects, respectively. By using the series
estimation method, this study followed the specific steps for
estimating this semi-parametric partial linear model as follows:

Using a p*1 vector of base functions q(DCit) �
[q1(DCit),/, qp(DCit)]′ and a p*1 vector of unknown
parameters θ � [θ1,/, θp]′ to approximate the coefficient
function G(DCit):

q DCit( )′θ � q1 DCit( ),/, qp DCit( )[ ] θ1
..
.

θp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

Referring to the research by Du et al. (2020), we employed a
B-spline method to approximate the unknown functions, as well as
apply the least-squares cross-validation to determine the number
of knots.

By rearranging Eq. 21, we obtained:

CIit � q DCit( )′θ + βXit + λi + μt + δit (23)
where δit � εit + vit and vit � CIit − q(DCit)′θ, denoting the sieve
approximation error.

Taking the first-time difference of Eq. 23 to eliminate the fixed
effects, we then obtained:

ΔCIit � Δ DCit( )′( )θ + βΔXit + Δδit (24)

Applying the least square estimator to estimate Eq. 24,
we defined:

β, θ( ) � Δ ~X′Δ ~X[ ]−1Δ ~X′Δ~CI (25)

Estimate the functional coefficients as follows:

G
�

DCit( ) � q DCit( )′θ� (26)

On the basis of the benchmark model, the mechanisms through
which digital value chain embeddedness can affect trade-related
carbon emissions intensity need to be further explored. Among the
factors influencing carbon emissions intensity, the facility of
advanced green knowledge and technology being transferred
through international trade is essential for promoting cleaner
production (Lee et al., 2022). In addition, the rise of tertiary
industry may explain the decoupling of economic growth and
carbon emissions (Xie et al., 2024). Additionally, trade scale is
usually regarded as an indirect factor in explaining the variations
in a country’s carbon emissions (Liu et al., 2020).

Based on the analyses, we build the following model to
investigate the terms of trade effect, structural effect, and export
trade scale effect:

CIit � G DCit( ) + αDCit ·Mit + βXit + λi + μt + εit (27)
where Mit indicates the variables corresponding to the above three
effects. Eq. 27 includes the interaction term DCit ·Mit. By
examining the sign and significance of the coefficient α, we can
figure out feasible ways to effectively reduce carbon
emissions intensity.

4.2 Variables

The explained variable is the carbon intensity indicator (CIlocali ;
CIimport

i ; CIexporti ), which is measured based on the accounting

TABLE 1 Digital economy sectors of the WIOD.

Industrial
classification

Coverage WIOD sector
code

WIOD sectors

Digital infrastructure Computer hardware C26 Manufacture of computers, electronic and optical products

C27 Manufacture of electrical equipment

Telecommunication equipment
and service

J61 Telecommunications

Computer software J62_J63 Computer programming, consultancy and related activities; information service
activities

Digital media Internet publishing J58 Publishing activities

Internet transmission J59_J60 Motion picture, video and television program production, sound recording and
music publishing activities; programming and broadcasting activities

Digital trading Wholesale and retail G46 Wholesale trade, except of motor vehicles and motorcycles

G47 Retail trade, except of motor vehicles and motorcycles

Financial services K64 Financial service activities, except insurance and pension funds

Other auxiliary services H53 Postal and courier activities

M69_M70 Legal and accounting activities; activities of head offices; management consultancy
activities

M72 Scientific research and development
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framework of trade in value-added. The core explanatory variable is
digital value chain embeddedness (DCd

i , DCg
i ), as Eqs 19 and (20)

have shown the specific measurement. It needs to be emphasized
that when the explained variable is CIlocali , the corresponding
explanatory variable is DCd

i , and when the explained variable is
CIimport

i or CIexporti , the corresponding explanatory variable is DCg
i .

