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The excessive exploitation of groundwater not only destroys the dynamic
balance between coastal aquifer and seawater but also causes a series of
geological and environmental problems. Groundwater level prediction
provides an efficient way to solve these intractable ecological problems.
Although several hydrological numerical models have been employed to
conduct prediction, no study has accurately predicted the groundwater
level change under the consideration of groundwater exploitation,
especially in coastal aquifers. This is due to the characteristics of spatially
and temporally complex hydrological processes. This study proposes a novel
data-driven method based on the combination of time series analysis and a
machine learning method for accurately predicting the variation of
groundwater level in a coastal aquifer under the influence of groundwater
exploitation. The partial autocorrelation function and continuous wavelet
coherence were used to analyze the monitoring data of groundwater level
at three wells, which indicated that the historical monitored data and the
dataset of precipitation could be considered as the input variables to
construct the hydrological model. Then, three models based on the
different inputs were constructed, namely, the LSTM, PACF-LSTM, and
PACF-WC-LSTM models. The performances of the three models were
compared by the calculation of four error metrics. The results showed that
the performance of the PACF-LSTM and PACF-WC-LSTM models was better
than that of the LSTMmodel and that the PACF-WC-LSTMmodel achieved the
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best prediction performance. Accurately predicting the variation of
groundwater level provides the basis for managing groundwater resources
and preserving the ecological environment.
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long short termmemory neural network, coastal groundwater levels, groundwater regime,
groundwater withdrawal, machine learning

1 Introduction

Groundwater is the most important resource for supporting the
demand from agriculture and industrial and domestic water
supplies, and it also plays a crucial role in maintaining the
stability of the ecosystem (Hu et al., 2019; Xiao et al., 2022;
Hikouei et al., 2023). Over a quarter of the population across the
world depends on groundwater resources as their primary water
resource, and more than half of irrigation water in agriculture is
supplied by groundwater resources (WWAP, 2015). However, due
to rapid urbanization and intensified human activities, the
overexploitation of groundwater resources causes a series of
intractable environmental problems (Long et al., 2020), such as
geological disaster (Hosono et al., 2019; Miyakoshi et al., 2020; Qu
et al., 2020), land subsidence (Wang et al., 2013; Xiao et al., 2022;
Hikouei et al., 2023), and land desertification (Daliakopoulos et al.,
2005; Qu et al., 2021; Sun et al., 2022). Moreover, the intensive
exploitation of groundwater induces an imbalance between the
surface water, groundwater, and seawater in coastal regions,
which causes saltwater intrusion and land salinization (Tokunaga,
1999; Lee et al., 2013; Nourani et al., 2014; Wang et al., 2023). Thus,
it is extremely urgent to solve these difficult environmental problems
caused by the overexploitation of groundwater resources.

The scientific monitoring and accurate prediction of
groundwater levels have focused on solving these intractable
environmental problems and providing the basis for the
implementation of effective management of groundwater
resources (Hosono et al., 2019; Mao et al., 2022; Mohammed
et al., 2022). In general, the dynamic change of groundwater level
is affected by external influencing factors, such as seismic activities,
precipitation, and pumping activities (Nourani et al., 2014; Shi et al.,
2018; Wang et al., 2018; Gao et al., 2020; Vittecoq et al., 2020). All
the external influence factors can be classified into three categories,
namely, geological factors, meteorological factors, and
anthropogenic factors, which cause groundwater levels to show
non-linear dynamic changes in the time domain and frequency
domain. The influence of many external factors on groundwater
dynamic changes increases the difficulty of groundwater level
prediction and decreases the accuracy of prediction. Previous
studies have indicated that physical-based models, such as GMS,
MODFLOW, and TOUGH, have a predominant advantage for the
prediction of groundwater levels in complex hydrogeological
conditions (Chen et al., 2020; Tawara et al., 2020; Mohammed
et al., 2022). However, these numerical models completely depend
on hydrological information, such as stratigraphic structures,
aquifer parameters, and boundary conditions. Due to the
heterogeneity, discontinuity, and anisotropy of aquifer properties
across different scales, hydrological parameters are difficult to obtain
accurately. In recent years, data-driven methods have been shown to

outperform numerical models in predicting the variation of
groundwater level (Kratzert et al., 2018; Bredy et al., 2020; Zhang
et al., 2022; Hikouei et al., 2023). The greatest strength of data-driven
methods is that these methods can build the relationship between
the input variables and target variables without the need to explicitly
define physical relationships between them.

