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Microplastics (MPs), an emerging pollutant, have drawn attention on a global scale
and have been found in various ecosystems. Nevertheless, there is currently a lack
of information regarding the contamination levels of MPs in aquaculture ponds
worldwide. In this study, sediment and water samples were collected from five
types of fish ponds, namely, homestead ponds (S1), commercial aquaculture
ponds (S2), ponds near a residential area (S3), ponds near a small-scale
industrial area (S4), and ponds near a large-scale industrial area (S5), to identify,
characterize, and assess the contamination risk of MPs. Stereomicroscopic and
Fourier-transform infrared (FTIR) spectroscopy analyses revealed that the MPs
ranged from 3.33 item/kg to 136.67 item/kg in sediment and 16.6 item/L to
100 item/L in water samples. Overall, the abundance of MPs was extremely
high in S5, followed by S4, S2, S3, and S1, which clearly showed the levels
increased with the intensity of human activities. The levels of MPs in both
sediment and water showed significant differences (p < 0.05) within and
between ponds, as well as in comparison between water and sediment
samples. The concentrations of MPs surpassed those noted in aquaculture
ponds of different nations. The majority of MPs consisted of fragments and
films in both sediment and water samples. Furthermore, transparent and
white-colored MPs were the prevailing types found in the sediment and water
samples of the aquaculture ponds. Around 34% of MPs present in sediment and
30% in water fell within the size range of 0.5–1 mm. Polymers like polypropylene
(PP), polyethylene (PE), and polyethylene terephthalate (PET) were prevalent in
both sediment and water samples. The contamination factor reached
exceptionally elevated levels (>30 for sediment and >3 for water), signifying
that the sampled regions, particularly S4 and S5 (industrial sites), displayed
significant MP contamination. Moreover, the pollution load index values of the
sediment (3.0 ± 1.5) and water samples (1.5 ± 0.3) also indicated the areas were
contaminated with MPs. Multivariate analysis indicated that the elevated
concentration of MPs in the studied region could be attributed to the
discharge of effluents and other human-induced activities.
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1 Introduction

Plastics have enhanced the quality of life for millions of people
throughout the world. Approximately 390.7 million tons of plastic
products were generated globally in 2021, of which 4.8 and
12.7 million tons were discharged into aquatic environments
each year (PEMRG, 2022). Due to the effects of wave-induced
mechanical abrasion, photochemical oxidation, and biological
processes, larger plastic items undergo fragmentation into smaller
microscopic fragments (<5 mm in size), commonly denoted as
“microplastics” (MPs) (Cole et al., 2011; Rilling, 2012; Corcoran
et al., 2015; Banik et al., 2022). The buoyant nature, durability,
widespread presence, resistance to weather, and chemicals are
attributes that cause plastics to float at the water surface within
aquatic ecosystems, where they tend to persist for extended periods
(Geyer et al., 2017). MPs can be divided into two categories. Virgin
pellets of pharmaceutical, cosmetic, or personal care items (glitters
and microbeads) and cleaning products in the plastics industry are
the primary types of MPs (Hossain et al., 2023a). Through processes
of degradation or fragmentation, secondary MPs are created from
bigger plastic debris (Barnes et al., 2009; Andrady, 2011). AsMPs are
hardly removed from polluted environments, launching a proper
and an efficient waste management system to diminish the risk of
MP pollution on aquatic ecosystems and human food web
(Anderson et al., 2016; Estahbanati and Fahrenfeld, 2016; Banik
et al., 2022) is necessary.

