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Introduction: Chronic kidney disease of unknown aetiology (CKDu) is an
emerging public health concern in India. The present study was carried out to
investigate the concentrations of potentially toxic heavy metals (Cd, Pb, Ni, Cr, Hg,
and As) in locally grown food crops (rice, pulses, and vegetables) in CKDu prevalent
areas of Cuttack district, India.

Methods: Exposure risks from food crops were analysed, including estimated daily
intake, hazard quotient, hazard index, and carcinogenic risk.

Result: The overall heavy metal concentrations in the crop samples were in the
following order: Pb>Ni>Cd>Cr>As>Hg. The mean concentration of heavy metals
in different crops were as follows, ranked from highest to lowest: spinach, rice,
okra, mustard, potato, carrot, tomato, green gram, black gram. A statistical
multivariate analysis revealed that the primary sources of Cd, Pb, Ni, Cr, Hg,
and As in crop samples were both natural and human activities. For lead, target
hazard quotient (THQ) values in rice were greater than 1, indicating significant
noncarcinogenic health risks to both adults and children.

Discussion: While the majority of the crop samples had Pb levels below the
permissible level (10−5), the target carcinogenic risk of Cd was higher than the
USEPA threshold value (10−4), showing a cancer risk to adults and children. This
study concluded that long-term intake of locally grown food cropsmay produce a
significant health risk to the local inhabitants, and that of regular heavy metal
monitoring is strongly recommended in this region.
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1 Introduction

The contamination of soil and crops (grains, fruits, and vegetables)
with hazardous metals, viz., cadmium (Cd), lead (Pb), chromium (Cr),
nickel (Ni), copper (Cu), and zinc (Zn), is detrimental to the environment
owing to their persistent and non-biodegradable nature and is primarily
caused by natural and anthropogenic processes (Radwan and Salama,
2006; Shah et al., 2010; Muhammad et al., 2011; Sekomo et al., 2011).
Heavy metals are taken up by crops together with other necessary soil
nutrients, and the buildup of these metals is typically greater in crops
cultivated in polluted soils than in those grown in uncontaminated soils
(Jan et al., 2010; Yang et al., 2011; Ratul et al., 2018).Weathering ofmetal-
bearing minerals and volcanic eruptions are natural or geological sources
of heavy metals in the environment. Nevertheless, the use of wastewater
for irrigation purposes has been found to have a significant effect on the
buildup of both inorganic and organic contaminants within the soil
(Arora et al., 2008; Rehman et al., 2019). Consequently, these
contaminants can be taken up by plants that are subjected to
irrigation with such wastewater (Singh et al., 2004; Rashid et al.,
2022). Undoubtedly, the utilisation of wastewater for irrigation has
resulted in a reduction in the demand on freshwater resources. Heavy
metals deposited in food crops have been shown to reach the human
body by inhalation and consumption (Mamat et al., 2014; Abuduwaili
et al., 2015). These metals, once inside the body, interfere with enzymes,
slowing or stopping essential physiological processes. Over time, they can
lead to serious health issues, including anaemia, kidney failure, and brain
damage (Pappas et al., 2006; Mitra et al., 2022). For example, the
consumption of food contaminated with Cd has been linked to both
acute and chronic health effects, including kidney damage, poor bone
development, hypertension, and even cancer (Raknuzzaman et al., 2016).

Chronic kidney disease of unknown aetiology (CKDu) is a kidney
disease that progresses very slowly and is almost asymptomatic until
severe and cannot be attributed to diabetes, hypertension, or any other
known causes (Gooneratne et al., 2008; Jayasumana et al., 2013). In
Cuttack district, India, the disease was identified for the first time in the
early 2000s. The male population of the area is more susceptible to the
disease compared to the women by a ratio of 3:2. However, young men
under the age of 50 who participated in agricultural activities had a
higher prevalence of the disease (Varma, 2015; Senapati et al., 2018;
ICMR, 2020; Mohanty et al., 2020). Almost every household in the area
has been diagnosed with the sickness. The cause of CKDu being
endemic to a particular region is still unclear, and many researchers
are striving to uncover it as thousands of people suffer from this illness.
There are 697.5 million people with chronic kidney disease worldwide,
with 115.1 million of them being Indian (Cockwell and lori-Ann, 2020).
The key histological characteristics of CKDu are interstitial fibrosis,
interstitial mononuclear cell infiltration, and tubular atrophy. These
histological changes suggest a role for nephrotoxins in the origins of
CKDu (Nanayakkara et al., 2012).