Data-driven methods are needed to rebuild the relationship
between external influence factors and the variation of groundwater
level from a modern perspective. These types of methods have been
widely considered to identify anomalous changes in groundwater
levels and predict the variation of groundwater levels. Examples of
data-driven methods include the decision tree model (Bredy et al.,
2020; Zhang et al., 2020), the Hilbert Huang Transform (Zhang
et al., 2019; Chien et al., 2020), and the artificial neural network
method (Wunsch et al., 2021; Hakim et al., 2022). However, these
methods also have major drawbacks. For example, the decision tree
method is easy to overfit during the training state, whereas the
artificial neural network method cannot quantify how much
historical data is used for prediction. n addition, these data-
driven groundwater prediction methods do not consider the
various external factors that influence the dynamic variation of
groundwater level. More recently, the newly developed long short-
term memory neural network (LSTM) method has provided an
effective way to predict the variation of groundwater level based on
valuable data from long-term monitoring and external influencing
factors. However, in previous studies, groundwater withdrawal was
less considered as the input variable to construct the LSTM model
for predicting the variation of groundwater level. In order to
improve the accuracy of the prediction model, in the present
study, three modified LSTM models with the combination of
time series analysis and machine learning methods based on the
consideration of groundwater withdrawal were constructed and
compared in terms of the performance of groundwater level
prediction.

The core objective of this study is to accurately predict the
variation of groundwater level under the influence of groundwater
exploitation in a coastal area. In accordance with this objective,
major research results were achieved by 1) using partial
autocorrelation function and continuous wavelet coherence to
identify the internal factors and external factors on the variation
of groundwater level, and then to determine the input variables of
data-driven models; 2) constructing and training three data-driven
models, namely, the LSTM model, the PACF-LSTM model, and the
PACF-WC-LSTMmodel, to predict groundwater level; 3) analyzing
and comparing the model performance of groundwater level
prediction in the validation and prediction stage under four error
metrics, namely, R2, MAPE, RMSE, and NSE. Hydrogeologists
analyze and predict the variation of groundwater levels, especially
those changes under the influence of groundwater exploitation,
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which can provide the premise for water resource management.
However, due to the non-linear and non-stationary characteristics of
groundwater level monitored data, there is still no data-driven
method to accurately predict groundwater level change under the
influence of groundwater exploitation. The result of this study could
provide a new data-driven method to simulate and predict
groundwater level change under groundwater exploitation in a
coastal aquifer.

2 Background of study area and data
sources

2.1 Regional hydrogeological setting

Rizhao County is located in the Jiaonan uplift of the second-
order structural unit, which belongs to the Ludong fault block of the
first-order structural unit. Tectonically, it is located in the junction
area of the Yishu Fault and the Wurong Fault. The terrain is
generally low in the southeast and high in the northwest, and
generally increases in height with the increasing distance between
the coastline and inland. The length of the coastline in Rizhao
County is 168 km. Geomorphic types are divided into three
categories: mountain, hill, and plain. The area of hills occupies
approximately 57.2% of the city’s territory, whereas the areas of
mountains and plains occupy approximately 25.3% and 17.5% of the
area, respectively. The main surface water bodies include the Futuan
River, Chaobai River, Xiuzhen River, andWei River, which flow into
the Huanghai Sea.

Based on the difference in hydrogeological conditions, the
aquifer types in the study area can be roughly classified into four
categories: Quaternary loose rock aquifer, Bedrock fissure aquifer,
Clastic rock aquifer, and Carbonate rock aquifer (Figure 1). The
Quaternary loose rock aquifer is mainly distributed on both sides of
the Futuan River and Xiuzhen River and has a wide distribution
range and strong water supply capacity. The hydrochemical type in
the Quaternary loose rock aquifer is HCO3·Cl-Ca·Na. The Bedrock
fissure aquifer is the most widely distributed in the study area,
however, its water supply capacity is inadequate. The hydrochemical
type in the Bedrock fissure aquifer is HCO3-Ca·Mg. The rock types
of the Clastic rock aquifer are composed of conglomerate, siltstone,
and clastic rock. The hydrochemical type in the Clastic rock aquifer
is HCO3—Ca·Na. The Carbonate rock aquifer is less distributed in
the study area.

2.2 Data collection

Dongguan monitoring well (DG well), Jufeng monitoring well
(JF well), and Kouguan monitoring well (KG well) are connected
with the Carbonate rock aquifer, Quaternary loose rock aquifer, and
Bedrock fissure aquifer, respectively. In this study, the monitored
data of groundwater levels in the abovementioned three monitoring
wells from 2003 to 2020 were collected to be used in the analysis and
prediction of groundwater levels. In addition, precipitation and
groundwater withdrawal are important sources of groundwater
recharge and discharge, respectively. To accurately analyze and
predict groundwater regimes, we also collected the dataset of

precipitation and groundwater withdrawal in Rizhao City from
2003 to 2020.