MPs are frequently recorded from three major ecosystems,
i.e., marine, freshwater, and terrestrial ecosystems (Horton A. A.
et al., 2017; Di andWang, 2018; Karthik et al., 2018; Tang et al., 2018;
Zhang and Liu, 2018; Zhu et al., 2018; Hossain et al., 2023b).
However, it is approximated that the research addressing MP
pollution in freshwater ecosystems is only a fraction constituting
less than 4% of the attention given to marine environments (Klein
et al., 2018; Lambert and Wagner, 2018). Roughly, 80% of MPs
originate from terrestrial origins and find their way into freshwater
habitats through activities such as laundering synthetic fabrics,
usage of personal care items, tourism, urban development, and
industrial operations (Browne et al., 2010; Browne et al., 2011).
Agricultural runoffs, storm water or surface runoff, hand washing of
fleece and shirts, and careless handling of covered landfills and
plastic wastes can cause plastic waste to enter freshwater bodies
(Mohapatra et al., 2016; Andrady, 2017; Ng et al., 2018; Atugoda
et al., 2020). Wastewater treatment discharge, agricultural runoff,
and sewage with sludge are three potential pathways ofMPs entering
into freshwater ecosystems (Eriksen et al., 2013). The infrastructure
of a wastewater treatment plant (WWTP) is not designed to remove
MPs fully from the discharge effluents, and these are discharged into
aquatic systems directly or indirectly (Gatidou et al., 2019).
Although the direct adverse impacts of microplastics on animals,
fish, or humans remain unconfirmed, the extensive surface area and
pronounced hydrophobic characteristics of MPs make them
effective carriers of certain toxic elements including heavy metals,
POPs (Van Cauwenberghe and Janssen, 2014; Ma et al., 2019;
Hossain et al., 2023b). It is evident that these harmful substances

are dangerous to aquatic life and humans in both the short and long
term (Suja et al., 2009; Pramanik et al., 2015).

Aquaculture is one of the fastest growing industries in the world
including Bangladesh. Bangladesh has gained fifth position in world
aquaculture production and contributes 3.50% to the national GDP
(Department of Fisheries, 2020). Almost every house in the
suburban and village areas has a pond for fish culture, and the
total area of ponds in Bangladesh is 397,775 ha, which contributes to
45.04% of whole fish production across the country (Department of
Fisheries, 2020). The primary water sources used for culturing fish in
ponds encompass rivers, streams, haors, baors, canals, and both
small and large canals. These water bodies have been noted to
transport plastic waste andMPs from diverse sources. Consequently,
MPs show potential to amass within the water and sediment of
aquaculture ponds, subsequently becoming incorporated into the
bodies of fish. Thus, there is an imperative need to investigate the
occurrence of MPs and to grasp their potential ramifications on
freshwater aquaculture ponds, along with the associated health risks
they might pose to both humans and the organisms residing within
these environments. Limited research exists regarding MP
contamination in aquaculture ponds worldwide (Bordós et al.,
2019; Wang et al., 2020), and there has been no investigation
conducted on MP occurrence, specifically in Bangladesh. In the
context of Bangladesh, a country heavily reliant on aquaculture for
sustenance and economic prosperity, the investigation of MPs in
aquaculture ponds stands as a novel endeavor of paramount
significance. Addressing this knowledge gap not only contributes
to the broader understanding of MPs’ ecological impact but also
sheds light on potential implications for food security and human
health. Therefore, this pioneering study aims to identify,
characterize, and assess the contamination risk of MPs in the
sediments and water from five different types of ponds
(homestead pond, commercial aquaculture, residential, and small-
and large-scale industrial area ponds) from Noakhali coast,
Bangladesh. The findings will offer a foundation for informed
management strategies and future research directions tailored to
this unique aquatic context.

2 Materials and methods

2.1 Study site

The study region Noakhali, located in the southeastern region of
Bangladesh, is one of the coastal districts. It is bordered by the
expansive estuarine systems of the Meghna estuary and the Bay of
Bengal to its southern side. The geographical characteristics of this
district comprise a vast, flat, coastal, and fertile deltaic terrain,
forming the tidal floodplain of the Meghna River delta
(Figure 1). The coastline rests approximately 9 m above the
average sea level and is enveloped by alluvial plain on three
sides, which receives annual inundation and nourishment from
sediment deposits originating from the Meghna estuary. The
typical annual temperature stands at 25.6°C, with an average
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annual rainfall of 2,980 mm. The strong currents flowing from the
Himalayas bring not only river erosion but also a valuable load of
fertile sediment. Upon reaching the Bay of Bengal, these sediments
settle along the coastline, forming new land formations, locally
known as “Char.” The climate of Noakhali is classified as tropical
according to the Köppen–Geiger classification system due to its
short dry season and frequent substantial rainfall. These climatic
and geographical attributes have rendered the Noakhali region
favorable for fish farming. Noakhali stands out as a prominent
coastal district in Bangladesh due to its numerous homesteads and
culture-based ponds, spanning an area of 1,068 ha and yielding a fish
production of 1,438 metric tons (FRSS, 2018; Sarker et al., 2020).
Furthermore, an industrial zone was established in 2006 under the
Bangladesh Small and Cottage Industries Corporation (BSCIC) in
Sadar Upazila, Noakhali. This industrial area generates significant
quantities of chemical and plastic wastes. These waste materials are
disposed directly or indirectly into nearby freshwater reservoirs,
primarily ponds.

