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Model simulations are conducted for fine particles diameter less than 2.5 microns
(PM2.5) in the Chulalongkorn University area in the central business district of
Bangkok, Thailand, where PM2.5 originating from road traffic is a recurring
problem. For input to the American Meteorological Society/U.S. Environmental
Protection Agency Regulatory Model (AERMOD), an hourly continuous vehicle
type classified emissions inventory is developed based on local traffic observations
and published emissions factors. The simulation accounts for advected-in PM2.5

by hourly measurements from upwind stations. The result reveals a hotspot
location near a nearby expressway with PM2.5 concentration peaking at 1-h
and 24-h averages of 344 and 130 μg m−3, respectively. Source contribution
analysis of the annual average PM2.5 at this hotspot suggests that the
expressway contributes approximately 32% of the total PM2.5. Meanwhile, at
receptor points farther from the expressway, ground-level urban roads
contribute only 17.5% roadside PM2.5 concentrations, the remainder coming
from outside the modeled area. A different source contribution breakdown by
vehicle type suggests that heavy-duty vehicles contribute up to 21% of annual
average PM2.5 at a location near the expressway. At a roadside receptor point
farther from the expressway, the top contributors are light-duty (9%) and heavy-
duty vehicles (6%). Advected-in PM2.5 dominates the overall PM2.5 concentrations,
accounting for 64%–99% depending on the receptor point. The model
performance for 24-h average prediction is acceptable. A scenario study is
also performed to compare the potential effectiveness of two PM2.5 abatement
measures.
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1 Introduction

Over the past decade, Bangkok, the capital of Thailand, has been affected by seasonal
events exceeding the ambient air quality standard with respect to the concentration of fine
particles of diameter less than 2.5 microns (PM2.5). Moreover, Bangkok has been ranked the
27th-most-polluted city in the world as of 2021 (IQAir, 2021). These pollution episodes have
negative impacts on the public health, economy, and reputation of the city. Bangkok PM2.5

episodes, which typically fall between December and April, result from automobile emissions
and biomass burning by humans in response to the typically cool temperatures of winter
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(ONEP, 2021). PM2.5 monitoring in Bangkok has relatively good
geographic coverage, with a total of 70 standard measurement
monitoring stations administered by the Pollution Control
Department and numerous additional sensor stations
administered by various organizations. Despite this coverage,
people still usually guess the PM2.5 levels at their specific
locations based on the nearest monitoring. Moreover, the
measurement of PM2.5 concentrations alone cannot provide
insights regarding causes and sources; such insights are much
needed for effective air quality management. Therefore, the
present research utilizes a dispersion model to study PM2.5

concentrations in the Chulalongkorn University (13° 44.312′N,
100° 31.813′E) area located in the Bangkok central business
district (CBD).

Past studies have demonstrated the ability of dispersion models
such as the American Meteorological Society/U.S. Environmental
Protection Agency Regulatory Model (AERMOD) to simulate local
emissions sources and ambient concentrations of gaseous and
particulate pollutants in urban air pollution studies (Gibson
et al., 2013; Gulia et al., 2014; Askariyeh et al., 2017; Katika and
Karuchit, 2018; Salva et al., 2021) and to assess industrial source
impacts (Seangkiatiyuth et al., 2011; Afzali et al., 2017; Tran et al.,
2019; Hanma, 2021). As for simulating PM2.5 in Bangkok, a review
of source apportionment studies indicates that traffic emissions and
biomass burning are the most important sectors (Wimolwattanapun
et al., 2011). Of these two sectors, traffic is the only major local
source in the CBD. Thus, this study focuses on the PM2.5 generated
from road vehicle exhaust.

To produce a useful model calculation of PM2.5 dispersion, an
emissions inventory is a key input. An emissions inventory for
Bangkok was recently developed that includes the traffic sector (Kim
Oanh, 2020) but not at the district level nor at the level of individual
streets, as would be appropriate for our application. Hence our work
tackles the challenge of developing a street-by-street traffic
emissions inventory. The chosen modeling domain in a traffic-
centric mixed-use area in the Bangkok CBD provides the testing
arena for our developed emissions data and modeling methodology.
Once it is shown to be effective, the model can be expanded to a
larger area or used in a different area altogether.