At high exposure levels (more than prescribed limit set by FAO/
WHO, 2019; Table 2), cadmium (Cd), lead (Pb), and mercury (Hg)
are regarded as nephrotoxins (Ekong et al., 2006; Johri et al., 2010;
Soderland et al., 2010; Evans and Elinder, 2011). Metals progressively
accumulate in the body through chronic low-level exposure,
especially in industrialising countries. Pb, Hg, and Cd are found
in air, food, petrol, polluted crops, and seafood (Jarup, 2003;
Soderland et al., 2010). Phosphate fertilisers are the main source
of heavy metal contamination in soil, as the phosphate minerals
contain Cd as a natural impurity. Cd accumulation in plants beyond
its permissible limit (0.05 mg/kg) can inhibit nutrient assimilation,
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carbohydrate metabolism, photosynthesis, and enzymatic activities,
which in turn reduce yield (Nazar et al., 2012; Bakhshayesh et al.,
2014). Cd deposits irreversibly in the human lungs, liver, and kidneys
(Sobukola et al., 2010). It can trigger organ oxidative stress,
inflammation, and lipid peroxidation (Prozialeck et al., 2006; Johri
et al., 2010). Chronic low Cd exposure can damage renal proximal
tubules and lower the glomerular filtration rate (GFR) in animal
models (Thijssen et al., 2007). Also it may worsen diabetic kidney
disease in humans and animals (Edwards and Prozialeck, 2009).
Kidneys and liver produce a specialised protein called
metallothionein, which protects the cells from Cd by binding
tightly to it. Cancers of the prostate, kidneys, and ovaries have
been linked to chronic Cd exposure (Nazar et al., 2012). Lead
(Pb) is a hazardous metal that can enter the body via air, food,
and water and cannot be eliminated by washing contaminated fruits
and vegetables (Abbas et al., 2010). It is added to fuel as an anti-
knocking agent; therefore, it is possible that this is another source of
the high Pb levels seen in some leafy crops (Zamor et al., 2012). Pb
poisoning causes mitochondrial enlargement in renal tubular cells
and reduces energy generation (Evans and Elinder, 2011).
Occupational exposure to mercury vapour may trigger
albuminuria and acute membranous nephropathy (Li et al., 2010).
The interrelation between chronic kidney disease (CKDu) and
exposure to environmental toxins has been investigated primarily
in western nations, with few data available for Asian countries.

No efforts have been made to detect heavy metals in the edible
parts of locally grown crops that are consumed frequently by the
inhabitants of the study area. Thus, this study examined the risk of
six harmful heavy metals (Cd, Pb, Ni, Cr, Hg, and As) in CKDu
affected areas of Cuttack district, Odisha. The quantities of heavy
metals in rice, pulse, and vegetable crops were measured, and the
health risk to nearby populations was estimated based on potential
carcinogenic and noncarcinogenic risk factors.

2 Materials and methods

2.1 Study area

This study region in Cuttack, India, extended from 21°24′29″N
to 81°40′19″E in latitude and longitude. The study area encompasses
3,432 km2. The majority of the area falls under Narasinghpur block.
The Narsinghpur block consisted of 157 villages and
98,000 residents. The average altitude was between 50 and 100 m,
and the maximumwas 337 m. In the highlands, red soils were found,
whereas around the Mahanadi River, younger alluvial soil can be
found. Potash and lime are present, but nitrogen, phosphorus, and
humus are absent from these recent alluvial soils. The area under
study comprises granitic rocks along with khondalite and charnokite
minerals, which cover a nearly equal area in hard rock terrain
(CGWB, 2013). The details of the sampling site are given in Figure 1.

2.2 Crop sampling

Nine crops, i.e., one cereal (rice), two pulses (green gram and
black gram), and six vegetables belonging to three different groups of
vegetable crops: root, fruit, and leafy vegetables (potato, carrot,
tomato, okra, and spinach), were selected for the study, as these
crops were mostly consumed and frequently grown in the study area
according to our socioeconomic survey. The description of the
examined crops is shown in Table 1. Samples from each site
were collected in triplicate. A total of 118 crop samples were
collected between January and March 2022. These samples were
collected from the fields and taken to the laboratory for further
analysis in polythene bags with proper tags. Each sample was washed
with double-distilled water to eliminate grime and grease from the
surface of the crop samples. Then the samples were cut into small

FIGURE 1
Sampling location in Cuttack district, Odisha.
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pieces with a stainless steel knife and air-dried for a week to reduce
their moisture content. After air drying, samples were stored for
7 days in an oven at 65°C. The moisture content of samples was also
determined by using the gravimetric method. After dehydrating the
plant samples in an oven, they were grounded to a fine powder using
a wooden mortar and pestle. Finally, the samples were stored at
room temperature in airtight containers for further analysis (Sharma
et al., 2009; Bhatia et al., 2015).

2.3 Heavy metal analysis

Plant samples were weighed precisely at 0.5 g and pre-digested
overnight in 5 ml of nitric acid (HNO3) before being digested with
5 ml of diacid (NHO3+HClO4) mixture on a heated plate under a
hood until a clear solution was obtained. The recovery of Cd, Pb, Ni,
Cr, Hg, As were 96%, 95%, 97%, 95%, 94%, 97%, respectively after
digestion. The volume of the digested sample solution was increased
to 50 ml with double-distilled water. Inductively coupled plasma
optical emission spectroscopy (ICP-OES) (Model Avio 200) was
utilised to determine the concentration of heavy metals (Cd, Pb, Ni,
Cr, Hg, and As) in the digested and filtered samples by using a
standard solution of each metal. Standard solutions were prepared
for each element under study. The blank solution, which lacked the
crop sample material, was made to calibrate the initial reading and
minimise metal contamination in crop samples. The value of metals
in unknown sample solutions (ppm) was multiplied by the dilution
factor to determine the actual metal concentration in dried plant
samples. Metal analysis of plant samples was conducted in
accordance with standard procedures and methodology (Singh
et al., 1999).