With reference to the studies by Du et al. (2020) and He and Xie
(2022), the control variables in this study were: (1) the forest area
proportion (denoted as forest), which was used to reflect the impact
of forest resources; (2) income level (denoted as lnpgdp), which was
represented by the real GDP per capita, and take log of it; (3) the
renewable energy share (denoted as renewable), which represented
the energy consumption structure to some extent; (4) trade openness
(denoted as open), which was calculated by adding up the exports of
goods and services (percentage of GDP) and imports of goods and
services (percentage of GDP); (5) urbanization level (denoted as
urban), which was measured by 1 minus the ratio of the rural
population to the total population; (6) research and development
intensity (denoted as r&d), which was the ratio of research and
development expenditure to GDP, which was used to manifest the
roles of technological innovation; (7) financial development
(denoted as financial), which was measured by the market
capitalization of listed domestic companies (percentage of GDP);
and (8) industrial development (denoted as industrial), which was
proxied by the proportion of industrial added value in the GDP.

4.3 Data source and descriptive statistics

This study used balanced panel data for 41 countries (or regions)
spanning from 2000 to 2014, excluding the Netherlands, Taiwan,
and the rest of the world due to the lack of available and consistent
data. The input-output data used for calculating digital value chain
embeddedness were obtained from the World Input-Output
Database (WIOD), the original data for CO2 emissions were

obtained from the Environmental Accounts published by the
WIOD in 2016, and data on control variables was obtained from
World Development Indicators (WDI). Descriptive statistics for
major variables are illustrated in Table 2.

5 Results and discussion

5.1 Overview of CO2 emissions in global
value chains

The CO2 emissions embodied in the total global intermediate
goods trade and global final goods trade over the period
2000–2014 are shown in Figure 1, 2, respectively. There is a
higher growth rate of CO2 emissions embodied in global
intermediate goods trade than that embodied in global final
goods trade. It reveals a slight decrease in CO2 emissions
embodied in the global intermediate goods trade in 2009 because
of the economic crisis, which conforms with the findings of Fan et al.
(2021). Meanwhile, for both the global intermediate goods trade and
final goods trade, the carbon embodied in international trade is far
larger than that in domestic trade. The findings indicate that world
economic development and trade networks are closely related to
CO2 emissions. In the long term, CO2 emissions embodied in global
trade still shows an upward trend. Thus, putting more emphasis on
decreasing carbon intensity is a more important concern.

Figure 3 shows a comparison among carbon intensities that are
related to the domestic trade, import trade, and export trade of the
sample countries. In this study, we extend the time range to 2014.
Compared with the research by Fan et al. (2021), this study shows
that for most developed countries, the carbon intensity embodied in
import trade is higher than that in export trade, and is higher still
than that in domestic trade; Australia (AUS) is not an exception. In
addition, for some transitional economies, such as Russia (RUS),
India (IND), Bulgaria (BGR), and China (CHN), the carbon
intensity of their export trade is considerably higher than the
average of the sample. Based on the findings, there are significant
differences in the three types of carbon intensity, not only within a
country but also from the perspective of countries with different
levels of economic development. Additionally, the findings signify
that developing countries have experienced higher negative
externalities from export trade than developed countries; this
revelation is consistent with the research by Dorninger et al.
(2021). As a result, developing countries are under greater
pressure to reduce carbon emissions intensity.

5.2 Benchmark analysis of digital value chain
embeddedness on carbon
emissions intensity

The estimation results with CIlocali , CIimport
i , CIexporti as the

explained variables and DCD
i , DCG

i , DCG
i as the core explanatory

variables are presented in columns (1)–(3) of Table 3. The marginal
effects of each core explanatory variable on the corresponding
explained variable are shown in Figures 4–6, respectively. By
observing the estimation results, we have discovered an inverted
U-shaped relationship between digital domestic value chain

TABLE 2 Descriptive statistics of major variables.

Variable Obs Mean Std.dev Min Max

CIlocali
615 0.513 0.589 0.030 4.529

CIimport
i

615 0.891 0.436 0.405 2.061

CIexporti
615 0.880 1.054 0.041 9.095

DCD
i 615 0.634 0.172 0.061 0.928

DCG
i 615 0.183 0.100 0.011 0.608

forest 615 0.361 0.170 0.011 0.737

lnpgdp 615 9.858 0.980 6.627 11.630

renewable 615 0.170 0.139 0.000 0.602

open 615 0.913 0.571 0.196 3.334

urban 615 0.711 0.140 0.277 0.978

r&d 615 0.014 0.010 0.000 0.043

financial 615 0.489 0.489 0.000 3.219

industrial 615 0.265 0.069 0.100 0.481
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embeddedness and carbon intensity embodied in domestic trade,
which verifies H1. With the improvement in digital domestic value
chain embeddedness, the carbon intensity embodied in domestic
trade increases first and then decreases, and the threshold of DCd