In the interest of contributing to the goal of improved air quality
management for Thailand, this study highlights the strength of our
air quality model in simulating PM2.5 mitigation scenarios. In a bid
to curb Thailand’s chronic and worsening PM2.5 situation, not only
in Bangkok but beyond, the Pollution Control Department of
Thailand released the National Agenda Action Plan to Eradicate
Particulate Matter Pollution Problem in 2019. The action plan
includes wide-ranging measures but does not prioritize the
measures for acting agencies to undertake. Chavanaves et al.
(2021) studied the effectiveness of the measures in the action
plan and rank them from the perspective of province-level health
damages. An air dispersion model not only can assess the
effectiveness of various source control measures but also can
reveal the spatial inhomogeneities of PM2.5 concentrations
resulting from different measures.

With the mentioned motivations, we offer the following as
objectives of this research: 1) calculation of an emissions
inventory for PM2.5 from road vehicle exhaust; 2) application of
AERMOD for PM2.5 dispersion in the Chulalongkorn University

area. The PM2.5 model provides spatial coverage that can reveal
hotspots and inhomogeneities. Model analysis provides insights into
PM2.5 source contributions in the study area. This work also
demonstrates impact assessment for a scenario study, with PM2.5

mitigation measures ranked accordingly. The article first explains
the methodology, then provides highlights of the model results, and
next presents model performance testing with statistical analysis.
Afterward, we discuss the model results, offer the model scenario
study demonstration, and finally present a conclusion.

2 Material and methods

2.1 Model study overview

This research utilized the AERMOD dispersion model system,
with PM2.5 observations used as model inputs and for model
performance testing. Figure 1 provides an overview of the
modeling system and relevant input data. The study focused on
an area 2.5 km by 2.5 km centered at Chulalongkorn University,
Bangkok, Thailand. Figure 2 shows the location of the modeling
domain, which lies mostly in the Pathumwan District. The
reasonings for site selection are based on the fact that the area is
highly commercialized with high traffic activity yet presents mixed
land use of educational institutes, hospitals, temples, residential
buildings, and recreational space. So there exists a clear
motivation to develop a tool that can assess air pollution health
risk and support air quality management.

2.2 Emission inventory

An emissions inventory, classified by vehicle type, was
developed at 1-h time resolution for primary PM2.5 from road
vehicle exhaust for each road segment located in the study area
for the period of 2018–2020. The road segments are meant for
representing parts of the road with different traffic volumes. The
multiyear period provides a larger set of traffic volume observations
to represent traffic inhomogeneities. The emissions rate ERi for each
vehicle type i for a given road section was calculated as.

ERi
g PM2.5

hr
( ) � ADi (vehicles · km traveled

hr
)pEFi

g PM2.5

vehicles · km traveled
( )

where ADi represents the traffic activity data for vehicle type i and
EFi represents the emissions factor for vehicle type i. Traffic activity
data comprises traffic volume per time and an average traveled
distance. For a given road segment, we assume the average travel
distance equals the length of the road segment. The total PM2.5

emissions for a given road section is the summation of emissions
rates across all vehicle types i = 1. . .n, where n is the total number of
vehicle types. We categorized four vehicle types, namely, personal
cars (PC), light-duty vehicles (LD) including vans and pick-up
trucks, heavy-duty vehicles (HD) including buses and large
trucks, and other vehicles (OT) including motorized three-
wheelers. The details of traffic activity data, including the data
sources and treatment of hourly variability, are provided in the
Supplementary Material. The PM2.5 EFs categorized by vehicle type
were those from the Atmospheric Brown Cloud emissions inventory
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manual (Shrestha et al., 2013). For PC, LD, and HD, the statistics for
the case of good control-EURO I and EURO II were used. The EF
used for PC was that for gasoline vehicles because 64.2% of

passenger cars in Bangkok use gasoline fuel (Department of Land
Transport, 2020). For other types (OT), the EF used was that for
motorcycles (4-stroke with control). The EFs were 0.007, 0.15, 0.72,

FIGURE 1
Diagram of the modeling system.

FIGURE 2
Map of the study area.
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and 0.05 g km–1 for PC, LD, HD, and OT, respectively. The
emissions rates for the four vehicle types are tabulated for each
road section in the Supplementary Material.

2.3 Model setup

The American Meteorological Society (AMS)/U.S.
Environmental Protection Agency (EPA) Regulatory Model
(AERMOD) is a steady-state plume dispersion model that
accounts for planetary boundary layer turbulence structure and is
capable of handling both surface and elevated sources over both
simple and complex terrain (Cimorelli et al., 2004). We used
AERMOD View™ software, version 10.0.1, to conduct our
simulations. The pollutant type was PM2.5. The simulation was
limited to primary particulate matter.