2.4 Quality check

The examination of specimens were conducted for the
purposes of ensuring and maintaining quality control.
Throughout the analytical procedures, the chemicals and
reagents utilised were of analytical-grade quality. Double
distilled water (DDW) was utilised in the preparation of the
necessary reagents, standards, and analytical samples for

processing and dilution purposes. Calibration curves were
generated for each heavy metal under investigation. The
analysis of blanks was conducted with regular frequency in
order to maintain the analytical quality. To prevent any
potential contamination in the equipment, procedural cleaning
was performed at regular intervals using DDW during the whole
analysis. The instrumental detection limit (IDL) values were found
to be lower than both the method detection limit (MDL) and
method quantification limit (MQL) values, indicating the high
sensitivity of the inductively coupled plasma optical emission
spectroscopy instrument for estimating heavy metals. Samples
prepared for metal analysis included procedural blanks,
replicate analyses, standard solutions and certified reference
material (CRM) of white cabbage (BCR-679, European
Commission Joint Research Centre, Institute for Reference
Materials and Measurements). The certified values for Cd, Pb,
Ni, Cr, Hg, and As are 1.66 ± 0.07, 37.21 ± 0.12, 27.0 ± 0.8, 11.23 ±
0.2, 6.17 ± 1.4, 3.21 ± 0.5 mg/kg, respectively. The values obtained
for different metals viz., Cd, Pb, Cr, Ni, As, Hg were 94%, 92%,
88%, 86%, 84%, 89% of the certified value, respectively.

2.5 Health risk assessment

2.5.1 Estimated daily intakes (EDIs)
Estimated daily intakes (EDIs) of heavy metals (Cd, Pb, Ni, Cr,

Hg, and As) (mg/day) were determined by multiplying the average
concentration of heavy metals in crops by the weight of these foods
consumed by a person. They are computed according to the
following formula:

EDI � Cm × Cf × FIR × Ef × De

Wb × Tav
× 10−3

Where, Cm represents crop metal concentration (mg/kg), Cf

represents the conversion factor of crops into dry weight (0.085)
(Arora et al., 2008), FIR represents the average food consumption
rate that was determined through a questionnaire survey in the study
area (total of 378 individuals from the Narasinghpur block were
surveyed), and then the data were used to compute the average food
consumption rate shown in Table 5, Ef represents the exposure
frequency (365 days), De represents the exposure duration

TABLE 1 Details of crops under study.

Sl.No. Plant species Family English name Part used No. of samples

1 Oryza sativa L. Poaceae Rice Grain 29

2 Vigna radiata L. Fabaceae Moong Seed 20

3 Vigna mungo L. Fabaceae Urad Seed 12

4 Solanum tuberosum L. Solanaceae Potato Tubers 11

5 Daucus carota L. Apiaceae Carrot Underground stem 5

6 Solanum lycopersicum L. Solanaceae Tomato Fruit 11

7 Abelmoschus esculentus L. Malvaceae Okra Fruit 8

8 Spinacia oleracea L. Amaranthaceae Spinach Leaf 10

9 Brassica juncea L. Brassicaceae Mustard Leaf 12
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(70 years), Tav represents the average time of exposure (365 days ×
70) and Wb represents the average body weight of an individual
(70 kg for adults and 15 kg for children) (WHO, 1985; USEPA,
2010).

2.5.2 Target hazard quotient (THQ)
The United States Environmental Protection Agency’s (USEPA)

risk-based concentration table (USEPA, 2010) was used as the basis
for the calculation of non-carcinogenic risks. Using the THQ, which
is the ratio of single metal exposure over a given time to a reference
dose (Df) for that metal over the same time period, the
noncarcinogenic risk of ingesting metals through food crops were
evaluated. The THQ can be estimated with the following equation:

THQ � EDI

Df

Where, EDI is the estimated daily intake and Df is the reference
dose for metals. Df for Cd, Pb, Ni, Cr, Hg, and As is 0.001, 0.0035,
0.02, 0.003, 0.0003, and 0.0003 mg/kg/day, respectively (USEPA,
2006). THQ values more than one indicates harmful
noncarcinogenic effect on human health. However, THQ value
less than one considered to be safe for consumption (Antoine
et al., 2017).

2.5.3 Hazard index (HI)
The hazard index (HI) was developed to quantify the potential

noncarcinogenic impacts of multiple heavy metals, and it is based on
the risk assessment standards established by the USEPA. (1999). It is
the sum of the hazard quotients (USEPA, 2010). The following
equation is used to calculate the hazard index:

HI � ∑THQ

� THQCd + THQPb + THQNi + THQCr + THQHg + THQAS

If HI is greater than one, then exposure to multiple elements has
a negative impact on human health. The extent of the negative effect
is considered to be proportional to the total of multiple metal
exposures (Proshad et al., 2020).

2.5.4 Carcinogenic risk
The equation described in USEPA risk-based concentration

(USEPA, 2006) can be used to estimate the target carcinogenic
hazards associated with metals like Cd and Pb, which have been
shown to cause cancer in humans. It can be calculated using the
following formula:

CR � EDI × CFSO

TCR � ∑CR

Here, CR represents the carcinogenic risk, EDI represents the
estimated daily intake, and CSo represents the carcinogenic slope
factor for metals (ATSDR, 2010; Feed, 2013; Wei et al., 2020). Cd
and Pb have oral cancer slope factors (CPSo) of 0.38 and
0.0085 mg kg-1 day-1, respectively. TCR values below 10−6

correspond to low cancer-causing risks; between 10−5 and 10−4

correspond to moderate cancer-causing risks; and between 10−3

and 10−1 correspond to high cancer-causing risks (Demirezen
and Aksoy, 2006; Liu et al., 2006; USEPA, 2015).