i is
approximately 0.88. Additionally, there is a non-linear relationship
between digital GVC embeddedness and carbon intensity embodied
in international trade, which is divided into two types: import trade
and export trade. The marginal impact first rises in a deceleration,
then falls, and finally rises after the inflection point. Furthermore,
the thresholds of DCg

i affecting the carbon intensity embodied in
import trade are approximately 0.1 and 0.3, and the thresholds of
DCg

i affecting carbon intensity embodied in export trade are
approximately 0.03 and 0.21. Thus, we can conclude that
participating in export trade can realize the environmental
benefit of digital value chain embeddedness earlier.

The possible explanations for the non-linear relationship
between different types of digital value chain embeddedness and

the carbon emissions intensity may be that, on the one hand, the
process of digital value chain embedding is accompanied by the
continuous integration of digital technology and conventional
industries. However, the cultivation of digital ability is not
synchronized, and it requires vast amounts of upfront
investment. From a dynamic process perspective, adaptive
capacity is built on the basis of the improvement of data analysis,
data operation, and data empowerment (Yang et al., 2023).
Therefore, there is a transitional period of digital transformation.
It is necessary to cross the first threshold of digital value chain
embeddedness; then, the benefits of digitally empowering low-
carbon development can be exploited significantly. On the other
hand, under the condition that some experience has been
accumulated during the digital transformation, and the synergy
between digital technology and other input factors in the economic
system is strengthened, digitalization can improve the input-output
efficiency of an economy and obtain environmental benefits.

FIGURE 1
CO2 emissions of global intermediate goods trade from 2000 to 2014.

FIGURE 2
CO2 emissions of global final goods trade from 2000 to 2014.
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Comparing the thresholds of digital value chain embeddedness
as for the trade types of export trade, import trade and domestic
trade, i.e., 0.03 < 0.1 < 0.88. For digital GVC embeddedness, as a
large amount of cross-border trade of intermediate goods accelerates
the spillover and diffusion of digital technology, the impacts on
reducing carbon emissions intensity are manifested. In addition, it
should be noted that the continuous increase in the degree of digital
GVC embeddedness will eventually follow the law of diminishing
marginal effect. With the bottlenecks of digital technology
upgrading and industrial structure optimization, when the digital
GVC embeddedness surpasses the second threshold, the
environmental burden will be aggravated if the complexity of the
economic system is high.

5.3 Further analysis concerning differences
in economic development

Considering the possible digital divide between economies at
different stages of economic development, this study divides the
sample into high-income economies (ECON = 1) and middle- and
low-income economies (ECON = 0) according to the World Bank’s
classification. The economies in the ECON = 0 group in this sample are
mostly developing countries. The estimation results are shown in
Table 4, and the estimation of the marginal effect of each core
explanatory variable is shown in Figures 7–9. The results show that
in different subsamples, there is a non-linear relationship between
digital value chain embeddedness and carbon emissions intensity.
When comparing the thresholds of digital value chain embeddedness
in different sample groups, the thresholds of high-income economies
are lower than those of middle- and low-income economies, indicating
that high-income economies take precedence over middle- and low-
income economies in terms of obtaining environmental benefits,

FIGURE 3
Carbon intensities of sample economies in 2014.

TABLE 3 Estimation results of the partially linear functional-coefficient
panel model.