The sources in the model were configured as line area sources
because the lanes of emitting vehicles constitute a continuous line
source confined in the area within the width of the road. The size of
each line area source was determined by the width of the road,
ranging from 10 m to 45.5 m for 2-lane to 6-lane roads, respectively.
Only the main roads were designated as emissions sources. We
ignored vehicle emissions from alleys and minor streets due to lack
of traffic data. We assumed that these roads were far less busy than
the main roads, carrying insignificant hourly average traffic
volumes. The assigned emissions rates were calculated as
described in the previous section. For each road segment, we set
up four individual sources for the four emitting vehicle types. Each

source was assigned a mean emissions rate and hourly variability
factors. Ground-level Road segments were assigned their actual
mean ground elevations, while expressway segments were
assigned an elevation of 15 m above the actual mean ground
elevation below the segment.

As for modeled processes, the model computed not only
transport and dispersion but also deposition loss. The deposition
calculation followed the theory described in Cimorelli et al. (2004).
The particle size distribution used for emissions had a 0.99 fine
particle fraction and a mean mass diameter of 0.284 microns, as
calculated from the aerosol number size distribution measurement
data from an urban site by Schneider et al. (2015). That site’s size
distribution was selected due to its similarity to the traffic-
dominated environment of the Bangkok CBD.

The discrete receptors in the model were set at 4 monitoring
points, namely, Chulalongkorn Hospital, the Chulapat 14 Building,
the Chulalongkorn University (CU) dormitory canteen, and
Chulalongkorn Demonstration Primary School Gate 5, which we
will refer to as Chula Demonstration School. In addition, grid
receptors were set at a uniform spacing of approximately 130 m
along each road segment over the entire modeling domain.

2.4 Input data for model

The main input data for the AERMOD simulation included
meteorological data and terrain data. To account for PM2.5

originating from outside the modeling domain, we input
advected-in PM2.5 concentrations. Descriptions for all data
elements are provided below.

Meteorological conditions were calculated from the Weather
Research and Forecasting Model (WRF) model. The meteorological
data files, both for surface data and upper air data, were generated by
the U.S. EPA’s Mesoscale Model Interface Program (MMIF) at the
coordinate 13.73944 °N 100.5237 °E for the period of 2020. The data
files were processed by the U.S. EPA’s AERMETmeteorological pre-
processor software, AERMET View™, version 10.2.1. The surface
wind speeds and directions (blowing from) are summarized as wind
rose charts in Supplementary Figure S2 in the Supplementary
Material. The winds have seasonal patterns as shown for the
summer (March–June), the rainy season (July–October), and the
winter (November–February).

TABLE 1 The locations of the 4 monitoring stations.

PM2.5 monitoring point Location

Chulalongkorn Hospital 13.729852° N
100.536501° E

Chulapat 14 Building 13.743853° N
100.525705° E

CU dormitory canteen 13.741243° N
100.528605° E

Chula Demonstration School 13.737531° N
100.526655° E

TABLE 2 Simulated high values and annual average PM2.5 concentrations (µg m−3).

Location 1-h average 24-h average Annual average

100th %ile 99th %ile 100th %ile 99th %ile

1 Domain maximum (Phong Rama Intersection) 343.68 120.17 129.47 98.71 40.46

Domain mean 161.52 86.20 102.38 69.74 26.44

Domain minimum 160.00 85.00 101.22 68.62 25.74

2 Chulalongkorn Hospital 168.67 80.16 109.15 71.86 31.16

3 Chulapat 14 Building 160.25 74.24 101.70 65.82 26.07

4 CU dormitory canteen 160.31 74.23 101.51 65.71 25.92

5 Chula Demonstration School 160.20 74.21 101.50 65.72 25.92
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For the terrain data, we utilized the Shuttle Radar Topography
Mission SRTM1 products at a resolution of 1 arc-second (30 m) with
global coverage. The data were obtained via a terrain processor and
downloaded through the AERMOD View program. The modeled
area, in the city center, had low-lying and relatively flat terrain, with
most of the area at elevations of 10–20 m and the whole area ranging
from 69 m above mean sea level (MSL) to a few meters below MSL.

Since the actual PM2.5 levels in the modeling domain were
influenced by both local emissions and those emitted elsewhere
beyond the domain boundary, we augmented the predicted PM2.5

levels with advected-in PM2.5. Advected-in PM2.5 concentrations,
which are referred to in the AERMODView program as background
concentrations, were introduced to the model by referring to the
hourly PM2.5 measurements at upwind locations according to the
specific wind direction at each hour. The methodology for advected-
in PM2.5 is described in the Supplementary Material.