2.2 Sample collections

A total of 30 (15 sediment and 15 water) samples were collected
from five different types of ponds (S1 to S5) in the post monsoon season
from October to December in 2020 (Figure 1), each having triplicates.
These five different kinds of ponds received surface runoff from
catchments with various land uses, household garbage, and road

dust. From these, one served as homestead ponds (S1), one was
used for commercial culture purposes (S2), one served as residential
areas (S3), and two served as both small- and large-scale industrial areas
(S4 and S5). Every pond was around 10–15 years old and has a
minimum amount of water (around 1m depth) all year round.
Different kinds of plastic goods such as bucket, jug, plate, plastic
pouches, refrigerator wraps, dishwashers, dishes, glasses, electronics
and electrical equipment, irons, and tea or coffee makers may be the
potential sources of MPs in both homestead and residential areas.
Plastic coatings used in several aqua-industries (e.g., fertilizer, feed,
aqua-drugs, transportation, and other chemicals) can also be
contributed in the production of MPs. According to Wang J. et al.
(2017), MP concentration can be reduced with the distance from urban
areas. However, the land-use type can be influenced by the MP
concentration, but it is difficult to narrate (Xu et al., 2021). There
are a wide range of land-use classification, which may be the potential
MP sources (e.g., a textile factory, paint industries, and other cosmetics
industries), and this condition can be integrated and overlapped (Liu
et al., 2008).

Sediment samples (top 10 cm) at 1 m water depth were collected
using a Van Veen bottom grab sampler (10 × 10 cm) and were taken
into an aluminum bag (Liu et al., 2019a). Sediment accumulation of
each pond is assumed to be 5–7 years. The water samples were
collected by filtering 60 L of surface water at a water depth of at least
0.5 m through a 330-µm mesh-sized manta net with cod-end. All
water samples were performed in glass storage bottles with teflon-
coated (polytetrafluoroethylene, PTFE) screw caps, and 5 mL of

FIGURE 1
Sampling locations of different types of ponds.
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formalin was added to preserve each sample (Lusher et al., 2015;
Zhang et al., 2017; Olesen et al., 2019).

2.3 Isolation procedure of MPs

With certain adjustments, the MP isolation procedure in this
investigation was carried out in accordance with the approaches
described by Banik et al. (2022) and Hossain et al. (2021). The
water samples were subjected to drying in a hot air oven at a
temperature of 90°C until complete dryness, along with 400 g of wet
sediment samples from the bed. For 1 h, 400 mL of potassium
metaphosphate (KO3P, Loba Chemie, India) was used to
disaggregate all sediment samples (Masura et al., 2015). The dried
sediment samples were then subjected to primary density separation
using a salt solution of ZnCl2 (1.8 g cm-3) (Coppock et al., 2017). To
remove nativeMPs from the samples, they were filtered using a cellulose
nitrate filter paper of 5.0 µm before being added to all solutions, such as
ZnCl2, FeSO4, andNaCl (LobaChemie, India). By adding 20 mL of 30%
H2O2 (Scharlab, Spain) and FeSO4 (0.05M) solution, all the organic
matter in the samples was eliminated. After that, the samples were
moved to a secondary density separator and maintained overnight
(Coppock et al., 2017). A cellulose nitrate filter paper (5.0 µm)
(Minipore, India) with a 47-mm diameter was used to filter the
supernatant from the separator (Bonello et al., 2018).

2.4 Morphological analysis and polymer
identification of MPs

TheMPs were identified and quantified from the filter paper using a
stereomicroscope (Leica EZ4E, Germany) with ×8–×35 magnification.
In order to count theMPs for these, the filter paper was divided into four
sections, each of which pointed clearly toward the top (Lots et al., 2017).
Using ImageJ software (version 2.0.0) and a high-resolution camera (DP
software) mounted to the microscope, measurements of MPs were
carried out (Hossain et al., 2021). A hot needle test was also
performed for any suspicious plastic particles (Banik et al., 2022).
The categorization of MP particles in terms of their types, shapes,
colors, and sizes adhered to the existing literature guidelines (Hidalgo-
Ruz et al., 2012; Frias and Nash, 2019; Hossain et al., 2021).
Subsequently, larger-sized MP particles were separated from the filter
papers to identify their chemical composition (polymer type). The
specific details of the Fourier-transform infrared (FTIR) analysis can
be found in Banik et al. (2022).

