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Dissolved Oxygen (DO) concentration is an essential water quality parameter
widely used in water environments and pollution assessments, which indirectly
reflects the pollution level and the occurrence of blue-green algae. With the
advancement of satellite technology, the use of remote sensing techniques to
estimate DO concentration has become a crucial means of water quality
monitoring. In this study, we propose a novel model for DO concentration
estimation in water bodies, termed Dissolved Oxygen Multimodal Deep Neural
Network (DO-MDNN), which utilizes synchronous satellite remote sensing data
for real-time DO concentration inversion. Using Lake Taihu as a case study, we
validate the DO-MDNN model using Himawari-8 (H8) satellite imagery as input
data and actual DO concentration in Lake Taihu as output data. The research
results demonstrate that the DO-MDNNmodel exhibits high accuracy and stability
in DO concentration inversion. For Lake Taihu, the performance metrics including
adj_R2, RMSE, Pbias, and SMAPE are 0.77, 0.66 mg/L, −0.44%, and 5.36%,
respectively. Compared to the average performance of other machine learning
models, the adj_R2 shows an improvement of 6.40%, RMSE is reduced by 8.27%,
and SMAPE is decreased by 12.1%. These findings highlight the operational
feasibility of real-time DO concentration inversion using synchronous satellite
data, providing a more efficient, economical, and accurate approach for real-time
DO monitoring. This method holds significant practical value in enhancing the
efficiency and precision of water environment monitoring.
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1 Introduction

In recent years, the rapid growth of population, accelerated industrialization, and
excessive use of fertilizers and pesticides have resulted in numerous adverse effects on
the water quality of lakes. As a consequence, local lake environments are facing serious
deterioration in water quality and eutrophication issues (e.g., Liu et al., 2019; Liang et al.,
2021). Therefore, enhancing the capability of water quality monitoring and timely
understanding the changes in lake water environments are of great significance for lake
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protection and pollution control (e.g., Lyu et al., 2015; Batur and
Maktav, 2018; Chen et al., 2021). Dissolved Oxygen (DO)
concentration is a commonly used water quality indicator in
water environments and pollution studies. Monitoring the spatio-
temporal variations of DO has become crucial in assessing water
environments. DO, primarily originated from atmospheric
diffusion, biological photosynthesis, and runoff, is influenced by
factors such as radiation flux density, precipitation, and water
nutrient concentrations. If the water body becomes eutrophic, it
can lead to abnormal proliferation of cyanobacteria, and the
decomposition of microorganisms and organic matter can
significantly deplete DO concentrations (e.g., Ma et al., 2013).
The decrease in DO concentration has various adverse effects on
the ecological diversity of the region. It leads to the death of other
organisms in the water and results in discoloration and foul odor
(e.g., Guo et al., 2021). Therefore, DO concentration can indirectly
describe the degree of water pollution and reflect the ecological and
pollution status of the water body.

Traditional water quality monitoring methods rely on manual
sampling or station monitoring, which can provide certain
monitoring data (e.g., Zhang et al., 2022). However, these
methods are costly for deploying monitoring buoys, and have a
limited effective monitoring range, which makes it difficult to
observe the dynamic changes of pollution on a macro scale (e.g.,
Sagan et al., 2020). With the continuous improvement in the spatial
and temporal resolution of satellite remote sensing data, the use of
satellite remote sensing data for water quality inversion has
gradually become an important approach for monitoring surface
water quality (e.g., Batur andMaktav, 2018). In current research, DO
is primarily inferred indirectly through optically active constituents
(OACs) or directly through remote sensing reflectance (Rrs). In
terms of indirect inference using OACs, Guo et al. (2021) used
Landsat and MODIS satellite data and employed a Support Vector
Regression (SVR) model with strong generalization capability to
estimate the measured DO concentration in four lakes. The study
successfully reproduced the spatial distribution and monthly
variation of DO in Lake Huron from 1984 to 2000. Peterson
et al. (2020) utilized the relationship between OACs and NOACs
to apply deep learning methods for anomaly detection of DO. Their
approach successfully identified water quality anomalies. Kim et al.
(2020) established a multiple regression analysis model based on the
correlation between DO, water temperature, and Chlorophyll-a
(Chl-a), demonstrating the potential monitoring capability of
satellite remote sensing in high spatio-temporal resolution DO
concentration. Regarding direct estimation using Rrs, Karakaya
and Evrendilek. (2011) proposed a simple approach based on
optimal fit multiple linear regression to estimate DO
concentrations using Landsat 7 data. Sharaf, et al. (2017)
developed a backpropagation neural network to estimate DO
using Landsat 8 data and mapped the spatial distribution of DO
concentrations in the Saint John River in Canada. Batur andMaktav.
(2018) estimated DO concentrations in Lake Gala (Turkey) using
data fusion and mining techniques, such as principal component
analysis (PCA), with the assistance of Landsat 8 and Sentinel-2A.
These studies demonstrate the potential of remote sensing satellites
in monitoring DO concentrations at high spatial and temporal
resolutions. For learning features from a single modal (such as
text, audio, or video), Artificial Neural Network (ANN) is the most