2.5 Performance evaluation

The statistical indices chosen for model testing included
fractional bias (FB), correlation coefficient (R), fraction within a
factor of two (FAC2), and normalized mean square error (NMSE).
These indices followed the recommendations of the U.S. EPA’s
“Guideline on Air Quality Models” (EPA, 2017). Past model studies
have discussed the relevance and meaning of these statistical indices
(Chang and Hanna, 2004; Gibson et al., 2013).

For model performance evaluation, the required PM2.5

measurement data in the study area for 2020 were downloaded
from www.CUsense.net, which provides collections of PM2.5 data
measured by various agencies. Measurement at the Chulalongkorn
Hospital monitoring station (station ID: 50t), conducted by the

Pollution Control Department, followed the official federal
equivalent method (Pollution Control Department, Ministry of
Natural Resource, 2010). The other three monitoring points in
the Chulalongkorn University area used light-scattering sensors
to measure PM2.5 (Chunitiphisan et al., 2017; 2018). Table 1
summarizes the locations of the 4 monitoring stations.

3 Results and discussion

We present the simulation results for the year 2020. We
attempted to conduct the simulations for 2018–2020 but
determining the input data for advected-in PM2.5 for years
2018 and 2019 was challenging because of significant incidence
of missing data for upwind PM2.5.

3.1 PM2.5 concentration prediction

To communicate the highest acute health risk of PM2.5

(Brook et al., 2010), the model results are presented as the
maximum PM2.5 concentration found for each receptor point.
Figure 3 shows the highest 24-h average PM2.5 concentration for
each point in the modeling domain for the year 2020. The spatial
distribution of PM2.5 in the modeling domain was very similar
regardless of the time-averaging period (24-h and 1-h) or the
percentile threshold. Maximum values and annual averages for
the year 2020 are summarized in Table 2. The values in the
domain are presented for various points among the grid
receptors, including the point with the highest annual average
value, a point with the mean annual average value, and the point
with the lowest annual average value. The receptors of interest

FIGURE 3
PM2.5 concentration (µgm−3) model results: Highest 24-h average for 2020. Numbered receptor points match the list in Table 2. Red lines represent
emissions sources.
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include the hotspot found at Phong Rama Intersection
(13.746559° N, 100.520794° E) and the four monitoring points
described in Table 1.

The simulation revealed new information regarding the peak
PM2.5 point at Phong Rama Intersection, where PM2.5 had never
before been measured. The busy intersection and the expressway
above this location contribute to the consistently high
concentration, making it the peak PM2.5 point for all time-
averaging periods. As for the remaining observation points, the
Chulalongkorn Hospital observation point was located by a roadside
at a busy intersection and thus exhibited higher concentrations than
the other three points located in the Chulalongkorn University
campus block, farther from the main public roads.

Table 2 also provides the 1-h average values in order to convey
the severity of the PM2.5 situation at particular hours, while the 24-h
average PM2.5 concentration is the index to be compared with the
ambient standard. The value at the 99th percentile was chosen for
the summary in accordance with the new World Health
Organization air quality guideline for 24-h average PM2.5

concentration. The maximum 1-h average PM2.5 concentration
(100th percentile value) in the domain and at each point of
interest occurs in the nighttime between 00:00 and 01:00. The
PM2.5 levels at the 100th percentile are significantly higher than
the 99th percentile values, indicating the significant role of nighttime
meteorology in creating unfavorable stagnant conditions. In the
context of PM2.5 regulations, the highest PM2.5 concentration from
the model agrees with the actual situation that Bangkok faces, with
the 24-h average PM2.5 concentration exceeding the Thailand
national ambient standards of 50 μg m−3 (as of 2020) and
37.5 μg m−3 (scheduled to begin in May 2023). As for the annual
average PM2.5 concentration, comparing even the minimum point
in the domain to the ambient standards of 25 μg m−3 (as of 2020) and
15 μg m−3 (enacted in July 2022), shows that the permitted standards
are exceeded at all points in the domain.

Table 3 provides not only the maximum values but also the
domain–average PM2.5 statistics for year 2020, including the mean,
standard deviation (SD), minimum, 25th percentile, 50th percentile,
75th percentile, and maximum. The summary is calculated for the
whole year as well as for each of the three seasons in order to
highlight the seasonality of PM2.5 levels in Bangkok. Seasons are
categorized as Summer (March–June), Rainy (July–October), and
Winter (November–February). Comparing our results with those of
PM2.5 models published in the literature, Peng-in et al. (2022)
presented a PM2.5 model based on satellite-retrieved AOD for the
Bangkok Metropolitan Region (BMR) with comparable statistics for
the whole year. Their modeled domain–average PM2.5 values were
lower than ours, probably because our domain lies within the CBD,

which experiences intense traffic activity. In terms of seasonal
statistics, our domain–average values seem to be higher and
more spread than those of Peng-in et al. (2022) in the peak
PM2.5 season (winter) but lower and less spread than those of
Peng-in et al. (2022) in the low-PM2.5 season (rainy season). We
further explore these patterns via comparisons with observations in
our domain in Section 3.3.