2.5 Control of contamination

To ensure control over contamination, rigorous precautions
were taken during the entire experiment. Handling the H2O2-
mixed solution necessitated special care due to its toxicity. Thus,
the entire procedure was conducted within a fume hood. Measures
were also implemented to prevent cross-contamination, especially
with synthetic fibers from clothing and airborne pollutants.
Thorough cleaning procedures, involving distilled water, followed
by 70% alcohol, were consistently applied to the tools and work
surfaces. For analyzing blank samples, the entire protocol from

Banik et al. (2022) was followed. The MP size range investigated in
this study spanned from 0.3 mm to 5 mm as the samples were sieved
through a mesh with a 0.3-mm aperture (Hossain et al., 2021).

2.6 Contamination factor and pollution load
index

The pollutant load index (PLI) and contamination factors (CFs) are
used to assess the level of pollution in natural ecosystems (Tomlinson
et al., 1980). The CF readings were divided into four groups, with CF <
1 denoting a low contamination level, 1–3 denoting a moderate
contamination level, 3–6 denoting significant levels of
contamination, and CF > 6 denoting extremely high contamination
levels (Mmolawa et al., 2011; Rakib et al., 2022). On the contrary, the
sampling area is contemplated to be polluted when PLI >1 (Tomlinson
et al., 1980). However, the assessment model was defined as follows
(Ranjani et al., 2021):

CF � Ci

C0
, (1)

PLI � CF1 × CF2 × CF3 × . . . ..CFn( )1/n, (2)
where Ci

C0
is the quotient of the recorded MP concentration vs. the

background value. Due to the unavailability of the background
value, the lowest MP concentration of this study (3.33 items/kg
in sediment and 16.67 items/L in water) was used instead of the
background value (Li et al., 2020).

2.7 Statistical analysis

All mathematical calculations were performed in Microsoft Excel
2016 and PAST (Paleontological Statistics; Version 4.03).Moreover, SPSS
23was used to conduct Kolmogorov–Smirnov and Shapiro–Wilk tests to
test for normality of data distribution. In addition, Levene’s test was
employed using SPSS 23 to identify the homogeneity of the variance of
datasets with a significant level of 0.05. PAST software was employed to
conduct one-way analysis of variance (ANOVA) and multivariate
analysis, i.e., principal component analysis (PCA), which was used for
determining the interconnection among the variables and their provable
sources. Other univariate and multivariate analyses, such as Pearson
correlation and cluster analysis, were conducted using Origin Pro 2021.
Cluster analysis is used to reveal the frequency and variance of key
determinants of the dataset (Wang et al., 2014). Moreover, all graphical
components were extracted using Origin pro 2021 and GraphPad Prism
9. For the spatial distribution of MPs in sampling sites, QGIS
2.18 was used.

3 Results and discussion

3.1 Abundance and distribution of MPs in
selected ponds’ sediment and water

The presence of MPs in sediment and water samples across the five
ponds is illustrated in Figures 1, 2, respectively.Within the sediment, the
levels of MPs ranged from 3.33 items/kg to 137 items/kg, with the
highest concentration (102 ± 32 items/kg) recorded in S5. The mean
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sediment MP concentration exhibited a descending order as follows:
S5> S4> S2> S3> S1. In contrast, the water sample exhibited a range of
MP concentration varying from 16.67 items/L to 100 items/L, with the
elevated concentration (61.11 ± 41.94 items/L) found in S5. The mean
concentration of MPs in water samples followed the descending order
of S5 > S4 > S2 > S3 > S1. Overall, the highest levels of MPs were sorted
from the ponds located near a large industrial area (S5) and the lowest
from the ponds near a small house (S1) (Figures 1, 2). The levels varied
based on the intensities of human activities and settlement. The result of
ANOVA showed that the concentration of the MPs in sediment and
water samples was significantly different (p < 0.05). The adopted
Kolmogorov–Smirnov and Shapiro–Wilk tests revealed that data
variables followed the normal distributed pattern. However, many
studies suggested different implications regarding uneven MP
distribution, possibly due to hydraulic characteristics, the amount of
municipal waste, and the surrounding environment (Islam and
Chowdhury, 2014; Auta et al., 2017; Horton A. A. et al., 2017).