The monitored interval of groundwater levels in these three
monitoring wells was 5 days. The dynamic changes in groundwater
levels in the three monitoring wells showed seasonal fluctuations,
with a higher level during the summer wet season and lower levels
during the drier winter season (Figure 2). Due to the difference in
hydrological conditions, the magnitude of annual change in
groundwater levels showed significant differences: 2.6 m in the
DG well, 1.7 m in the JF well, and 3.5 m in the KG well.

The meteorological dataset was collected from the China
Meteorological Administration (http://data.cma.cn/). Rizhao
County is characterized by the monsoon climate of medium
latitudes, with a mean annual rainfall of 874 mm, of which
approximately 70% falls from June to October. The average value
of annual atmospheric temperature is approximately 12.7°C.

The data on groundwater withdrawal in Rizhao was collected
from the Rizhao hydrological reports published by the RizhaoWater
Resources Bureau (http://slj.rizhao.gov.cn/). As shown in Figure 3,
the annual average value of groundwater withdrawal from 2003 to
2020 was 1.595 × 108 m3. The maximum value of groundwater
withdrawal was 1.956 × 108 m3 in 2006. Due to the change in water
supply structure and effective administration, the amount of annual
groundwater withdrawal in Rizhao was reduced to 1.363 × 108 m3

in 2020.
In order to eliminate the effect of different monitored intervals,

the monitored values of groundwater level, precipitation, and
groundwater withdrawal were transferred to the monthly average
value for analysis.

3 Methods

3.1 Partial autocorrelation function

The partial autocorrelation function (PACF) is an efficiency tool
in time series analysis for analyzing the correlation between the Xt

and Xt+k by eliminating the variables interference Yt-1, Yt-2, . . . , Yt−

k+1. Partial autocorrelation coefficients can be calculated by the Yule-
Walker equation (Tinungki and Iop, 2019; Yan et al., 2021; Zhang
et al., 2022; He et al., 2022), as follows:

ρ1 � φk1 + φk2ρ1 + . . . + φkkρk−1
ρ2 � φk1ρ1 + φk2 + . . . + φkkρk−2
..
. ..

. ..
. ..

.

ρk � φk1ρk−1 + φk2ρ1 + . . . + φkk

(1)

Where φkk is the correlation coefficient between two variables Xt

and Xt+k. It is defined by the following equation

φkk � Corr Xt, Xt+k|Xt−1, Xt−2, . . . , Xt−k+1( ) (2)
Partial autocorrelation coefficients can be estimated by using the

partial autocorrelation coefficients of the sample by changing the
value ρ on the Yule-Walker equation with r, and counting for k = 1,
2, . . . to get the value Φkk using Cramer rules. Several previous
studies indicate that PACF provides an efficient way to analyze the
correlation of time series in hydrogeological science (Rodrigues
et al., 2018; Yu et al., 2019; Bredy et al., 2020; Nelson et al.,

Frontiers in Environmental Science frontiersin.org03

Guo et al. 10.3389/fenvs.2023.1253949

http://data.cma.cn/
http://slj.rizhao.gov.cn/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1253949


2021; Yan et al., 2021). In this study, we also use this method to
analyze the correlation of time series between groundwater level at
time t and antecedent groundwater level.

3.2 Continuous wavelet coherence

Wavelet transform is an efficient tool to decompose the time
series into various times and frequencies and analyze non-stationary

time series with multi-time resolution, which mainly includes the
discrete wavelet transform (DWT) and the continuous wavelet
transform (CWT) (Acworth et al., 2016; Yan et al., 2020; Zhang
et al., 2020; Qu et al., 2021). Previous studies indicated that the latter
method has been used to analyze the correlation of different
hydrological time series (Massei et al., 2006; Nourani et al., 2014;
Yan et al., 2017; Lee and Kim, 2019; Zhang et al., 2021). In this study,
continuous wavelet coherence was used to identify the external
influencing factors of groundwater level change, which is the typical

FIGURE 1
The hydrogeological map of Rizhao City and the location of monitoring wells.

FIGURE 2
The variation of groundwater levels at the three monitoring wells (DG well, KG well, and JF well) from 2003 to 2020.
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technology in continuous wavelet transform. Due to the perfect
performance and good balance in the time and frequency domain,
the Morlet wavelet was selected to conduct the continuous wavelet
coherence (Massei et al., 2006; Zhang et al., 2022; Gu et al., 2022).
Monte Carlo methods were used to determine the statistical
significance level of WTC. The Cone of Influence was used to
evaluate the edge effects caused by discontinuities at endpoints.