3.2 Source contribution analysis

With the ability to calculate PM2.5 resulting from individual
source groups as well as from all sources at once, we conducted the
source contribution analysis by investigating the various road types
and vehicle types. Source group is a feature in AERMOD View that
lets user defines grouping of multiple sources. In the first source
contribution analysis, the contributions from ground-level roads,
expressways, and advection were segregated. We analyzed the source
contribution information for the 2020 annual average PM2.5 for each
of the 5 points of interest as shown in Figure 4A). Higher traffic
volume on the expressway yielded higher emissions rates than on at-
grade roads, with the expressway contributing a notably large
contribution of 32.11 percent. The Chulalongkorn Hospital point
showed a higher contribution from at-grade roads (17.49 percent)
because of its proximity to busy at-grade roads. At the three points
located in the Chulalongkorn University campus area, the main
contribution came overwhelmingly from advected-in PM2.5

(~99 percent), while the nearest main roads, situated
35–180 m away, contributed only 0.18–0.29 μg m−3 in total.

Figure 4B) provides a contribution analysis for various vehicle
types as emissions sources. This analysis provides further insight to
which vehicle types dominate the local PM2.5 emissions. HD showed
the highest contribution at the Phong Rama Intersection because of
the significant volume of heavy-duty trucks on the expressway. For
the remaining points, LD showed a slightly higher contribution than
HD because of the high LD traffic volume on nearby roads
(averaging 18% of total traffic volume) compared to that of HD
(3% on average). It is worth pointing out that the EF for HD was
much higher than other vehicle types: 5 times that of LD, 14 times
that of OT, and 103 times that of PC.

3.3 Model-observation comparison

Here we test the model by comparing the simulation results with
PM2.5 observations as described in Section 2.5. The analysis is
presented for the year 2020. Along with the statistical indices in

TABLE 3 24-h average PM2.5 concentration (µg m−3): Geographic domain–average summary statistics.

Mean SD Min 25th %ile 50th %ile 75th %ile Max

All year 26.44 15.41 6.84 15.10 20.21 34.12 102.37

Summer 17.78 6.93 6.84 12.98 15.66 19.78 41.62

Winter 42.07 15.78 13.47 30.64 40.01 53.13 102.37

Rainy 8.50 1.13 7.00 7.50 8.00 9.50 10.00
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Table 4, we present the comparison in a time-series plot, a scatter
plot, and a quantile–quantile plot (Q–Q plot). We provide these
visualizations for two representative receptor points, namely,
Chulalongkorn Hospital and the Chulapat 14 Building as shown

in Figure 5. The statistics for the 24-h average observations and
predicted values are presented as a whisker box plot in Figure 6, with
the data presented for the whole year of 2020 as well as separated by
season. Here the median is marked by the middle line in the box,
while the mean is marked by a cross sign. The bottom and the top of
the box are defined by the P25* and P75* values, respectively, which
are calculated from the 25th percentile (P25) and the 75th percentile
(P75). Let us define P75–P25 as the interquartile range (IQR). P25*
is then the larger of two values: P25 − 1.5(IQR) and the minimum
value over all data. Similarly, P75* is the smaller value of two values:
P75 + 1.5(IQR) and the maximum value over all data. The two ends
of the whisker drawn as straight lines are the overall minimum and
maximum. Solid dots represent outliers.

The results for the Chulalongkorn Hospital indicate better model
accuracy than those for the Chulapat 14 Building and the other two
nearby sites. Temporal fluctuation in PM2.5 concentration is generally
captured well in the time-series plots, with some tendency of

FIGURE 4
Annual average PM2.5 segregated by source contribution based on (A) road types and advection; and (B) vehicle types and advection. The
concentrations are tabulated below the chart and the percentage of each source is displayed on the bar chart.

TABLE 4 Statistical indices of model–observation comparison for PM2.5

concentration.