Furthermore, inadequate and unplanned infrastructure can
contribute to the elevated prevalence of MPs in open
environment (Rakib et al., 2022). For instance, the absence of
effective treatment methods for such effluents has led to a surge
in municipal waste, escalating from 538 tons per day in 1999 to
1,890 tons per day in 2009 (Chowdhury et al., 2013).

There are only few reports available on MPs in pond ecosystems
from around the world to compare our data (Table 1). Olesen et al.
(2019) and Scopetani et al. (2019) documented a higher number of
MPs than this study in the sediment samples of ponds. In contrast,
Bordós et al. (2019) and Mercy et al. (2022) recorded a lower range
of MPs than the present outcomes in the sediment of freshwater
ponds. In addition, Olesen et al. (2019) recorded a higher
concentration of MPs in water than the present study in
stormwater retention ponds from Denmark and aquaculture
ponds from Jakarta Bay (Priscilla and Patria, 2020). On the other
hand, some studies documented a lower concentration of MPs than

TABLE 1 Concentration of microplastics and a comparison with other studies.

Water

Name Location Abundance (Item/L) Reference

Stormwater pond Denmark 270 Olesen et al. (2019)

Fish ponds in Carpathian basin Europe 13.79 Bordós et al. (2019)

Fish ponds in Changzhou China 13–27 Wang et al. (2020)

Urban wetlands of Dhaka Bangladesh 0–9 Mercy et al. (2022)

Noakhali ponds Bangladesh 16.6–100 This study

Sediment Location Abundance (Item/kg) Reference

Stormwater pond Denmark 333 Olesen et al. (2019)

Vesijärvi lake and Pikku Vesijärvi pond Finland 395.5 Scopetani et al. (2019)

Fish ponds in Carpathian basin Europe 0.46–1.62 Bordós et al. (2019)

Urban wetlands of Dhaka Bangladesh 0–16 Mercy et al. (2022)

Noakhali pond Bangladesh 3.33–136.67 This study

FIGURE 2
Microplastic abundance in water of five selective pond sediment samples (A) and in water (B).
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the current findings in fish ponds of the Carpathian basin and
Changzhou (Bordós et al., 2019; Wang et al., 2020). Nonetheless,
ponds typically collect rain-triggered surface runoff from the
surrounding regions. As a result, the sediments and water

samples within ponds function as reservoirs with a strong
capacity for retaining MPs (Liu et al., 2019b; Campanale et al.,
2022). Olesen et al. (2019) estimated the MP retention efficiency of
ponds was 85%, indicating the function of pond’s habitat as a sink of

FIGURE 3
Morphological characteristics of MPs; types of MPs in sediment (A) and water (B); shapes of MPs in sediment (C) and water (D); color of MPs in
sediment (E) and water (F); and size of MPs in sediment (G) and water (H). Here, S1–S5 denote the studied ponds, and Av. means the average values of all
ponds.
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MPs. Hence, MPs in the ponds needed more attention as these are
ingested by aquatic organisms (Xu et al., 2020; Wootton et al., 2021;
Zhang et al., 2021; Yagi et al., 2022). Regardless, further
investigations regarding MP pollution in the ponds are essential,
which certainly might be a source or path of MPs in the human body
and terrestrial environments in future.

3.2 Morphological characteristics of MPs in
sediment and water

In sediment, the fragments constituted the most prevalent form of
MPs, accounting for 45% of the total identified MPs with an average
concentration of 17.6 ± 22 items/kg at each sampling point. This was
followed by 37.5% films, 15.1% fibers, 1.5% microbeads, and 0.9%
foams (Figure 1; Figure 3A). The highest quantities of fragments
(55.6 ± 22 items/kg), microbeads (7.78 ± 5.1 items/kg), and foams
(4.4 ± 5.1 items/kg) were observed in the S5 sampling sites. However,
no microbeads or foams were detected in other sediment samples.
Conversely, MPs in pond water were predominantly composed of
50.2% films, with an average concentration of 17.8 ± 7.2 items/L at
each sampling point. This was followed by 24% fibers, 12% fragments,
9.8% foams, and 4% microbeads (Figure 1; Figure 3B). The highest
counts of fibers (16.7 items/L), fragments, and foams (11 ± 19 items/L)
were documented in the S5 site.