direct learning approach in general. However, different modalities
exhibit a complementary yet imbalanced relationship. Inspired by
the way humans perceive and process complex information through
multiple senses (e.g., vision, hearing), Ngiam, et al. (2018) from
Stanford University proposedMultimodal Deep Learning (MDL). In
contrast to a single modal, one of the ideas behind multimodal
learning is to employ multiple independent sub neural networks
(sNNs) to learn features from different modalities. The learned
results are then fused and inputted into a new sNN for prediction,
enabling the fusion of information from various modalities and
facilitating the exchange of information between them. During the
training process, a single modal often fails to encompass all the
necessary information for producing accurate outputs. By
incorporating information from multiple modalities, the
multimodal network training process achieves information
supplementation, expands the coverage of information contained
in the input data, enhances model accuracy, and improves model
robustness.

However, previous studies often used polar-orbiting remote
sensing satellites, which have low revisit rates for the same
location (e.g., Sentinel-2 (e.g., Peterson et al., 2020; Wang et al.,
2022) with a revisit period of 5 days, and Landsat-8 (e.g., Chen and
Quan, 2012) with even longer intervals of 16 days), often requiring
several years of data accumulation to establish effective inversion
models.

The new generation geostationary satellite, Himawari-8 (H8)
possesses high temporal resolution (e.g., Wang et al., 2017; Wang
et al., 2020; Ning et al., 2021). Compared to commonly used polar-
orbiting satellites for water quality remote sensing, it offers a higher
revisit rate, which allows for repeated sampling of the same location
every 10 min. This makes it suitable for monitoring continuous
changes in water quality and provides important data support for
environmental monitoring. Some researchers have already
conducted effective monitoring studies using H8 satellite remote
sensing data. Wang et al. (2017) utilized H8 satellite remote sensing
data for dynamic monitoring of cyanobacterial blooms in lake
Taihu. Chen. (2019), with the support of H8 satellite remote
sensing data, effectively monitored floating algae, achieved better
monitoring results than the Geostationary Ocean Color Imager
(GOCI) satellite (with a revisit period of 1 h). These research
findings demonstrate that the high revisit rate characteristic of
the H8 satellite can capture more frequent water quality changes,
thereby detecting phenomena that may be missed by existing
satellites (such as the GOCI satellite) and providing robust data
support for the continuous and dynamic monitoring of lake water
quality (e.g., Yang et al., 2021). Currently, there is no existing
research on DO concentration inversion using H8 satellite
remote sensing data. This study aims to establish a correlation
model between H8 satellite remote sensing data and DO
concentration through machine learning or deep learning
algorithms to achieve real-time monitoring of DO concentration.

This study takes Lake Taihu as an example to construct a high-
precision deep learning model based on H8 satellite remote sensing
data for estimating DO concentration. The main objective is to
provide an efficient inversion method for monitoring DO indicators
in Lake Taihu and other inland lakes, aiming to reduce monitoring
time delays and improve inversion accuracy. This research plays a
crucial role in strengthening the management of organic pollution in
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lakes, supporting water environment pollution prevention and
control, pollutant source tracing, and water quality monitoring
and early warning. It is expected to serve as a valuable
supplement to water quality remote sensing inversion and
estimation methods.