Receptor point Statistical index

FB R FAC2 NMSE

Chulalongkorn Hospital −0.22 0.94 0.99 0.08

Chulapat 14 Building −0.16 0.85 0.78 0.15

CU dormitory canteen −0.27 0.71 0.67 0.33

Chula Demonstration School −0.10 0.86 0.860 0.12
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FIGURE 5
Comparisons of modeled and observed PM2.5 concentrations as (A,B) time-series plots, (C,E) scatter plots, and (D,F) Q–Q plots for (A,C,D)
Chulalongkorn Hospital and (B,E,F) the Chulapat 14 Building.

FIGURE 6
Summary of seasonal statistics for observed (orange) and modeled (blue) PM2.5 concentrations for (A) Chulalongkorn Hospital and (B) the Chulapat
14 Building.
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overprediction especially in the rainy season. The whisker box plot also
highlights the particularly poormodeling of the PM2.5 concentration for
the rainy season, with boxes for observed and modeled data hardly
overlapping. Nevertheless, the overall correlation is considered
acceptable given the R values ranging from 0.71 to 0.94 for different
receptor points. Model overprediction is confirmed by the FB values
ranging from −0.22 to −0.10. The Q–Q plots show that the predicted
PM2.5 concentrations have a distribution of values resembling that of
the observed PM2.5 concentrations; thus, the data points lie along a
relatively straight trendline. However, the slope of the line shows a value
slightly greater than unity, reflecting the overprediction of modeled
PM2.5 concentration. The acceptability of model accuracy is indicated
by the scatter plots, which show data points clustering along the 1:1 line.
The points lie well within the area bounded by the 2:1 line and the 1:
2 line, as indicated by FAC2 values of 0.99 for Chulalongkorn Hospital
and 0.78 for the Chulapat 14 Building. As presented in Table 4, the
Chulalongkorn Hospital site showed the lowest NMSE value (0.08)
among the points of interest, indicating the highest model accuracy.We
interpret this enhanced accuracy as being due to the proximity of this
site to a main road for which the emissions were well documented. The
three sites in the ChulalongkornUniversity campus area showed poorer
accuracy, especially when observed PM2.5 concentrations fell below
20 μg m−3. Because these sites were located farther from emissions
sources, they received hardly any contribution from the dispersed
plumes from the nearest main road sources. Therefore, at low
observed PM2.5 values, PM2.5 levels were instead dominated by the
advected-in contribution. We suspect that this model–observation
disparity may be due in part to the model’s assumptions about
advected-in PM2.5.

Another commonly reported PM2.5 pollution statistic is the
number of days in each year that exceed the 24-h average
ambient standard. Table 5 provides a comparison between the
modeled and observed exceedance counts for the year 2020 for
each of the four monitoring points as well as at the hotspot location.
The modeled counts are higher than the observed counts at all sites,
in line with the overprediction discussed above. The whisker box
plot in Figure 6 also highlights this issue, showing several high
outliers for modeled winter values in particular.

3.4 Discussion

In order to pave the way for future research, we now explore the
model limitations encountered in utilizing the AERMOD model to
produce satisfying model predictions with acceptable accuracy. Given

the lack of traffic activity information with continuous time coverage,
we made several assumptions based on a 1-week sample of traffic
activity observed in the modeling domain as well as a monthly traffic
dataset from a past study. Actual trafficmay not exhibit the same hourly
pattern across different roads, but modeling these differences remains
an aspect for future development. Also missing from the traffic data is
the additional count of motorcycles, which can be rather substantial in
the domain. These known limitations of the model would be expected
to result in emissions inventory underestimation. Another category of
emissions that the model did not account for was non-exhaust
emissions, including road surface wear, road vehicle tire wear, and
brake wear (EEA, 2019). To our knowledge, there has not been a local
study of the EFs of these non-exhaust emissions. We decided to ignore
them because road conditions, environmental conditions, and vehicle
conditions in Bangkok may differ drastically from the studied
conditions in European countries, lead to high uncertainty when
applying the EMEP/EEA EFs. However, these non-exhaust
emissions, may potentially play a significant role. A modeling study
for the city of Banská Bystrica, Slovakia, by Salva et al. (2021) showed
that including non-exhaust PM2.5 emissions resulted in a total
emissions rate up to 2.5 times that of exhaust emissions alone.
Another limitation is the lack of chemical production calculation,
causing the secondary formation of PM2.5 to go unaccounted for.
However, this omission likely did not significantly affect the
predicted levels. A previous source apportionment study in the BMR
suggested that secondary aerosol formation may contribute
~0.1–1 percent of ambient concentrations (Chuersuwan et al., 2008).
However, recent study suggested that secondary organic carbon may
contribute up to approximately 60 percent of PM2.5 (Rattanapotanan
et al., 2023). Another source sector missing from the calculation is
cooking which may be of importance at certain hours because there are
numerous restaurants in the study area. There has never been a study to
account for such emission rates to our knowledge.