Different from the definition of the correlation coefficient,
continuous wavelet coherence is defined as follows:

R2 x, y( ) � S s−1W x, y( )( )∣∣∣∣ ∣∣∣∣2
S s−1W x( )( ) · S s−1W y( )( ) (3)

where the W operator represents the continuous wavelet transform
when it has one argument. The capital letter S and lowercase letter s
represent the smoothing operator and the wavelet scale, respectively.
R2 is the correlation coefficient, which ranges from 0 to 1. The value
of 1 means a high correlation between two time series, while the
value of 0 means a low correlation between them.

FIGURE 3
The variation of precipitation and groundwater withdrawal from 2003 to 2020.

FIGURE 4
Partial autocorrelation coefficient of groundwater level time series in the DGwell, KG well, and JF well (Blue solid line is the 95% confidence bound).
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3.3 Long short-term memory neural
network

Data-driven artificial neural networks can simulate the data
processing process of the human brain. Both recurrent neural
networks and long short-term memory are typical artificial neural
networks, which are widely used to analyze the non-linear
characteristics between input and output variables. The long short-
term memory proposed by Hochreiter and Schmidhuber (1997) is the
special structure of a recurrent neural network (RNN). Similar to the
typical structure of a recurrent neural network, the LSTM network is
also composed of three layers: the input layer, the hidden layer, and the
output layer. The obvious difference between recurrent neural networks
and long short-termmemory networks is the algorithm structure of the
hidden layer (Rodrigues et al., 2018; Zhang et al., 2022; Zhang et al.,
2022; Sun et al., 2022). In recurrent neural networks, the unrolled loop
cell is the medium of information transformation, which stores the
historical information of time series and allows the historical
information to conduct predicting (Wunsch et al., 2021). However,
the major drawback of a recurrent neural network is that the unrolled

loop cell cannot identify how much historical information should be
used to predict the time series. Meanwhile, it also causes vanishing
gradients and gradient explosion during the back-propagation. The
efficient structure of the hidden layer in the LSTM network, comprising
three gates, namely, input gates, output gates, and forget gates, can solve
the drawback of the RNN (Zhang et al., 2018; Chen et al., 2021; Vu et al.,
2021; Mohammed et al., 2022). The gate structure of the hidden layer
controls which historical data in the time series is important to keep and
protects the valuable information passed down in the process of
information transfer. The distinct structure of the hidden layer can
efficiently solve the problem of gradient explosion and gradient
disappearance in the training stage (Rodrigues et al., 2018; Yu and
Ma, 2021).

Detailed information on the forget gate, input gate, and output
gate is introduced as follows:

1) The forget gate can read the stored information in the previous
hidden state ht−1 and the current input varies xt. The sigmoid
function in the forget gate is used to determine which
information is stored or ignored from the previous cell

FIGURE 5
Wavelet coherences WTC (1979–2015) between groundwater level and precipitation in (A) the DG well, (B) the JF well, and (C) the KG well.
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(Kratzert et al., 2018; Hakim et al., 2022; Mohammed et al.,
2022). The forget gate is defined by the following equation:

ft � σ Wf × ht−1, xt[ ] + bf( ) (4)

Where σ is the sigmoid function which outputs a number ranging
from 0 to 1. The value of 0 means that the historical information is
ignored, while the value of 1 means that the historical information is
valuable for prediction and should be kept. Wf is the network matric
of the forget gate, and bf is a bias vector.

2) The input gate identifies what information is to be retained and
updated in the cell state, which consists of two layers: the tanh
layer and the sigmoid layer. These two layers process the data
simultaneously. The tanh layer calculates the update vector based
on the last hidden state, and the sigmoid layer determines which

historical information can be retained to update the cell state in
the current time step. The abovementioned process is defined by
the following equation:

~C � tanh WC · ht−1, xt[ ] + bC( ) (5)
it � σ Wi · ht−1, xt[ ] + bi( ) (6)

Ct � ft*Ct−1 + it*~C (7)
Where Ct is the cell state, ~C represents the update vector, and

tanh is the hyperbolic tangent.W and b represent the weight matric
and bias vector, respectively. The subscripts C and i define the tanh
layer and input gate, respectively.

3) The output gate determines which historical information can be
passed on to the new hidden layer. It is defined by the following
equation:

Ot � σ Wo × ht−1, xt[ ] + bo( ) (8)
ht � ot*tanh Ct( ) (9)

Where Wo is the weight matric and bo is the bias vector.

4 Model development

To improve the accuracy of model prediction, three data-driven
models were constructed by machine learning methods: the LSTM
model, the PACF-LSTM model, and the PACF-WC-LSTM model.
In this section, we introduce how to split the dataset into different

FIGURE 6
(A) A schematic flowchart for the LSTMmodel, PACF-LSTMmodel, and PACF-WC-LSTMmodel. (B) A schematic flowchart for an LSTMmodel Q14
modified from Yan et al. (2021).

TABLE 1 The input and output variables of different models.