(1) CIlocali (2) CIimport
i (3) CIexporti

DCD
i see Figure 4

DCG
i see Figure 5 see Figure 6

forest −11.640*** (2.418) −5.812** (2.796) −24.507*** (5.394)

lnpgdp −1.712*** (0.103) −1.355*** (0.119) −2.979*** (0.229)

renewable −1.078*** (0.283) −0.639** (0.328) −2.260*** (0.632)

open 0.204*** (0.057) −0.072 (0.061) 0.390*** (0.118)

urban 0.774 (1.030) −7.992*** (1.191) 2.708 (2.297)

r&d 0.069 (0.630) −0.747 (0.731) 0.124 (1.410)

financial 0.014 (0.016) 0.023 (0.020) 0.005 (0.039)

Industrial 0.981*** (0.347) 1.238*** (0.401) 0.793 (0.773)

Year effects Yes Yes Yes

Country effects Yes Yes Yes

N 615 615 615

R2 0.436 0.406 0.337

FIGURE 4
Marginal effect of DCd on local CI.
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which verifies H2. When many high-income economies have been at
the stage of reducing carbon emissions intensity through digitalization,
most middle- and low-income economies still bear the pressure of
increasing environmental pollution, which is in conformity with the
findings of Huang and Zhang (2023). The reason for this is that high-
income economies have the first-mover advantage in the development
of digital technology and aremotivated to implement trade restrictions
to hinder the spillover of core digital technology, which slows down the
pace of green and low-carbon development in middle- and low-
income economies.

5.4 Heterogeneity analysis

5.4.1 Heterogeneity analysis based on the terms
of trade

Among the indicators that can reflect the convenience of trade,
compared with the trade openness index or transaction costs
indicator of international trade (Bogmans, 2015; Murshed, 2020),

this study innovatively selects the net barter terms of the trade index
released by the World Bank WDI database to reflect the terms of
trade (FC). The index represents the number of imported products
that can be obtained by exporting one unit product, where an FC of
100 in the year 2000 is used as the benchmark value. The higher the
index value, the more advantageous it is for international trade. This
study takes the logarithm and includes it in the empirical model in
the form of an interaction term. The empirical results are shown in
Table 5. The coefficient of the interaction term is significantly
negative in the types of carbon intensity embodied in domestic
trade and export trade. It indicates that optimizing terms of trade
and reducing trade barriers are conducive to promoting digital value
chain embeddedness and improving environmental quality. This
may be due to a close communication of digital technology through
trade activities, which is very important for improving green
production capacity. Comparatively, the interaction coefficient in
column (2) of Table 5 is not significant, which reveals that the net
barter terms of the trade index focus on the measurement from the
perspective of exports; therefore, it is unlikely to have a significant
impact on the carbon intensity embodied in import trade.

5.4.2 Heterogeneity analysis based on
structural effects

Concerning the industrial upgrading process which increases the
supply of low-energy consuming products, the transformation
promotes the need of skilled labor with environmental awareness
and the ability to reduce existing carbon emissions (Mahmood et al.,
2019). To further test the role of the structural effect in the process of
digital value chain embedding, this study takes the ratio of tertiary
industry output to GDP as the index of structural effect (ST), and
includes it in the model in the form of an interaction term. The
empirical results are shown in Table 6. The interaction coefficient is
negative in the three types of carbon intensity, and it is significant in
the type of carbon intensity embodied in domestic trade. This is
because as the energy consumption of the tertiary industry is
significantly lower than that of the secondary industry, which
represents the main direction of industrial upgrading, the higher
the ratio of the tertiary industry output to GDP, resulting in the
optimization of the energy structure. The empirical results reveal that
adjusting energy structure is an important mechanism for an
economy utilizing digital value chain embeddedness to achieve
environmental improvement.

5.4.3 Heterogeneity analysis based on the
scale effect

According to the study by Yan et al. (2023), the export scale effect is
an important mechanism affecting trade-embodied carbon emissions.
With the purpose of examining the scale effect, this study uses the actual
value of a country’s total exports to reflect the scale effect (SC) and
includes it in the benchmark model in the form of an interaction term.
The empirical results are shown in Table 7. The interaction coefficient is
significantly negative in the types of carbon intensity embodied in
domestic trade and import trade. In addition, it is negative in the type of
carbon intensity embodied in export trade, revealing that the scale effect
is also the mechanism of the green and low-carbon development of
digital empowerment. The existing research applying the absolute
amount of carbon emissions embodied in trade generally holds that
the scale effect is a main mechanism for environmental degradation.

FIGURE 5
Marginal effect of DCg on import CI.

FIGURE 6
Marginal effect of DCg on export CI.