2.6 Statistical analysis

IBM SPSS 22.0 software was used to perform statistical analysis
of the data. Standard deviations and mean concentrations of metals
in rice, pulses, and vegetables were calculated. The potential source
of metals in food samples can be interpreted through a multivariate
analysis using principal components. KMO values for this particular
study is found to be 0.839 indicating the sampling is adequate for
conducting factor analysis (Dodge, 2008). In the principal
component analysis (PCA), eigen values were extracted to
determine the principal components (PC). A dendrogram was
constructed using Ward’s method to categorize crops into
different groups. From the cluster analysis, similarities and
differences between samples with respect to metal content were
identified. The rest of the calculations were done in Microsoft
Excel 2013.

3 Results and discussion

3.1 Total heavy metal concentration in crops

The total concentration of Cd, Pb, Ni, Cr, Hg, and As in rice,
pulses, and vegetables (mg/kg) was assessed, and their values were
presented in Table 2 and Figure 2. The overall heavy metal
concentrations in the samples were as follows:
Pb>Ni>Cd>Cr>As>Hg. Among crop species, the average
concentration of metals was as follows: spinach > rice > okra >
mustard > potato > carrot > tomato > green gram > black gram.
When comparing the metal concentration in crop samples with the
permitted limit given by FAO/WHO (2019), it was found that the
metal concentration in 89.91%, 100%, 0%, 0%, 10.08%, and 2.52% of
samples, respectively, was above the permissible limit for Cd, Pb, Ni,
Cr, Hg, and As (Table 2; Figure 2). Heavy metal concentrations were
observed to vary significantly between samples due to
environmental factors such as temperature, rainfall, crop growth
stage, and metal accumulation and absorption capacities (Liu et al.,
2006; Pandey and Pandey, 2009; Saha and Zaman, 2013; Garg et al.,
2014). Phyto-accumulation of heavy metals, for instance, was shown
to be greater in cassava tubers than in leaves (Harrison et al., 2018).

The average concentration of Pb (mg/kg) in the crop sample
followed the decreasing order of spinach (10.51), paddy (7.88),
potato (4.45), carrot (3.41), black gram (1.99), mustard (1.93),
okra (1.78), tomato (1.68), and green gram (1.31) (Table 2). It
was observed that the lead concentration in all samples was higher
than the standard value (0.1 mg/kg) (FAO/WHO, 2019), suggesting
excessive lead contamination in food crops grown in the study area
and potential health risks to consumers. It was clear that spinach,
paddy, potato, carrot, black gram, mustard, okra, tomato, and green
gram contain 105, 79, 44.5, 34, 20, 19, 18, 17, and 13 times more
concentrations of Pb than the MAC (Table 2). Cd and Pb
accumulate in the renal cortex and bone, respectively. Metals
have decades-long biological half-lives. Due to these long half-
lives (Cd > 30 years), sustained, low-level exposure might
produce excess accumulation in organs, especially in the kidney,
which can disrupt the physiological function of the organ (Sharma
et al., 2007; Navas-Acien et al., 2009).
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The average Ni concentration in crops varied from 0.29
(tomato) to 1 mg/kg (rice) (Table 2). In crop samples, the
concentration of Ni was as follows: rice > green gram > potato >
spinach > mustard > carrot > black gram > okra > tomato. The
concentration of nickel in all samples was less than the standard
amount (10 mg/kg) (JECFA, 2003; FAO/WHO, 2019; WHO, 2011),
showing that nickel did not contaminate the food samples
(Figure 2).

Cadmium is a hazardous heavy metal present in very low
concentrations in the environment. Air and water are known to
be the primary sources of Cd exposure (FSANZ, 2003). The average
Cd content varied from 0.09 (green gram) to 1.37 (spinach) mg/kg.
In crop samples, the average Cd concentration (mg/kg) was as
follows: spinach (1.37), potato (1.22), mustard (0.94), carrot (0.58),
paddy (0.52), tomato (0.39), okra (0.27), black gram (0.12), green
gram (0.09). In accordance with the maximum allowable
concentration (MAC), the cadmium concentration in 89.91% of
samples was higher than the standard value (0.05 mg/kg) (FAO/
WHO, 2019). It was found that spinach, potato, mustard, carrot,
paddy, tomato, okra, black gram, and green gram contain Cd
concentrations that are 27, 24, 19, 12, 10, 8, 5, 2.5, and 2 times
more than the maximum allowable concentration (MAC) (Table 2).

The average Cr concentration varied from 0.12 (spinach) to
0.94 mg/kg (okra) (Table 2). In crop samples, the average Cr content
were as follows: okra > green gram > carrot > paddy > black gram >
mustard > potato > tomato > spinach. Chromium concentrations in
all samples were less than the standard value (2.3 mg/kg) (FAO/
WHO, 2019), showing no chromium contamination of food samples
(Figure 2).