2 Materials and methods

2.1 Research area overview

Lake Taihu, as shown in Figure 1, is the third largest freshwater
lake in China. It is located in the southern part of Jiangsu Province,
between 119°52′32″E to 120°36′10″E and 30°55′40″N to
31°32′58″N. The lake is situated in the economic core area of the
Yangtze River Delta and provides daily water supply for irrigation,
domestic use, transportation, and other purposes for the
surrounding residents. Lake Taihu has a surface area of
2,427.8 km2, a water area of 2,338.11 km2, a shoreline length of
393.2 km, an average depth of 1.9 m, a maximum depth of 2.6 m,
and a total storage capacity of approximately 5 billion m3 (e.g., Lyu
et al., 2015).

The surrounding areas of lake Taihu suffer from significant
pollution, frequent algal blooms, and widespread accumulation of

cyanobacteria, which keep the lake in a state of mild eutrophication
(e.g., Ma et al., 2008; Zhang et al., 2010; Zhu et al., 2021). The
Ecological Environment Reports of Wuxi City, Suzhou City, and
Changzhou City in 2021 (e.g., Changzhou Ecological Environment
Bureau, 2021; Suzhou Ecological Environment Bureau, 2021; Wuxi
Ecological Environment Bureau, 2021) indicated that, according to
the “Surface Water Environmental Quality Standards” (GB3838-
2002), the overall water quality of lake Taihu during the year was
classified as Class IV. The comprehensive nutrient status index
ranged from 53.3 to 59.5, indicating a mild eutrophication status.

2.2 Data and preprocessing

2.2.1 DO data
The DO measured data used in this study were obtained from

the Comprehensive Business Portal of the Ministry of Ecology and
Environment, which provides real-time data from the national
automatic monitoring system for surface water quality during the
“13th Five-Year Plan” period. The selected data includes DO (mg/L)
and water temperature (°C) indicators from four monitoring
sections within the Lake Taihu Basin, covering the period from
January 1, 2019, to December 31, 2021 (Table 1). The data collection
frequency is 1 h per measurement, and it adheres to the technical

FIGURE 1
Map of Lake Taihu’s Scope and Distribution of Monitoring Sections.
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specifications for automatic monitoring of surface water (HJ 915-
2017).

Due to the potential influence of environmental changes or
instrument malfunctions during data collection at water quality
automatic monitoring stations, it is necessary to address missing and
abnormal data to ensure the accuracy of data used for model fitting.
Missing values in the obtained DO data were excluded, and the 3σ
principle was applied. Concentration data falling within the range of
[DOmean − 3 × DOstd, DOmean − 3 × DOstd] were retained as the
measured DO data for the model, while data outside this range
were considered abnormal and removed. Here, DOmean represents
the average DO concentration for the current monitoring section,
and DOstd is the standard deviation of DO concentration for the
same section.

2.2.2 Synchronous satellite data
H8 satellite carries an advanced optical sensor, namely,

Advanced Himawari Imager (AHI), which includes 3 visible light
bands, 3 near-infrared bands, and 10 infrared bands. It captures full-
disc images of the Earth every 10 min. These images provide

high-frequency coverage of the entire Asia-Pacific region, which
includes Asia, Oceania, and part of the Pacific Ocean. The specific
coverage area is approximately half of the Earth, equivalent to about
3.9 million square miles. It possesses characteristics of high spatial
coverage and high temporal resolution. The H8 satellite remote
sensing data used in this study is obtained from the Himawari
Monitoring System P-free (https://www.eorc.jaxa.jp/ptree/),
accessed on 15 July 2022, which provides full-disc satellite images
with a spatial resolution of 2 km. Data from the H8 satellite were
selected from January 1, 2019, to December 31, 2021, with hourly
sampling to match the temporal resolution of the DO measured
data. In total, 26258 images were acquired. Channels 1 to 16 were
used for DO inversion, where channels 1–6 were mainly used to
obtain visible light and infrared images for monitoring cloud cover,
atmospheric details, and temperature, as well as studying weather
patterns and cloud formation; Channels 7–16 were primarily used
for infrared temperature detection and high-resolution infrared
images to detect atmospheric temperature, water vapor
distribution, cloud characteristics and properties, as well as
observe cloud and surface temperature distribution. The
H8 satellite data used are L1-level data, the data file format is
Network Common Data Form (NetCDF), the spatial resolution is
2 km × 2 km, the temporal resolution is 10 min/times, and the
wavelength ranges and uses of each channel of data are shown in the
Table 2.