Frontiers in Environmental Science frontiersin.org11

Lyu et al. 10.3389/fenvs.2023.1256544

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1256544


From the perspective of carbon intensity, this study confirms that
promoting economic growth and improving carbon emission reduction
capacity can go hand in hand. By reducing carbon intensity, it is
beneficial to balance the dual pressures between a country’s economic
slowdown and total carbon emissions.

5.5 Discussion

In this study, we focused on measuring digital value chain
embeddedness, as well as discussing the impacts of different

types of digital value chain embedding on trade-related carbon
emissions intensity. Previous studies have investigated the
relationship between digital progress and environmental
performance, GVCs and carbon emissions embodied in trade,
and digitalization and GVCs. However, studies concerning the
three aspects are rare and limited to the absolute carbon
emissions indicator, neglecting the value-added dimension of
trade activities. By unifying digital value chain embeddedness and
carbon emissions intensity, it is recognized that in the early stage of
digital domestic value chain embeddedness, the marginal effect on
carbon emissions intensity is positive. When it is larger than a

TABLE 4 Estimation results concerning differences in economic development.

CIlocali CIimport
i CIexporti

(1) ECON = 1 (2) ECON = 0 (3) ECON = 1 (4) ECON = 0 (5) ECON = 1 (6) ECON = 0

DCD
i see Figure 7

DCG
i see Figure 8 see Figure 9

forest −9.682*** (2.443) −11.728** (5.501) −15.950*** (3.576) 7.809* (4.352) −11.354** (4.913) −32.409** (12.583)

lnpgdp −1.260*** (0.087) −3.517*** (0.382) −1.571*** (0.126) −1.199*** (0.312) −2.087*** (0.173) −7.513*** (0.903)

renewable −0.859*** (0.231) −2.741** (1.128) −0.055 (0.338) −0.595 (0.887) −1.688*** (0.465) −5.793** (2.565)

open 0.151*** (0.045) 0.358 (0.254) 0.047 (0.060) −0.639*** (0.189) 0.222*** (0.083) 0.669 (0.546)

urban 0.636 (1.019) 10.177*** (3.369) −12.923*** (1.486) −4.356 (2.723) 0.290 (2.042) 29.905*** (7.872)

r&d −0.047 (0.459) −0.598 (8.282) −0.676 (0.676) −0.175 (6.558) −0.116 (0.928) 4.205 (18.962)

financial 0.014 (0.013) 0.044 (0.080) 0.022 (0.020) −0.027 (0.051) 0.006 (0.028) −0.052 (0.148)

Industrial 0.589* (0.307) 2.089** (0.966) 1.515*** (0.448) −0.099 (0.780) 0.833 (0.615) 1.591 (2.256)

Year effects Yes Yes Yes Yes Yes Yes

Country effects Yes Yes Yes Yes Yes Yes

N 495 120 495 120 495 120

R2 0.413 0.595 0.485 0.476 0.324 0.548

FIGURE 7
Marginal effect of DCg on local CI based on economic
development.

FIGURE 8
Marginal effect of DCg on import CI based on economic
development.
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certain level, the impact is reversed. This is generally consistent with
the findings of Wang et al. (2021) and Ma et al. (2023), indicating
that the carbon emission effect appears until the tipping point of
digitalization is reached.

The new finding in this study is that compared with the single
threshold associated with digital domestic value chain
embeddedness, we have discovered two thresholds in the case of
digital GVC embeddedness. The explanation may be that as
digitalization is in the high range, a country’s corresponding

absorptive capacity is not synchronized with digital technological
development, resulting in the aggravation of pollution (Huang et al.,
2022). In the era of the knowledge-based economy, soft power,

FIGURE 9
Marginal effect of DCg on export CI based on economic
development.

TABLE 5 Heterogeneity test results based on the terms of trade.