The mean As concentration (mg/kg) in crop samples was in
descending order as follows: potato (0.037), tomato (0.020), paddy
(0.019), okra (0.016), green gram, mustard, okra (0.013), and black
gram (0.008). According to Table 2, the arsenic concentration of
2.52 percent of the samples were higher than the standard value
(0.1 mg/kg) given by FAO/WHO. (2019), which may pose a health
risk to consumers. Rapid transfer of As from soil to plant, irrational

use of As rich fertilizers and pesticides, and use of contaminated
groundwater for irrigation may contribute to the presence of arsenic
in crops (Alam et al., 2003; Renner, 2004; Neumann et al., 2010;
Bhuiyan et al., 2011; Roberts et al., 2011; Polizzotto et al., 2013).

The average Hg concentration varied from 0 (green gram, carrot,
and mustard) to 0.019 mg/kg (okra) (Table 2). Average Hg
concentrations in crop samples were as follows: okra > paddy >
potato > tomato > spinach > black gram > green gram > carrot >
mustard. According to MAC, the Hg concentration in 10% of
samples was higher than the standard value (0.01 mg/kg) given
by FAO/WHO (2019), indicating a low level of mercury
contamination in food samples (Figure 2).

Long-term consumption of food crops contaminated with heavy
metals may pose numerous health risks to humans. Therefore,
routine monitoring is essential to avoid excess accumulation of
these metals in the food chain (Sharma et al., 2009; Kananke et al.,
2014; Noor et al., 2022). According to Yana et al. (2012), heavy
metals in leafy vegetables come from both soil and smelting waste
gases, while those in fruits and roots come from soil and may vary by
season (Tani and Barrington, 2005). Chronic exposure to Cd, Pb, As,
and Hg causes renal tubular alterations, especially in the proximal
convoluted tubule, and, in rare cases, acute renal failure that leads to
chronic kidney disease (Gunawardana et al., 2006; Ferraro et al.,
2010; Rango et al., 2015; Asraf et al., 2021). Lead is linked to terminal
stages, although more research is needed (Ekong et al., 2006; Garcia
and Arceo, 2018). In CKDu affected areas of Sri Lanka, Ni, Cd, Cr,
and Pb contamination levels in vegetables exceeded FAO/WHO
standards for human consumption (Bandara et al., 2010; Kananke
et al., 2014; Kananke et al., 2016). In sensitive individuals with
hypertension or diabetes, consumption of foods with high Cd may
synergistically develop and progress CKD (Kim et al., 2015). The
main irrigation source in the study area is the Mahanadi River,
which flows adjacent to it and contains contaminated water and
detritus. In Mahanadi sediments, Pb and Cd enrichment factors
were higher, indicating contamination from many external sources
(Nayak et al., 2002; Swain et al., 2021; Samal et al., 2022).

TABLE 2 Metal concentration (mg/kg) in crop samples.

Common name Scientific name Cd Pb Ni Cr Hg As

(mg/kg)

paddy (n=29) Oryza sativa L. 0.52±0.43 7.88±5.86 1.00±0.47 0.54±0.14 0.005±0.012 0.019±0.027

Green gram (n=20) Vigna radiata L. 0.09±0.06 1.31±0.87 0.99±0.46 0.77±0.11 ND 0.013±0.015

Black gram (n=12) Vigna mungo L. 0.12±0.11 1.99±0.94 0.38±0.31 0.51±0.18 0.001±0.004 0.008±0.006

Potato (n=11) Solanum tuberosum L. 1.22±0.95 4.45±2.37 0.80±0.39 0.15±0.05 0.004±0.006 0.037±0.054

Carrot (n=5) Daucus carota L. 0.58±0.45 3.41±1.21 0.43±0.28 0.60±0.13 ND 0.009±0.006

Tomato (n=11) Solanum lycopersicum L. 0.39±0.34 1.68±1.12 0.29±0.18 0.13±0.18 0.002±0.006 0.020±0.022

Okra (n=8) Abelmoschus esculentus L. 0.27±0.26 1.78±1.08 0.34±0.19 0.94±0.09 0.019±0.028 0.016±0.014

Spinach (n=10) Spinacia oleracea L. 1.37±0.73 10.51±5.98 0.76±0.32 0.12±0.09 0.002±0.005 0.013±0.012

Mustard (n=12) Brassica juncea L. 0.97±0.49 1.93±1.15 0.46±0.17 0.30±0.35 ND 0.013±0.015

Permissible limit FAO/WHO, (2019) 0.05 0.10 10 2.3 0.01 0.10

Percent Sample exceeding permissible limit 89.91 100.00 0.00 0.00 10.08 2.52
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3.2 Correlation coefficient matrix of heavy
metals

To determine the relationships between the metals in food
samples, statistical analyses were conducted. From the

intermetallic interaction in a particulate medium, the source
and migration routes of the metals can be predicted
(Raknuzzaman et al., 2016; Muhammad et al., 2021). The
correlation coefficient matrix of heavy metals in food samples
taken from CKDu-endemic regions in the Cuttack district is

FIGURE 2
Heavy metals distribution in crop samples (n = 118) collected from CKDu hotspot of Cuttack district, India.
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presented in Table 3. Cd showed significant positive correlations
with Pb and Ni (r = 0.277**, r = 0.229**), while significant negative
correlations were seen between Cd and Cr (r = −363**). Pb and Cr
both showed positive correlations with Ni and Hg, respectively,
that were statistically significant (r = 0.280** and r = 0.202*,
respectively). According to Abbasi et al. (2013) and Mohammed
et al. (2003), the combinations exhibited a strong positive
association, showing that the traits were related and may have
derived from the same sources. Other connections between the
components of the meal sample were not significant.