The H8 satellite has unique advantages over other satellites in
lake water quality monitoring. Firstly, H8 is a geostationary orbit
satellite, whose position is stabilized at a specific location over the
Earth, providing high-resolution images continuously every 10 min/
time, enabling us to obtain long time series data and to observe
changes in the water bodies of lakes more frequently. Secondly, H8 is

TABLE 1 Latitude and Longitude information of monitoring sections in lake
Taihu.

Monitoring sections Longitude Latitude

Xuhuxin 120°25′54″E 31°9′33″N

Xidongshuichang 120°22′20″E 31°26′54″N

Lanshanzui 119°56′13″E 31°12′19″N

Tuoshan 120°9′25″E 31°23′36″N

TABLE 2 Information parameters by band.

Band Center wavelength/um Spatial resolution/km Use

Visible light

1 0.46 1 Vegetation, Aerosol Observation, Color Image Synthesis

2 0.51 1 Vegetation, Aerosol Observation, Color Image Synthesis

3 0.64 0.5 Lower Cloud (Fog) Observation, Color Image Synthesis

Near-infrared

4 0.86 1 Vegetation, Aerosol Observation

5 1.6 2 Identification of Various Cloud Phases

6 2.3 2 Observation of Cloud Droplet Effective Radius

Infrared

7 3.9 2 Observation of Lower Clouds (Fog), Natural Disasters

8 6.2 2 Observation of Upper- and Middle-Level Water Vapor Content

9 7.0 2 Observation of Middle-Level Water Vapor Content

10 7.3 2 Observation of Middle- and Lower-Level Water Vapor Content

11 8.6 2 Cloud Phase Identification and SO2 Monitoring

12 9.6 2 Measurement of Total Ozone Amount

13 10.4 2 Observation of Cloud Images and Cloud Top Conditions

14 11.2 2 Observation of Cloud Images and Sea Surface Temperature

15 12.3 2 Observation of Cloud Images and Sea Surface Temperature

16 13.3 2 Measurement of Cloud Layer Height
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equipped with an advanced multispectral imaging instrument,
which is capable of capturing different wavelengths of light, thus
providing more detailed and multilevel information on water
quality, and therefore H8 satellite data is selected for this paper.

When using H8 satellite remote sensing data, it is necessary to
perform atmospheric correction using an improved version of the 6S
model (e.g., Li et al., 2014). The improved 6S model incorporates
parameters are from the Copernicus Climate Data Store of European
Centre for Medium-Range Weather Forecasts (ECMWF) (e.g.,
Hersbach et al., 2020). After atmospheric correction, the apparent
reflectance is further corrected for water body using the Gordon
model. Finally, the corrected radiance data is converted into surface
temperature. Eqs 1, 2 are used to convert the atmospherically
corrected radiance temperatures into brightness temperatures,
and Eq. 3 is used to calculate the surface temperature.

Tb � c2

ln 1 + c1
Lsf c

( ) (1)

Lsf c � L
Ta

(2)

Ts � Tb

1 + λ1Tb
ρv

( ) ln e( )
(3)

Where Tb refers to brightness temperature, c1 and c2 are
constants, Lsfc represents land surface radiance temperature, L
represents radiance temperature data after atmospheric
correction, Ta represents land surface temperature, Ts represents
surface temperature, λ1 represents the proportional constant in the
TBB band of H8, ρv represents atmospheric water vapor content,
and e represents water vapor pressure.