Model name Input variables Output variable

LSTM Groundwater withdrawal Groundwater level

PACF-LSTM Historical groundwater level Groundwater level

Groundwater withdrawal

PACF-WC-LSTM Precipitation Groundwater level

Historical groundwater level

Groundwater withdrawal
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stages, how to normalize the dataset, and how to identify the input
variables of each model. In the present study, all the modified LSTM
models were programmed by MATLAB.

4.1 Splitting the dataset into different
subsets

The splitting of the dataset is an important step to train the machine
learning model. If the training subset takes up a small proportion, the
machine learning model may not analyze and identify the mathematic
characteristics of the time series, leading to a reduced accuracy of
prediction. If the training and validation subsets take up a large
proportion, the model may overfit and lead to data not being
accurately predicted. However, there is no fixed ratio between the
training dataset, validation dataset, and test dataset (Rodrigues et al.,
2018; Wunsch et al., 2021; Zhang et al., 2022). In general, the training
dataset should comprise more than 50% of the whole dataset. In this
study, the hydrologicalmonitored dataset was split into three subsets: the
training subset, the validation subset, and the prediction subset. The
proportion of these subsets was 5:3:2. To accurately build the relationship

between the input variables and the target variable, the training and
validation process is aimed at optimizing the model parameters.

4.2 Data normalization and error metric

Due to the diversity of monitoring data, the min–max
normalization approach was used to normalize all input variables
into the range of [0,1], which can improve the learning and training
efficiency, and eliminate external influences, especially the
dimensional influence. The min–max normalization approach is
defined by the following equation:

xnorm � x − x min

x max − x min
(10)

Where xnorm is the normalized value and x, xmax, and xmin are the
monitored value, the maximummonitored value, and the minimum
monitored value, respectively. After training, the model output
results can be retransformed through the contrary process of Eq. 10.

Four error metrics were selected to evaluate the accuracy and
predictive efficiency of the machine learning model, as follows:

FIGURE 7
The training, validation, and prediction results of groundwater at (A) the DG well, (B) the JF well, and (C) the KG well by the LSTM method.
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The coefficient of determination:

R2 � 1 − ∑N
i�1 yi − y*

i( )2
∑N

i�1y
2
i − ∑N

i�1y
*
i 2

N

(11)

The root mean square error (RMSE):

RMSE �
������������∑N

i�1 yi − y*
i( )2

N

√
(12)

The mean absolute percentage error (MAPE):

MAPE � 1
N
∑N
i�1

yi − y*
i

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣*100% (13)

The Nash-Sutcliffe efficiency (NSE):

NSE � 1 − ∑N
i�1 yi − y*

i( )2∑N
i�1 yi− yi( )2 (14)

Where yi is the observed value, y*
i is the simulated value, yi is the

mean of observed values, and N is the number of observations. R2 is
the typical error metric between the monitored values and simulated
values (An et al., 2020; Zhang et al., 2022). IfR2 is close to 1, it indicates
that the model predictability is accurate. RMSE is defined as the
deviation between the monitored values and the model-simulated
values (Nourani andMousavi, 2016; Xiao et al., 2018). The smaller the

value of RMSE, the better the model accuracy is. MAPE is used to
evaluatemodel performance and accuracy as a percentage. If the value
of MAPE is <10%, the accuracy of themodel is considered excellent. If
the value of MAPE is >50%, the model performance and prediction
result are inaccurate. NSE is the traditional efficiency indicator for
hydrologic models, which is used to evaluate the model accuracy in
the training and test stage (Hussein et al., 2013; Barzegar et al., 2017;
Hakim et al., 2022). The value of NSE close to 1 means that the model
predictability is satisfactory. In general, when the RMSE and MAPE
are close to 0, andNSE and R2 are close to 1, themodel is regarded as a
good fit between simulated and observed values.

4.3 Input variable selection

The appropriate input variables provide the basic hydrological
information for constructing the hydrological models. Due to the
complexity of hydrogeological conditions, there are no guidelines on
how to select the input variables for the construction of a hydrological
model. The regional groundwater regime is affected by meteorological
factors and human activities. In the present study, partial autocorrelation
function and continuous wavelet coherence were introduced to identify
the influencing factors on the variation of groundwater level and help us
select the input variables of the hydrological model. The determination
of input variables in each model is introduced in detail in Section 5.3.