3.3 Analysis of the source of heavy metals in
crops

Principal component analysis (PCA) was performed to
determine the possible sources of heavy metals in the food crop
collected from the study area (Franco-Uria et al., 2009; Kikuchi et al.,
2009; Manea et al., 2020). Table 4 and Figure 3 display the results of
PCA. Three principal components were found, and together they
accounted for 67.01% of the variations in food crops. The variances
explained by the first three PCs for crop samples were 28.40%,
21.11%, and 17.48%, respectively. PC1 has a strong correlation with
Cd and Pb, PC2 has a strong correlation with Ni and Cr, and
PC3 has a strong correlation with Hg and As. Cd had accumulated in
the analyzed crops as a result of the widespread use of phosphate (P)
fertilizers in agricultural soils (Mortvedt, 1996; Nziguheba and
Smoulders, 2008; Hove et al., 2020); hence, Pb, which was
significantly related to Cd in PC1, may also be significantly
influenced by irrational use of fertilizers and agrochemicals
(Huang et al., 2007; Atafar et al., 2010; Iqbal et al., 2021).
Decades of intensive cultivation in the agricultural region and
long-term application of fertilizer may be a significant source of
heavy metal accumulation in crops. The Mahanadi River, which
borders the affected area, contains additional evidence of industrial
and anthropogenic contamination in its water and sediments
(Behera et al., 2013; Raj et al., 2013; Swain et al., 2021). In
conclusion, PC1 and PC3 can be inferred as anthropogenic
components, which are more significantly influenced by human
actions (fertilizer application) than other components. A significant
association between Cr and Ni in PC2 indicated their origin from
lithogenic sources as they have been detected in the parent materials
of rural soils across the globe, with minimal temporal and spatial
variation (Facchinelli et al., 2001; Salonen and Korkka-Niemi, 2007;

Spurgeon et al., 2008; Wu et al., 2010; Kladsomboon et al., 2020).
Thus, metals in PC1, PC2, and PC3 may derived from a variety of
natural and anthropogenic sources, including industrial effluents,
agricultural activities, and the granitic bedrock underlying the
research region. Also from the dendrogram constructed using
Ward’s method, several cluster configurations were identified and
food samples belonging to the same cluster shared similar
characteristics with respect to their metal contamination level
(Figure 4). Within a distance of five on the dendrogram scale,
the main clusters of various food items developed, including
potatoes, tomatoes, rice, spinach, carrots, mustard, black gram,
okra, and green gram.

3.4 Health risk assessment

The USEPA has developed several indices (both non-
carcinogenic and carcinogenic) to predict the potential health
risk posed by long-term exposure to hazardous metals (Ali et al.,
2019).

3.4.1 Estimated daily intake (EDI)
The most prevalent route of trace metal exposure for humans

is through food (WHO, 1985; Kumar et al., 2019; Saraswat et al.,
2023); however, inhalation and skin contact are also possible
(ATSDR, 2010). Rice, pulses, and vegetables may make up a
significant share of the Indian population’s total diet, and EDI is a
significant method for assessing the health hazards associated
with heavy metals through the consumption of these food items
(Alam et al., 2003; Alsafran et al., 2021). Its calculation is based
on the total metal concentration in food and their consumption
rate in adults and children; the results are presented in Table 5. If
the ratio of EDI to Df is less than Df, the health risk is minimal; if
it is between 1 and 5 times the Df, there is a low health risk; five to
ten times the Df, there is a moderate health risk; more than ten
times the Df, there is a high health risk (Ali et al., 2019; Saxena
et al., 2019). Based on the EDI/Df ratio, we determined that the
metal content in pulses is between 5 and 10 times higher, posing a
moderate health risk, while the metal content in rice and
vegetables is greater than 10 times higher, posing a high
health risk for consuming these crops grown in this region.
Based on these results, we concluded that Cd, Pb, and Ni
posed the greatest threat to the health of adults and children
living in endemic regions of CKDu in the Cuttack district of
India.

3.4.2 Target hazard quotient (THQ)
THQ is linked to a noncarcinogenic health risk, and its value less

than 1 is considered as permissible (Rattan et al., 2005). If THQ
levels exceed a certain threshold, it will pose a health risk (USEPA,
1989; Bounar et al., 2020). The calculated THQ value was presented
in Table 6. In this investigation, for Pb, THQ values in rice were
greater than 1. Therefore, their THQ levels may pose a
noncarcinogenic risk to the population in this region. From these
values, we determined that for Cd and Pb, the THQ values of
spinach and mustard were higher than those of other vegetables and
pulses under study (Gupta et al., 2019), whereas no such pattern was
observed for other elements.

TABLE 3 Pearson correlation coefficient of heavy metals in crop samples.