According to the study by Chen et al. (2022), the portion of
remote sensing reflectance (Rrs) corresponding to solar zenith angle
(SOZ) less than 60° is considered as valid data. A correction is
applied to the Rrs of bands 1 to 6 using Eq. 4 to mitigate errors
caused by SOZ offset. Based on the threshold proposed by Ning et al.
(2021) and Qi et al. (2014), when Rrs of band 1 is less than or equal
to 0.25, the obtained reflectance is essentially unaffected by solar
flickering, thick aerosols, and heavy cloud cover, and is considered as
valid data. No invalid data was found during this process that
required filling.

R′
rsi �

Rrsi

cos α × 1 − 1.3 × sin 0.05 × α( )( )( ) (4)

Where i � 1 . . . ..6, Rrsi
′ represents the i-th channel of the

corrected reflectance, Rrsi represents the Remote Sensing
Reflectance of the i-th channel, and α represents SOZ.

2.3 Model construction and evaluation
methods

2.3.1 Input data
Reference (e.g., Guo et al., 2022) introduced the use of visible

and near-infrared bands of remote sensing reflectance (Rrs) to
extract more spectral information. In this chapter, we combine
these spectral bands to derive multiple spectral indices for more
accurate water quality inversion. The selected spectral bands for the

visible range from H8 are 460 nm, 510 nm, and 640 nm, while the
near-infrared band is at 860 nm. By combining these bands, several
spectral indices can be calculated, such as the Normalized Difference
Vegetation Index (NDVI) shown in Eq. 5 and the Normalized
Difference Water Index (NDWI) shown in Eq. 6. Additionally,
due to the significant negative correlation between DO
concentration and temperature, infrared bands (from 7th to 16th
band) are included as input features in the model.

NDVI � R′
rs4 − R′

rs3

R′
rs4 + Rrs3

′
(5)

NDWI � R′
rs2 − R′

rs4

R′
rs2 + R′

rs4

(6)

WhereNDVI is the Normalized Difference Vegetation Index,Rrs3
′

is the 3-band of the corrected Visible light, and R′
rs4 is the 4-band of

the corrected Near-infrared; NDWI is the Normalized Difference
Water Index, and Rrs2

′ is the 2-band of the corrected Visible light.
The extracted features from the H8 satellite remote sensing data,

based on different central wavelengths and spectral indices, are divided
into three modes. Mode A includes the visible, near-infrared, and
shortwave infrared bands (1st to 6th channels) of Rrs. Mode B consists
of various spectral indices. Mode C includes the surface temperature
from the infrared bands (7th to 16th channels). Before inputting the
features into the model, standardization processing is applied to each
feature, as shown in Eq. 7:

x′i �
xi − x min

x max − x min
(7)

Where x′i is the normalized variable of the i-th feature in sample
x, xi is the i-th feature in sample x, xmax is the maximum value of the
feature in the training dataset, and xmin is the minimum value of the
feature in the training dataset. It is important to note that during the
normalization process, the formulas involving the maximum and
minimum values of the sample x are limited to the training
dataset only.

2.3.2 Output data
To develop a DO inversion model suitable for the entire lake

area, this study combines data from four representative monitoring
sections in Lake Taihu, resulting in a total of 7429 valid data points
(N = 7429). The merging of data from multiple monitoring stations
increases the sample size and enriches the training data for water
quality inversion models, thereby improving the accuracy and
precision of the inversion. Different areas within a lake may
exhibit varying water quality conditions, and building individual
inversion models for each station may not fully consider the spatial
heterogeneity within the lake. By merging data from multiple
stations, the model gains a better understanding of spatial
variations within the lake, enhancing its generalization ability.
The model’s output data represents the merged DO
concentrations from the four selected monitoring sections. The
overall data processing process is shown in Figure 2.