FIGURE 8
The training, validation, and prediction results of groundwater at (A) the DG well, (B) the JF well, and (C) the KG well by the PACF-LSTM method.
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5 Results and discussion

5.1 The mathematical characteristic of
groundwater level time series

The autocorrelation analysis was the efficiency tool used for
analyzing the correlation relationship between the hydrological data
(d) and the historical time series [d (t-1), d (t-2), . . .d (t-p)] with p being
the lag time. In order to determine whether the historical monitored
data of groundwater level data could be considered as an input variable,

the autocorrelation analysis was conducted based on the monthly
monitored data of groundwater level during the interval of
2003–2020. The partial autocorrelation coefficient of monthly data is
shown inFigure 4. The result indicates that the 0th-order partial
autocorrelation coefficients are constant at 1. In addition, it is easily
found that the autocorrelation coefficients fluctuate around the 0-axis
with the increase of lag time, which indicates that the time series of
groundwater level in three monitoring wells show the stationary signal.

For the DG well, the PACF result showed a significant
correlation with up to 3 months of lag time for groundwater

FIGURE 9
The training, validation, and prediction results of groundwater at (A) the DGwell, (B) the JF well, and (C) the KGwell by the PACF-WC-LSTMmethod.

TABLE 2 The errors of three models in the validation and prediction stage in the DG well, the JF well, and the KG well.

Model DG well JF well KG well

R2 MAPE (%) RMSE NSE R2 MAPE (%) RMSE NSE R2 MAPE (%) RMSE NSE

LSTM Validation 0.93 0.0978 0.2080 0.92 0.92 0.7142 0.1815 0.92 0.92 0.4192 0.2605 0.91

Prediction 0.89 0.0923 0.2176 0.87 0.91 1.0312 0.2261 0.91 0.91 0.4930 0.3459 0.89

PACF-LSTM Validation 0.94 0.0788 0.1846 0.94 0.93 0.6519 0.1652 0.93 0.93 0.3792 0.2510 0.92

Prediction 0.92 0.0809 0.1792 0.91 0.92 0.9234 0.2175 0.91 0.92 0.4063 0.3166 0.91

PACF- WC-LSTM Validation 0.96 0.0569 0.1502 0.96 0.95 0.5278 0.1392 0.95 0.97 0.1993 0.1543 0.97

Prediction 0.95 0.0622 0.1406 0.94 0.92 0.8253 0.2084 0.92 0.96 0.3350 0.2160 0.96
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levels. Hence, the lag time, p, is equivalent to 3 months for
groundwater level at the DG well. Similarly, the lag time, p, is
also equivalent to 3 months for the groundwater level of the KG well
and JF well. The PACF results of three wells indicate that a strong
correlation relationship exists between the groundwater level data
and the historical monitored data. Thus, the historical dataset of
groundwater can be considered as the input variable to predict the
target variable.

5.2 The external influencing factors on the
variation of groundwater level

The wavelet coherence was used to analyze and examine the
relationship between the change in groundwater level and the
variation of precipitation, which is an efficient time series analysis
tool. The coherence relationship between groundwater level and
precipitation in three wells is shown in Figure 5. The thick black
contour indicates the 95% confidence level. The black arrows indicate
the relative phase relationship. The in-phase points to the right, while
the anti-phase points to the left. The phase-lagging by 90° points
straight up while the phase-leading by 90° points straight down.

For the DG well, the groundwater level and precipitation were
highly coherent at a >95% point-wise confidence level within the
band between 256 days and 512 days (about 1 year) during the
interval of 2003–2015 and 2016–2017. Similarly, in the KG well and
JF well, high coherence was evident for precipitation and
groundwater levels within the band between 256 days and
512 days (about 1 year) throughout the whole monitoring period.
In addition, the results of wavelet analysis also indicated that the
variation of groundwater level in the three monitoring wells lagged
behind precipitation change. The mean phase angles between
groundwater level and precipitation were approximately 45°, 60°,
and 75° at the DG well, KG well, and JF well, respectively. The lag
time between groundwater level and precipitation was 45, 60, and
75 days, at the DG well, KG well, and JF well, respectively.

5.3 Comparisons of groundwater level
prediction performance between the LSTM,
PACF-LSTM, and PACF-WC- LSTM models

The result of partial autocorrelation analysis and wavelet
coherence analysis indicated that the historical monitored data of

TABLE 3 The change ratio of NSE value in the three models at different monitoring wells.

LSTM at DG well LSTM at JF well LSTM at KG well

Validation Prediction Validation Prediction Validation Prediction

PACF-LSTM Validation 2% — 1% — 1% —

Prediction — 5% — 0% — 2%

PACF-WC-LSTM Validation 4% — 3% — 7% —

Prediction — 8% — 1% — 8%

TABLE 4 The change ratio of RMSE value in the three models at different monitoring wells.

LSTM at DG well LSTM at JF well LSTM at KG well

Validation Prediction Validation Prediction Validation Prediction

PACF-LSTM Validation 11% — 9% — 4% —

Prediction — 18% — 4% — 8%

PACF-WC-LSTM Validation 28% — 23% — 41% —

Prediction — 35% — 8% — 38%

TABLE 5 The change ratio of MAPE value in the three models at different monitoring wells.