Cd Pb Ni Cr Hg As

Cd 1

Pb .277** 1

Ni .229* .280** 1

Cr −.363** −0.175 0.178 1

Hg −0.024 0.066 −0.061 .202* 1

As 0.097 0.166 0.088 −0.111 0.07 1

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).
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3.4.3 Hazard index (HI)
HI provides a measure of the cumulative impact of harmful

metals on human health through consumption of contaminated
food crops (Filimon et al., 2021), and the data in Table 6
demonstrated that HI values for rice were higher than the
allowed limit. Hence, consumption of rice grown in the study
area may be associated with noncancerogenic health risks. The
hazard index for adults and children was as follows:
rice>spinach>potato>carrot>tomato>okra>mustard>green gram>black
gram. In this study, only a limited number of food crops were

evaluated to estimate the noncarcinogenic health risk. So, the results
only considered a minor portion of the actual threat to the people in
the study area.

3.4.4 Target carcinogenic risk (TCR)
Toxic metals are thought to have potential adverse effects on

human health, and research suggests that exposure to certain
carcinogenic metals, especially over extended periods of time, can
raise the risk of developing cancer. TCR is an estimate of the
expected malignancy. Then, it also indicates the possibility of
cancer-causing hazards developing within an individual. TCR for

TABLE 4 Total variance explained and component matrices for the heavy metals in crops collected from Cuttack district, India.

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % Of
variance

Cumulative
%

Total % Of
variance

Cumulative
%

Total % Of
variance

Cumulative
%

1 1.70 28.40 28.40 1.70 28.40 28.40 1.50 24.97 24.97

2 1.27 21.11 49.51 1.27 21.11 49.51 1.40 23.34 48.31

3 1.05 17.49 67.01 1.05 17.49 67.01 1.12 18.69 67.01

4 0.88 14.66 81.66

5 0.69 11.43 93.09

6 0.42 6.91 100.00

Component Matrix Rotated Component Matrix Component Transformation Matrix

Element PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Cd 0.75 −0.12 −0.05 −0.63 0.43 0.05 −0.74 0.64 0.20

Pb 0.69 0.29 0.05 −0.33 0.59 0.31 0.65 0.60 0.46

Ni 0.44 0.60 −0.54 0.16 0.90 −0.10 −0.18 −0.47 0.87

Cr −0.54 0.70 −0.20 0.89 0.17 0.04

Hg −0.11 0.53 0.67 0.31 −0.07 0.80

As 0.40 0.18 0.52 −0.27 0.12 0.61

FIGURE 3
Principal component analysis (PCA) of heavy metals in food
samples (n = 118) collected from different agricultural fields of Cuttack
district, Odisha.

FIGURE 4
Cluster analysis of crop samples (n = 118) collected from Cuttack
district, India.
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TABLE 5 Consumption rate (g/person/day), estimated daily intake (EDI) and total estimated daily intake (EDI) (mg/kg bw/day) of heavy metals from rice, pulse and vegetables for adult and children.

Food stuff Consumption
rate (g/
person/day)

Cd Pb Ni Cr Hg As TEDI

Adult Children Adult Children Adult Children Adult Children Adult Children Adult Children Adult Children Adult Children

Rice 400 160 0.00025 0.000467 0.003826 0.007143 0.004862 0.009075 0.00026 0.000485 2.38E-06 4.44E-06 9.21E-06 1.72E-05 0.0092 0.0172

Green gram 45 18 4.84E-06 9.03E-06 7.14E-05 0.000133 0.00054 0.001009 4.18E-05 7.8E-05 0 0 7.05E-07 1.32E-06 0.0007 0.0012

Black gram 35 14 5.07E-06 9.47E-06 8.45E-05 0.000158 0.000372 0.000695 2.17E-05 4.06E-05 5.48E-08 1.02E-07 3.5E-07 6.53E-07 0.0005 0.0009

Potato 59 23 5.86E-05 0.000107 0.000319 0.00058 0.000786 0.001429 2.48E-05 4.51E-05 2.84E-07 5.16E-07 2.64E-06 4.8E-06 0.0012 0.0022

Carrot 43 17 3.05E-05 5.63E-05 0.000178 0.000329 0.000643 0.001186 3.11E-05 5.74E-05 0 0 4.63E-07 8.54E-07 0.0009 0.0016

Tomato 53 21 2.53E-05 4.67E-05 0.000108 0.0002 0.000699 0.001292 8.19E-06 1.51E-05 1.32E-07 2.43E-07 1.3E-06 2.41E-06 0.0008 0.0016

Okra 51 20 1.7E-05 3.11E-05 0.00011 0.000202 0.000394 0.000721 5.83E-05 0.000107 1.19E-06 2.17E-06 9.91E-07 1.81E-06 0.0006 0.0011

Spinach 38 15 6.34E-05 0.000117 0.000393 0.000724 0.00063 0.00116 5.48E-06 1.01E-05 8.74E-08 1.61E-07 6.11E-07 1.13E-06 0.0011 0.0020

Mustard 30 12 3.55E-05 6.63E-05 7.02E-05 0.000131 0.000169 0.000315 1.11E-05 2.07E-05 0 0 4.71E-07 8.79E-07 0.0003 0.0005
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TABLE 6 Target hazard quotient (THQ) (noncarcinogenic risk), hazard index (HI) and total target hazard quotient (TTHQ) of heavy metals from rice, pulses and vegetables for adult and children.