Regarding the source contribution analysis, we found the
dominant influence in the model was advected-in PM2.5. Our
assumption of a two-box model (described in the Supplementary
Material) and referencing of upwind roadside monitoring data
might have introduced an excessive PM2.5 level that led to an
overall overestimation by the model despite the several factors
discussed above that contribute toward underestimation. The
burden of adding advected-in PM2.5 to achieve good agreement
with observed PM2.5 levels is a trade-off for using a dispersion model
such as AERMOD, which is relatively easier to implement than a
regional chemical transport model. Future work may explore the
ways in which including non-exhaust emissions might lower the
influence of advected-in PM2.5 on the model.

To investigate the contributions of local sources, we compare
our findings with those of a previous study in a similar setting. In our
comparison with Salva et al. (2021)’s AERMOD simulations in a city
in Slovakia, we focus on the relative contributions of exhaust
emissions from various vehicle types. Salva et al. (2021) assigned
the EFs based on fuel type (petrol vs. diesel) and technology
(EURO2 to EURO6), while we chose a simpler treatment with a
single EF value for each vehicle type due to lack of actual vehicle fleet
data. Comparing the emissions factors that we used with those in
Salva et al. (2021) for the same vehicle types for the technology
(EURO-X) with the highest population, we found that our EFs were
higher for all vehicle types. Our EF for HDwas 103 times that for PC,

TABLE 5 24-h average PM2.5 concentrations: Model–observation comparison of
ambient standard violation count in 2020.

Receptor point Modeled Measured

Chulalongkorn Hospital 44 27

Chulapat 14 Building 36 26

CU dormitory canteen 36 23

Chula Demonstration School 36 26

Phong Rama Intersection - 89 -
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while our AADTPC:AADTHD, traffic volume ratio lay in the range of
9–117 with a mean value of 35. Accordingly, the model shows HD
emissions surpassing PC emissions for almost all represented road
segments in the domain. Salva et al. (2021) found that among the
exhaust emissions sources for the study domain, PC provided the
largest contribution, while we found that HD and LD provided the
largest contributions for the receptor points dominated by
expressway and ground-level urban roads, respectively. This
difference between study domains is in line with the
technological reality of trucks in Thailand: mostly EURO2 or at
best EURO4.

Our PM2.5 model for the Bangkok CBD can provide new
insights into PM2.5 models including previously developed
models that used different techniques and tools (Ketjumpol and
Sakworawich, 2020; Chalermpong et al., 2021; Kumharn et al., 2022;
Peng-In et al., 2022; Thongthammachart et al., 2023). The variability
in emissions rates from time-varying traffic data may provide an in-
depth tool to investigate the particular incidence of extreme health
risks posed by PM2.5. Such analysis can support the decision to
tackle precise sources driving PM2.5 peaks.

Given the points discussed above, potential research that builds
upon these lessons may utilize comprehensive continuous traffic
surveillance with the aid of artificial intelligence. Such research may
further develop this concept of emissions inventory calculation into
a regional chemistry transport model to provide a complete
representation of PM2.5 sources in a wider region not limited to
a small geographic domain of interest. Another opportunity to
enhance the knowledge of PM2.5 for Bangkok air quality
management would be the inclusion of PM2.5 sources other than
road traffic. We note that these potential research directions
emphasize the need for an updated, accurate emissions inventory
at high spatiotemporal resolution for effective local air quality
management.

3.5 Scenario study

We demonstrate the utility of the model as a decision-making
support tool by studying PM2.5 mitigation scenarios from the
National Agenda Action Plan to Eradicate Particulate Matter
Pollution Problem (Pollution Control Department, 2019). Two
PM2.5 mitigation scenarios from the action plan were chosen,
namely, the fuel standard (FS) scenario and the shift mode (SM)
scenario. The simulation period is the year 2020. The effects of each
mitigation measure are reflected in the emissions rate calculation as
described below. Advected-in PM2.5 concentrations were kept the
same as in the base case simulation as described in Section 2 because
the result of each policy cannot be effectively estimated in a regional
context. With this limitation, we do not anticipate realistic modeled
PM2.5 levels in the studied scenarios. However, even unrealistic
model results can provide valuable comparative information in
determining which policy results in a better improvement with
regard to PM2.5 levels.