LSTM at DG well LSTM at JF well LSTM at KG well

Validation Prediction Validation Prediction Validation Prediction

PACF-LSTM Validation 19% — 9% — 10% —

Prediction — 12% — 10% — 18%

PACF-WC-LSTM Validation 42% — 26% — 52% —

Prediction — 33% — 20% — 32%
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FIGURE 10
Scatter plot of the monitored value vs. the simulated value calculated by the LSTM method in the validation stage and prediction stage. (A1–C1)
represent the validation stage of the LSTM model at (a) the DG well, (b) the JF well, and (c) the KG well, respectively. (A2–C2) represent the prediction
stage of the LSTM model at (a) the DG well, (b) the JF well, and (c) the KG well, respectively. The blue and red dashed lines represent the trend lines of
validation and prediction, respectively. Gray dotted lines represent a 1:1 line.

FIGURE 11
Scatter plot of the monitored value vs. the simulated value calculated by the PACF-LSTM method in the validation stage and prediction stage.
(A1–C1) represent the validation stage of the PACF-LSTMmodel at (a) the DGwell, (b) the JF well, and (c) the KGwell, respectively. (A2–C2) represent the
prediction stage of the PACF-LSTMmodel at (a) the DG well, (b) the JF well, and (c) the KG well, respectively. The blue and red dashed lines represent the
trend lines of validation and prediction, respectively. Gray dotted lines represent a 1:1 line.
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groundwater level and the monitored data of precipitation could be
considered as the input variables to construct a model for predicting
the variation of groundwater level. The LSTM model was set up by
the dataset of groundwater withdrawal. For the PACF-LSTMmodel,
the historical monitored data of groundwater level were considered
as the second input variables to construct the model. The input
variables for training the PACF-WC-LSTM model included
groundwater withdrawal, historical groundwater level, and
precipitation. The input and output variables of the LSTM
model, PACF-LSTM model, and PACF-WC-LSTM model are
summarized in Figure 6A and Table 1. Based on the
abovementioned splitting strategy described in Section 4.1, the
percentage of training subset, validation subset, and prediction
subset were 50%, 30%, and 20%, respectively. The training stage
was from January 2003 to August 2011. The validation stage was
from September 2011 to December 2016. The prediction stage was
from January 2017 to June 2020.

The validation and prediction results of the DGwell, JF well, and
KG well calculated by the LSTM model, PACF-LSTM model, and
PACF-WC-LSTM model are shown in Figures 7–9, respectively.
Their performance indexes are summarized in Table 2. Although the
variation of groundwater level under the effect of groundwater
exploitation could be fitted by the three different models,
different error indicators indicated that the performance of the
three models was different.

NSE is the traditional efficiency indicator for evaluating the
accuracy of hydrological models. For each monitoring well, the NSE
value varied with different models. In the DG well, the NSE values of
the validation and prediction stage in the LSTM model were
0.92 and 0.87, respectively, which were the smaller values in all

three models. The smaller the NSE value is, the poorer the
performance of the hydrological model. In comparison with the
LSTMmodel, the PACF-LSTMmodel and PACF-WC-LSTMmodel
increased the NSE values of the validation stage by 2% (from 0.92 to
0.94) and 4% (from 0.92 to 0.96), respectively (Table 3). For the
prediction stage, the NSE values in the PACF-LSTM model and
PACF-WC-LSTM model increased by 5% (from 0.87 to 0.91) and
8% (from 0.87 to 0.94), respectively. In addition, for the JF well, the
change ratio of the NSE value was 1% and 3%, respectively, in the
validation stage, and 0% and 1%, respectively, in the prediction
stage. For the KG well, the change ratio of the NSE value was 1% and
7%, respectively, in the validation stage, and 2% and 8%,
respectively, in the prediction stage. The results indicated that the
quality of validation and prediction of the PACF-LSTM model and
the PACF-WC-LSTM model were better than the LSTM model.
Based on the error metric of NSE, the quality of the validation and
prediction based on the PACF-WC-LSTM was the best in the three
monitoring wells.