Themajority ofMPs in both sediment and water samples displayed
irregular shapes, contributing to 73.6% and 66.7% of the total MPs,
respectively (Figures 3C, D). However, the fragments discovered in the
pond sediment are likely to originate from plastic containers, bottles,
and other household items that have undergone degradation due to
environmental factors such as sunlight, wind, and water movement
(Baldwin et al., 2016; Cesa et al., 2017; Huang et al., 2017; Wang et al.,
2018). On the other hand, the prevalence of films and fibers in pond
water samples could be attributed to the breakdown of packaging
materials and the discharge of laundry effluents (De Falco et al., 2017).
Additionally, the diverse array of MP types and shapes found in the
pond near industrial area suggested a substantial impact of
industrialization processes on the presence of MPs in the
surrounding catchment areas (Hitchcock and Mitrovic, 2019). The
distribution of MP colors in both sediment and water samples of
different stations can be observed in Figures 3E, F. In the sediment of the
pond, colored MPs constituted the majority (74.8%), while transparent
MPs accounted for only 25.2%. The sequence of colors for MPs in
sediment followed a descending order of white > blue > green > red >
black > pink > orange > yellow > violet. A similar pattern was observed
in water, with colored MPs making up 72.7% of the total and the
remaining 27.3% being transparent. The color hierarchy for MPs in
water was as follows: white > blue > pink > red > black > green >
violet > orange. The diverse range of MP colors indicates their varying
sources of origin. Notably, certain colors like red and blue from films
and fibers might lose their original hues upon entering an aquatic
environment due to the prolonged exposure to sunlight (Martí et al.,
2020; Gela and Aragaw, 2022).

The size distribution of MPs measured in both sediment and
water samples from the studied area is shown in Figures 3G, H. The
majority of MPs were below 0.5 mm in both sediment (59%) and
water (58%). In the sediment, 34% of MPs fell within the size range
of 0.5–1 mm, and the remaining 7% of MPs were within the size

range of 1–5 mm. Similarly, 30% ofMPs in water were categorized in
the 0.5–1-mm size range, while 12% were in the 1–5-mm size range.
This phenomenon was possibly a result of larger plastic items
breaking down into smaller MP particles due to various forces
such as chemical, physical, and microbial activities (Su et al.,
2016; Wang J. et al., 2017). These findings align with many other
international studies conducted in locations such as Lake Hovsgol,
Mongolia (Free et al., 2014); the Laurentian Great Lakes,
United States (Eriksen et al., 2013); Wuhan urban lakes, China
(Wang W. et al., 2017); and the Three Gorges Reservoir, China (Di
and Wang, 2018), where smaller-sized MPs were predominantly
identified. However, further research concerning the types, colors,
and size ranges of MPs is needed to achieve a more conclusive
understanding of their quantities and fate within the ponds.

3.3 Polymer composition

A total of 21 MP samples were verified through FTIR analysis,
12 MPs from sediment samples, and 9MPs from water samples. The
polymer type of MPs varied between sediment and water samples. In
the sediment samples, MPs were dominated by polypropylene
(41.7%), followed by polyethylene (33.3%), polyethylene
terephthalate (16.7%), and cellulose (8.3%) (Supplementary
Figure S1). On the contrary, in the water samples, PE was the
most abundant polymer type with 44.4% of all MPs. The other
polymer types included PP (33.3%) and PET (22.2%). However, our
findings were in accordance with the previous studies where PE, PP,
and PET were identified from pond ecosystems (Liu et al., 2019a; Liu
et al., 2019b; Bordós et al., 2019; Olesen et al., 2019; Hu et al., 2020;
Campanale et al., 2022). Ponds perform an indispensable role in the
fate of these widely used polymers in consequence of the rain-
induced runoff transmissions from the surface (Wang et al., 2022).