The FS scenario refers to the measure to upgrade emissions
standards to EURO6 by the year 2022; however, we note that in
reality this upgrade has not been achieved as of January 2023 and
also the new EURO6 standard is enforced on new vehicles only. This
change was modeled by altering the emissions factors for the four

types of vehicles as shown in Table 6. The EURO6 EFs are taken
from Kim Oanh (2020). The resulting change in emissions rates on
each road segment then depends on the traffic volume classification
by vehicle type. In this scenario, we assumed 100 percent
replacement of the existing fleets running in the modeling
domain by new vehicles meeting the EURO6 emissions
standards. The changes in PM2.5 level (not shown) occur almost
entirely as decreases with respect to the base case. The reduction is
pronounced along the main road and especially along the
expressway alignment because of the high total emissions in the
area. The one slight increase in PM2.5 occurs on a road segment
where the traffic data shows a particularly high portion of motorized
three-wheelers. The rather counterintuitive EF increase for three-
wheelers under the EURO6 standard, categorized as OT, results in
this small increase.

The SM scenario refers to a measure that promotes public
transportation and lower-emissions modes such as bicycling. The
assumption in this scenario is that PC traffic volume is lowered by
70 percent while other vehicle traffic volume is reduced by
50 percent compared to the traffic volume in the base case.
The shift away from PC, including taxi usage, as well as away
from three-wheeled taxi usage, would translate to higher
passenger counts on mass transit electrified rail systems and,
possibly, electric buses, thus result in no additional local PM2.5

exhaust emissions. The reduced traffic volume data fed into the
emissions inventory calculation results in lower overall
emissions. The PM2.5 reduction is found to be most significant
along the expressway alignment, just as in the FS scenario, again
because of the high PC volume on the expressway.

To compare the results of the two PM2.5 mitigation scenarios, we
consider the count of days in each year that exceed the 24-h average
ambient standard 50 μg m−3 at the points of interest under each
scenario and in the base case. As shown in Table 7, the FS scenario
proved more effective at lowering PM2.5 levels below the 50 μg m−3

threshold. The results at the three receptor points in the
Chulalongkorn University campus area were not affected in
either scenario because their dominant contribution was from
advected-in PM2.5; the results are therefore not shown.

TABLE 6 Emissions factors for the four vehicle types.

Scenario Emissions factor (g/vehicle·km)

PC LD HD OT

Base case 0.007 0.15 0.72 0.05

FS 0.005 0.029 0.02 0.087

TABLE 7 24-h average PM2.5 concentrations: Ambient standard violation
counts in various scenarios.

Point of interest Scenario

Base FS SM

Phong Rama Intersection 89 40 69

Chulalongkorn Hospital 44 36 44
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4 Conclusion

This work presented a proof of concept in utilizing traffic
observation data classified by vehicle type for the calculation of a
PM2.5 emissions inventory for road traffic sources in the study
domain, here the Bangkok CBD. The model results revealed a PM2.5

hotspot location at Phong Rama Intersection near the expressway,
where PM2.5 has never before been monitored. The peak 1-h average
PM2.5 concentration was 343.68 μg m−3, while the peak 24-h average
PM2.5 concentration was 129.47 μg m−3.

This analysis presented new information for the planning of air
quality and health monitoring. The source contribution analysis of
annual average PM2.5 indicated a contribution from expressway traffic
being 32 percent for the location near the expressway, while an at-grade
roadside receptor farther from the expressway might receive a
contribution of 17.5 percent from ground-level roads but none from
the expressway. In each case, the substantial remaining portion was
attributable to advection from outside the modeling domain. For
receptor points inside the University campus, almost all PM2.5 was
due to advection from outside the modeling domain. Another view of
the source contribution analysis for vehicle types revealed HD and LD
as the top contributors of locally emitted PM2.5. Advected-in PM2.5 was
the most dominant fraction overall, highlighting the transboundary
nature of air pollution and the need for solutions that extend beyond a
given small area. The model testing results showed acceptable
agreement between modeled and observed 24-h average PM2.5

levels, with the model tending to overpredict. The model was
utilized in a scenario study to demonstrate its usefulness as a tool to
support decision-making in the selection of PM2.5 abatement measures.
We compared the PM2.5 mitigation effectiveness of two measures from
the National Agenda Action Plan to Eradicate Particulate Matter
Pollution, namely the FS upgrade and the promotion of a travel
mode shift. We found that the FS upgrade measure resulted in a
greater reduction in the number of days in each year that exceed the 24-
h average ambient standard.
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