RMSE is used to calculate the difference between the monitored
value and the stimulated value. The smaller value of RMSE indicates
that the model performance is perfect. Take the DG well as an
example. For the LSTM model of the DG well, the RMSE values of
the validation and prediction stages were 0.2080 and 0.2176,
respectively. Compared with the LSTM model, the RMSE values
of the PACF-LSTM and PACF-WC-LSTM models in the validation
stage reduced by 11% (from 0.2080 to 0.1846) and 28% (from
0.2080 to 0.1502), respectively, and the values of the prediction
stage reduced by 18% (from 0.2176 to 0.1792) and 35% (from
0.2176 to 0.1406), respectively (Table 4). For the validation stage
in the other monitoring wells, the change ratio of RMSE value in the

FIGURE 12
Scatter plot of the monitored value vs. the simulated value calculated by the PACF-WC-LSTM method in the validation stage and prediction stage.
(A1–C1) represent the validation stage of the PACF-WC-LSTMmodel at (a) the DGwell, (b) the JFwell, and (c) the KGwell, respectively. (A2–C2) represent
the prediction stage of the PACF-WC-LSTM model at (a) the DG well, (b) the JF well, and (c) the KG well, respectively. The blue and red dashed lines
represent the trend lines of validation and prediction, respectively. Gray dotted lines represent a 1:1 line.
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PACF-LSTM model was 9% and 4%, respectively, and the change
ratio was 23% and 41%, respectively, in the PACF-WC-LSTM
model. For the prediction stage in the other monitoring wells,
the change ratio of RMSE value in the PACF-LSTM model was
4% and 8%, respectively, and it was 8% and 38%, respectively, in the
PACF-WC-LSTM model. The change ratio of RMSE value also
indicated that the prediction performance of PACF-WC-LSTM was
the best in the three data-driven models.

The MAPE value was introduced to evaluate the difference
between the model prediction result and the monitored value as
a percentage. For the DG well, the MAPE values in the validation
stage and prediction stage of the LSTM model were 0.0978 and
0.0923, respectively. Those values in the PACF-LSTM model were
reduced by 19% (from 0.0978 to 0.0788) and 12% (from 0.0923 to
0.0809), respectively. In the PACF-WC-LSTM model, those values
were reduced by 42% (from 0.0978 to 0.0569) and 33% (from
0.0923 to 0.0622), respectively (Table 5). For the JF well, the
change ratio of MAPE value in the validation stage was 9% for
the PACF-LSTM model and 26% for the PACF-WC-LSTM model.
Those values of the prediction stage were 10% and 20% for the
PACF-LSTM model and PACF-WC-LSTM model, respectively. For
the KG well, the change ratio of MAPE value in the PACF-LSTM
model was 10% for the validation stage and 18% for the prediction
stage. In the PACF-WC-LSTM model, those values were 52% and
32% in the validation stage and prediction stage, respectively.

In order to analyze the prediction results by three models, the
scatter plot of stimulated value and monitored value in the validation
and prediction stage are displayed in Figures 10–12, respectively. The
X-axis and Y-axis represent the monitored value and simulated value,
respectively. If the model has perfect performance, the prediction
results should be distributed over X = Y or evenly distributed on both
sides of the line. The closer the distribution of scatter to the 1:1 line,
the smaller the model error. R2 was introduced to evaluate the
performance of different models. The results indicated that the
performance of the PACF-WC-LSTM model was the best.

Based on the abovementioned analysis, the quantitative
evaluation metric for the three models indicates that the
prediction performance of the PACF-WC-LSTM model is
superior to those of the LSTM model and PACF-LSTM model.

6 Conclusion

For improving the accuracy of simulation and prediction of non-
linear and non-stationary groundwater level change under the
influence of groundwater exploitation in a coastal aquifer, we
proposed a novel data-driven method called PACF-WC-LSTM,
based on the combination of time series analysis and machine
learning method. The prediction performance of PACF-WC-LSTM
was compared with the LSTMmodel and the PACF-LSTMmodel by
the error metric of R2, RMSE, NSE, and MAPE. These three models
were applied to predict the change in groundwater level in three
monitoring wells that were connected with different aquifer types.
This study draws the following conclusions:

1) The partial autocorrelation function results indicate that a strong
correlation relationship exists between the groundwater level data
and the historical monitored data of groundwater level at three

monitoring wells. The lag time is approximately 3 months for the
groundwater level at the DG well, JF well, and KG well. The
historical monitored data of groundwater level can be considered
as the input variables for constructing the prediction model.

2) The continuous wavelet coherence results indicate that the
groundwater level at three monitoring wells and precipitation are
highly coherent within the band of about 1 year during the whole
monitoring period. The dataset of precipitation can be considered as
the input variables to construct a hydrological model.

3) Based on the results of the partial autocorrelation function and
continuous wavelet coherence, three data-driven models,
namely, the LSTM model, PACF-LSTM model, and PACF-
WC-LSTM model, were constructed, and four error metrics,
namely, R2, RMSE, NSE, and MAPE, were introduced to evaluate
the model performance. The results indicate that the PACF-WC-
LSTM model yields a better prediction performance than the
LSTM model and the PACF-LSTM model, and can be used to
predict the variation of groundwater level under the influence of
groundwater exploitation in the coastal aquifer.
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