3.4 Potential sources of MPs in ponds

Pearson correlation analysis was employed to examine the
relationships among the variables (Table 2; Figure 4A). Our
observations revealed a mix of both positive and negative strong
significant correlations among these variables. Notably, there were
several instances of positive strong significant correlations, including
fragment—films (r = 0.992), fragment—foams (r = 0.988),
fragment—microbeads (r = 0.988), films—foams (r = 0.968),
films—microbeads (r = 0.968), and the most notable, a strong
positive correlation between foam and microbeads (r = 1). No
negative correlations were found among the variables. These
relationships prompted efforts to discern the origin of the MPs.

For source identification, principal component analysis (PCA)
illuminates the relations among variables while considering the
sampling areas (Hossain et al., 2023a). Additionally, PCA is
commonly employed to qualitatively interpret the clustering
tendencies and characteristics of potential features within the sampled
materials. In our study, the application of PCA is particularly apt due to
the availability of varying proportions of different plastic particles, which
aids in obtaining a better comprehension (Rakib et al., 2022). Employing
PCA helps us delve deeper into the loading values corresponding to the
analyzed MPs as well. The resultant PCA outcomes, including
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eigenvalues and their corresponding loadings, are presented in both
Table 2 and Figure 4B. The results of the PCA produced two associated
factors, namely, PC 1 and PC 2, accounting for a cumulative variance of
99.09% Figure 4B. The primary component, PC 1, accounted for 78.06%
of the variance, while PC 2 contributed 29.03% of the variance. Notably,
substantial loadings were observed for fragment, foam, and microbeads,
each contributing around 25% individually to the makeup of PC 1.
Among them, fragments were the most dominant as the eigenvalue was
greater than 1. In other words, PC 1 was greatly influenced by fragment
particles. Thus, we can assume that particles like fragments, foam, and
microbeads were available in our study area. On the other hand,
significant loading was observed in PC 2 for fiber, representing 97%
loading score. In other words, the fiber particle was the dominant factor
in PC 2. Our PCA results denoted that the intrusion of MPs in the study
area was from various anthropogenic activities such as unconscious
fishing practices, household, industrial chemicals, wastage, urban
discharges, and unplanned drainage systems. To identify the similar
characteristics of MPs, it is obvious to conduct cluster analysis (CA).

One useful approach for illustrating a related set of variables along
the sampling locationsvs. the experimental parameters in terms of unique
variability is cluster analysis (Hossain et al., 2018). In this case, a similar
collection of sites is shown in one cluster group, while a different set of
sites was shown in another group to identify specific pollution hotspots
(Sundaray et al., 2011). A two-way hierarchical cluster was generated in
the current investigation using the ward-linkage approach and Euclidean
distance (Figure 4C) When the distance (Dlink/Dmax) × 100 was less
than 3, the dendrogram exhibited a distinct grouping in the vertical
section, forming three identifiable clusters: clusters 1, 2, and 3. Cluster
1 included S1 and S3, while S2 and S4 were part of cluster 2, and S5 was
associatedwith cluster 3. On the contrary, the horizontal site dendrogram
followed the distance of (Dlink/Dmax) ×100 < 0.2 and represented
similarly two clusters. Particles like fragments and films were in cluster 1,
and fiber, foam, and microbeads were in cluster 2. The cluster
classification varied significantly as the sampled sites in these clusters
revealed similar features along with the anthropogenic sources.
Moreover, discharge from industrial waste, the chemical used in
agricultural lands, other anthropogenic actions, and municipal runoff
were considered potential sources of these contents.

As reported by Julienne et al. (2019), over 90% of solid debris
retains a size greater than 1 mm even after undergoing 25 units of
water-induced weathering. Therefore, the aquaculture ponds

need proper drainage facilities every 1 or 2 years. Another
reason is that plastics discharged into the water might not
have enough time to become smaller particles. The greater
percentage of large particles in the study area indicated that
there should be a specific fragmentation process. In addition, the
large fraction of smaller particles implied that MPs would be
weathered into smaller sizes.