(1) CIlocali (2) CIimport
i (3) CIexporti

DCD
i omitted

DCG
i omitted omitted

DCD
i ×FC −0.435*** (0.105)

DCG
i ×FC 0.123 (0.297) −1.865*** (0.568)

forest −11.864*** (2.400) −5.631** (2.813) −24.052*** (5.378)

lnpgdp −1.685*** (0.102) −1.360*** (0.119) −2.954*** (0.227)

renewable −1.045*** (0.280) −0.633** (0.328) −2.212*** (0.628)

open 0.155*** (0.058) −0.076 (0.063) 0.322*** (0.120)

urban 0.678 (1.033) −7.820*** (1.212) 2.650 (2.316)

r&d 0.250 (0.623) −0.759 (0.732) 0.256 (1.400)

financial 0.008 (0.016) 0.022 (0.020) 0.015 (0.038)

Industrial 1.144** (0.480) 0.923* (0.563) 0.885 (1.076)

Year effects Yes Yes Yes

Country effects Yes Yes Yes

N 615 615 615

R2 0.453 0.407 0.349

TABLE 6 Heterogeneity test results based on structural effects.

(1) CIlocali (2) CIimport
i (3) CIexporti

DCD
i omitted

DCG
i omitted omitted

DCD
i ×ST −1.008* (0.557)

DCG
i ×ST −0.353 (1.156) −1.344 (2.184)

forest −11.381*** (2.391) −5.825** (2.801) −24.851*** (5.293)

lnpgdp −1.704*** (0.101) −1.348*** (0.119) −2.908*** (0.225)

renewable −1.056*** (0.279) −0.634** (0.328) −2.185*** (0.620)

open 0.136** (0.058) −0.082 (0.062) 0.278** (0.118)

urban 0.840 (1.025) −8.019*** (1.194) 2.219 (2.257)

r&d 0.193 (0.620) −0.711 (0.735) 0.450 (1.389)

financial 0.010 (0.016) 0.021 (0.020) −0.011 (0.038)

Industrial 0.857** (0.423) 1.227*** (0.464) 1.322 (0.876)

Year effects Yes Yes Yes

Country effects Yes Yes Yes

N 615 615 615

R2 0.457 0.407 0.364

TABLE 7 Heterogeneity test results based on scale effects.

(1) CIlocali (2) CIimport
i (3) CIexporti

DCD
i omitted

DCG
i omitted omitted

DCD
i ×SC −0.279*** (0.039)

DCG
i ×SC −0.204*** (0.071) −0.131 (0.137)

forest −10.643*** (2.335) −6.068** (2.811) −25.186*** (5.474)

lnpgdp −1.268*** (0.115) −1.281*** (0.122) −2.900*** (0.238)

renewable −0.973*** (0.275) −0.703** (0.333) −2.168*** (0.648)

open 0.339*** (0.059) −0.064 (0.063) 0.393*** (0.122)

urban 1.619 (1.012) −7.550*** (1.219) 2.724 (2.375)

r&d 0.263 (0.610) −0.829 (0.739) 0.183 (1.439)

financial −0.010 (0.016) 0.005 (0.021) −0.002 (0.040)

Industrial 0.907** (0.349) 1.195*** (0.421) 0.673 (0.820)

Year effects Yes Yes Yes

Country effects Yes Yes Yes

N 615 615 615

R2 0.482 0.412 0.334
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especially human capital, plays a very influential role in providing
innovation impetus (Haini, 2018). Thus, strengthening the
awareness of environmental protection is closely related to the
cultivation of high-quality human capital.

This study also explores the heterogeneous impacts of digital
value chain embeddedness on carbon emissions intensity in
countries of different economic development, which reveals new
empirical proof for the digital divide between developed and
developing countries. In reality, developed countries take the
initiative in utilizing digital technologies. With the purpose of
maintaining the dominant position in GVC embedding, they
usually control the outflow of high-tech products or services,
which poses a greater environmental pressure from the global
perspective. In this regard, developing countries have to cultivate
their own digital innovation ability (Yang et al., 2023) and strive to
get rid of the digital technology barriers in the long term.