Cd Pb Ni Cr Hg As TTHQ (adult) TTHQ (children)

Adult Children Adult Children Adult Children Adult Children Adult Children Adult Children

Rice 0.250 0.467 1.093 2.041 0.243 0.454 0.087 0.162 0.008 0.015 0.031 0.057 1.712 3.196

Green gram 0.005 0.009 0.020 0.038 0.027 0.050 0.014 0.026 0.000 0.000 0.002 0.004 0.069 0.128

Black gram 0.005 0.009 0.024 0.045 0.019 0.035 0.007 0.014 0.000 0.000 0.001 0.002 0.056 0.105

Potato 0.059 0.107 0.091 0.166 0.039 0.071 0.008 0.015 0.001 0.002 0.009 0.016 0.207 0.377

Carrot 0.031 0.056 0.051 0.094 0.032 0.059 0.010 0.019 0.000 0.000 0.002 0.003 0.125 0.231

Tomato 0.025 0.047 0.031 0.057 0.035 0.065 0.003 0.005 0.000 0.001 0.004 0.008 0.099 0.182

Okra 0.017 0.031 0.032 0.058 0.020 0.036 0.019 0.036 0.004 0.007 0.003 0.006 0.095 0.174

Spinach 0.063 0.117 0.112 0.207 0.031 0.058 0.002 0.003 0 0.001 0.002 0.004 0.211 0.389

Mustard 0.036 0.066 0.020 0.037 0.008 0.016 0.004 0.007 0 0.000 0.002 0.003 0.069 0.129

HI 0.491 0.910 1.474 2.742 0.455 0.844 0.154 0.286 0.014 0.025 0.056 0.103 2.644 4.912
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Cd and Pb via consumption of contaminated food crops, as
estimated by EDI and CPSo values, is displayed in Table 7. If
TCR values are between 10−6 and 10−5, they are associated with
low cancer risks; if they are between 10−5 and 10−4, they are
associated with moderate risks; and if they are between 10−3 and
10−1, they are associated with high risks (Ali et al., 2019). The TCR
values for Cd in the crop samples were 1.86E-04 and 3.46E-04 for
adults and children, respectively (Table 7). Similarly, for Pb, it was
4.39E-05 for adults and 8.16E-05 for children. The cumulative
carcinogenic risk of Cd from the foods was greater than 10−4,
indicating cancer risk to both adults and children in the study
area. In the current study, however, the TCR of Pb is between 10−5

and 10−4, posing a moderate cancer risk (USEPA, 1989; USEPA,
2015; Fonge et al., 2021). Due to the high cadmium content of some
local foods, residents of the endemic area may consume more
cadmium than is healthy on a daily basis. This can have serious
consequences for the kidneys, especially in the young, the elderly,
and those with underlying medical conditions. A cross-sectional
investigation suggested cadmium as a risk factor for CKDu in Sri
Lanka due to its greater urinary excretion and dose-effect
connection with CKDu stages. When exposed to nephrotoxins,
selenium deficiency and genetic vulnerability may predispose to
CKDu (Jayatilake et al., 2013; Gupta et al., 2021). Therefore, the
potential carcinogenic hazards posed by food consumption to
residents of the CKDu endemic area must not be ignored. Thus,
the present research demonstrates unequivocally that the Cuttack
populace’s consumption of these foods poses a cancer risk.

4 Conclusion

The current study examined the heavy metal concentration of
commonly consumed and locally grown food crops in CKDu-endemic
areas of Cuttack district, India. It was found that the levels of Cd, Pb, Hg,
and As in rice, pulses, and vegetables exceeded the WHO and FAO
permissible levels.Metal concentrations in food samples were as follows:
Pb>Ni>Cd>Cr>As>Hg. A multivariate study revealed that Cd, Pb, Ni,

Cr, Hg, andAs in dietary samples were primarily caused by both natural
and anthropogenic activities. EDI for Cd and Pb was increased in both
adults and children. THQ for Pb was over the permissible limit, putting
consumers at high risk for non-cancerogenic risks associated with Pb.
Based on the calculated hazard index for adults and children, it was
evident that consuming rice was not safe. While the risk of Pb from the
majority of meals was below the permitted level of 10−5, the total
carcinogenic risk of Cd was greater than 10−4, indicating a cancer risk to
both adults and children in the study area. Longitudinal studies are
needed to assess the links between heavy metals like Cd and Pb and
kidney impairment due to their extensive prevalence in the
environment and the lack of treatment strategies to reduce their
effects. Thus, chronic impacts might be determined and
environmental monitoring increased to lower chemical
concentrations. We recommend combining governmental and
private sector efforts with research centres to further study into the
disease’s causes and remedies.
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TABLE 7 Carcinogenic risks of Cd and Pb due to consumption rice, pulse and
vegetables for adult and children.

Crop sample Cd Cd Pb Pb

Adult Children Adult Children

Rice 9.52E-05 1.78E-04 3.25E-05 6.07E-05

Green gram 1.84E-06 3.43E-06 6.07E-07 1.13E-06

Black gram 1.93E-06 3.6E-06 7.18E-07 1.34E-06

Potato 2.23E-05 4.05E-05 2.71E-06 4.93E-06

Carrot 1.16E-05 2.14E-05 1.51E-06 2.79E-06

Tomato 9.6E-06 1.78E-05 9.18E-07 1.7E-06

Okra 6.46E-06 1.18E-05 9.39E-07 1.72E-06

Spinach 2.41E-05 4.44E-05 3.34E-06 6.15E-06

Mustard 1.35E-05 2.52E-05 5.97E-07 1.11E-06

Total 1.86E-04 3.46E-04 4.39E-05 8.16E-05
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