There were two typical transport gateways of the attribution of
MPs to the aquaculture ponds: 1) settling down in the bottom
sediment of the ponds and 2) discharging MPs to the natural aquatic
environment via different drainage systems (Xiong et al., 2021). In
this concern, the aquaculture pond sediment is a crucial fate of MPs.
Studies have suggested that high-nutrient contents might accelerate
the MP sedimentation in different aquaculture ponds (Chen et al.,
2019). Moreover, feed particles precipitating in the bottom sediment
might accelerate the precipitation of MPs by co-precipitation and
flocculation (Porter et al., 2018). In addition, large-scale ponds are
susceptible to MP contamination due to their direct exposure to
industrial effluents. These released MPs can be consumed by aquatic
organisms, especially in cases where there is a substantial density of
aquatic production, leading to the entrapment and eventual
expulsion of MPs through feces (Katija et al., 2017). In instances
of such densely populated aquatic production ponds, the sediment
can be extracted through specialized drainage methods and utilized
as enriched soil for agricultural applications. Thus, it can be
considered one of the reverse processes compared with the
knowledge of MP transportation from land to water (Siegfried
et al., 2017). Although aquaculture ponds are one of the potential
nutrient sources, MPs from the aquatic system can affect another
natural water body that is close to the water body through a drainage
system (Rico et al., 2013) because MPs in the natural water body can
act as vectors of other pollutants like metals (Koelmans et al., 2016).
In that case, ecological risk should be under concern in future
studies.

3.5 Contamination level analysis in fish
ponds

The CF values of the sediment and water samples of the studied
areas followed the decreasing order of S5 > S4 > S2 > S3 > S1

TABLE 2 Correlation along with PCA.

Fragment Fiber Film Foam Microbead PC 1 PC 2

Fragment 1 0.502 0.007

Fiber 0.035 1 0.014 0.999

Films 0.992 0.049 1 0.497 0.023

Foam 0.988 0.000 0.968 1 0.500 −0.029

Microbeads 0.988 0.000 0.968 1 1 0.500 −0.029

Eigenvalue 3.95 1.00

% variance 79.06 20.03

Cumulative % variance 79.06 99.09

Bold numbers indicate strong relationships.
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(Figure 5). In case of sediment, the CF values of S5 (30.7 ± 9.6), S4
(8.7 ± 5.0), and S2 (6.3 ± 3.5) indicated that the sampling areas were
highly contaminated. In contrast, the water of S5 (3.7 ± 2.5) had a
considerable level of contamination, whereas the others were in a
moderate contamination level. Moreover, the PLI values of sediment
(3.0 ± 1.5) and water (1.5 ± 0.3) also indicated the aquaculture ponds
were contaminated with MPs. Therefore, further research practices
are recommended to recognize the fate of MPs and reduce the level
of MP contamination in the freshwater ecosystems through proper
waste disposal systems.

4 Conclusion

This is the first study conducted to characterize and assess the
contamination levels of MPs in different types of aquaculture
ponds from Bangladesh. In the sediment samples, the lowest
concentration (3.33 items/kg) of MPs was found in the
homestead ponds (S1), while the highest concentration
(102 items/kg) was observed in ponds located near a large-scale
industrial area (S5). The concentration of MPs in water varied
from 16.67 items/L to 100 items/L, with the highest levels detected
in S5, reaching 61.11 items/L. Furthermore, a significant
difference (p < 0.05) was observed in the abundance of MPs
between water and sediment. The levels of MPs in this study
contained a greater quantity of MPs compared to findings from
other countries. The MPs identified displayed diverse
characteristics, including the type, color, shape, and size.
Predominantly, the particles consisted of fragments and films
with transparent and white colors being prominent in water and
sediment, respectively. Moreover, a significant portion of these
particles exhibited irregular shapes with fragments and elongated
forms being predominant. The size analysis revealed that the most
common particles were within the range of 0.5–1 mm. Polymer
characterization of MPs demonstrated that polypropylene (41.7%)
and polyethylene (33.3%) were dominant in sediment, and PE was
the most abundant (44.4%) in water. There was a strong
significant correlation among the different types of MPs,
indicating their same sources of origin. Values of
contamination factor (>6) and pollution load index (>1)
indicated that the aquaculture ponds, especially S4 and S5,
were highly contaminated. Further studies are recommended to
assess the ecological and human health risks due to MPs
contamination.
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FIGURE 4
Correlation (A). Principal component analysis (B) of types of
microplastics and two-way cluster analysis (C) among the types of
microplastics and sites.

FIGURE 5
Contamination factor (CF) and the pollution load index (PLI) in
the sediment and water samples from ponds.
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