6 Conclusion

Based on the panel data of 41 countries and regions from 2000 to
2014, this study investigated the non-linear impacts of digital value
chain embeddedness on trade-related carbon emissions intensity.
The empirical results show that: (1) the impact of digital domestic
value chain embeddedness on carbon intensity embodied in
domestic trade is an inverted U-shape. The integration of digital
technology and conventional industries requires a transitional
period. As the digital domestic value chain embeddedness crosses
the threshold, which is approximately 0.88, it can promote the green
and low-carbon development of the economy. (2) Digital GVC
embeddedness has a non-linear effect on carbon intensity embodied
in import and export trade, which first rises in a deceleration, then
falls, and finally rises after the inflection point. Although
participating in GVCs can strengthen the spillover and diffusion
of digital technology, when digital GVC embeddedness is higher
than the second threshold, it is also necessary to be alert to the
bottlenecks encountered in the re-upgrading of technology. (3) The
impacts of digital value chain embeddedness on carbon emissions
intensity are closely related to economic development levels.
Developed countries still dominate in digital value chain
embeddedness, and developing countries lag behind developed
countries in the environmental benefits of digital technology
utilization. (4) Optimizing the terms of trade, adjusting the
energy structure, and increasing the scale of trade are conducive
to promoting the environmental benefits of digital empowerment.
When there is an economic slowdown and energy consumption
pressure, making more efforts to reduce carbon intensity is an
important starting point for a country attempting to achieve
sustainable economic development.

The findings of this study contain crucial policy
recommendations. To improve energy efficiency and promote
economic growth, it is essential to implement incentive measures
to fully utilize digital technology. At the moment, the digital divide
between developed economies and developing economies hinders
the spread of new energy technology via digital spillover effects. As
participating in GVCs provides opportunities for learning through
trade, especially for the main carbon-emitting countries,
overcoming the shortcomings in digital technology and

strengthening cross-border cooperation in R&D can help achieve
sustainable development. In addition, instead of focusing exclusively
on digital value chain embedding, developing economies should pay
much more attention to nurturing and refining the technology
absorptive capacity of conventional industries. Although the
digital transformation process might take a long time, it can be
regarded as a long-term environmentally friendly investment, which
is beneficial for cultivating the ability to develop independently.
Furthermore, accelerating domestic digital R&D is fundamental for
improving a country’s GVC competitiveness when economic
development surpasses a certain stage. Additionally, it has been
suggested that energy efficiency can be boosted by promoting scale
effects and the learning mechanism to the utmost extent.

Owing to data availability, this study only covers a time span
from 2000 to 2014. Future research might discover more
countries over a longer period. Moreover, contrasting more
industrialized categorizations in depth is also an extension
research project.
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Glossary

AUS Australia

AUT Austria

BEL Belgium

BGR Bulgaria

BRA Brazil

CAN Canada

CHE Switzerland

CHN China

CYP Cyprus

CZE Czech Republic

DEU Germany

DNK Denmark

ESP Spain

EST Estonia

FIN Finland

FRA France

GBR United Kingdom

GRC Greece

HRV Croatia

HUN Hungary

IDN Indonesia

IND India

IRL Ireland

ITA Italy

JPN Japan

KOR Korea

LTU Lithuania

LUX Luxembourg

LVA Latvia

MEX Mexico

MLT Malta

NOR Norway

POL Poland

PRT Portugal

ROU Romania

RUS Russian Federation

SVK Slovak Republic

SVN Slovenia

SWE Sweden

TUR Turkey

TWN Chinese Taipei

United States United States

ROW Rest of the World

Frontiers in Environmental Science frontiersin.org17

Lyu et al. 10.3389/fenvs.2023.1256544

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1256544

	The impacts of digital value chain embeddedness on trade-related carbon emissions intensity
	1 Introduction
	2 Theoretical analysis
	3 Measurement
	3.1 Measurement of carbon emissions intensity
	3.2 Measurement of digital value chain embeddedness

	4 Empirical design
	4.1 Model setting
	4.2 Variables
	4.3 Data source and descriptive statistics

	5 Results and discussion
	5.1 Overview of CO2 emissions in global value chains
	5.2 Benchmark analysis of digital value chain embeddedness on carbon emissions intensity
	5.3 Further analysis concerning differences in economic development
	5.4 Heterogeneity analysis
	5.4.1 Heterogeneity analysis based on the terms of trade
	5.4.2 Heterogeneity analysis based on structural effects
	5.4.3 Heterogeneity analysis based on the scale effect

	5.5 Discussion

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Glossary