2.3.3 Model framework
The paper proposes a DO-MDNN (Dissolved Oxygen

Multimodal Deep Neural Network) model, which consists of four
single-modal neural networks (sNNs). Here, sNN refers to an
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independent neural network corresponding to each perception
modal in the multimodal neural network. Each sNN processes its
respective input data and extracts useful information from the
multimodal data through a fusion or integration mechanism, as
illustrated in Figure 3. The model is designed with one sNN for each
modal, allowing the model to effectively balance information and
noise during the training phase. Modal A, Modal B, and Modal C

represent remote sensing data. The outputs of Subnetwork 1
(sNN1), Subnetwork 2 (sNN2), and Subnetwork 3 (sNN3) are
non-linearly mapped through a weighted sum in the hidden layer
to obtain the input features, which are then connected to
Subnetwork 4 (sNN4) for DO inversion. The number of neurons
in each layer of the network is labeled in Figure 3 to illustrate the
model structure.

FIGURE 2
Technical Roadmap.

FIGURE 3
The model network structure diagram.
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2.3.4 Structure and parameter determination
In Figure 3, sNN1, sNN2, and sNN3 are all set as neural

networks with three hidden layers, while sNN4 is set as a
neural network with four hidden layers. The number of
neurons in the input layer of sNN1, sNN2, and
sNN3 depends on the features number in each modal, while
the number of neurons in the output layer is determined based
on the model’s performance.

To prevent overfitting, a Batch Normalization (BN) layer, a
Rectified Linear Unit (ReLU) activation function, and a dropout
layer are added after each hidden layer. The BN layer and
dropout layer serve to normalize the features and discard
some neurons in the network to improve the generalization
ability of the inversion model. During the training process, the
three modalities are trained separately in sNN1, sNN2, and
sNN3, and their outputs are then concatenated (represented by
the red nodes in Figure 3) and fed into sNN4 for further
training. In terms of model optimization, Mean Squared
Error Loss (MSELoss) is used as the optimization parameter
(Eq. 8), and the Adaptive Moment Estimation (Adam)
optimizer is employed for gradient descent.

MSELoss � 1
n
∑n
i�1

yi − ŷi( )2 (8)

Where yi and ŷi represent the observed and inverted DO
concentrations, respectively, and n denotes the number of
samples.

2.3.5 Comparison with other models
In this study, 80% of the data was randomly allocated for

training the model (N = 5940), and the remaining 20% of
the data was used as the test set for model evaluation (N =
1489).

In this study, six machine learning algorithms, namely,
ElasticNet, K-Nearest Neighbors (KNN), Support Vector
Regression (SVR) (e.g., Guo et al., 2021), Random Forest (RF)
(e.g., Cao et al., 2020), Extreme Gradient Boosting (XGBoost)
(e.g., Bui et al., 2020), and Light Gradient Boosting Machine
(LightGBM), were used as comparative models. The same data
partitioning method was applied to all algorithms, and a Genetic
Algorithm (GA) was used to search for the optimal hyperparameters
relative to each model.

2.3.6 Model evaluation
To quantitatively describe the inversion capability of the DO

inversion model, this chapter utilizes multiple indicators to
evaluate its performance. These indicators include adj_R2,
Root Mean Square Error (RMSE), Percent bias (Pbias) (e.g.,
Bui et al., 2020) and Symmetric Mean Absolute Percentage
Error (SMAPE) (e.g., Zaini et al., 2021a). The calculation
formulas, value ranges, and optimal values for these evaluation
indicators are presented in Table 3.

Where R2 is the coefficient of determination between the
simulated values and the measured values, yi represents the i-th
variable of the measured DO, �y is the average value of the measured
DO, ŷi represents the i-th variable of the simulated DO, n is the
number of samples, and p is the number of features.

3 Result

3.1 Statistical analysis of measured DO

Figure 4 displays the monthly average DO concentrations from
2019 to 2021. The original DO concentrations in the monitoring sections
of Lake Taihu exhibit evident seasonal variations. The MK trend test
reveals a significant decreasing trend in DO concentrations during spring
(March to May) (p < 0.01) and a significant increasing trend during
autumn (September to November) (p < 0.01). DO concentrations in
summer (June to August) are lower than in winter (December to
February of the following year), with varying trends across different
years, indicating substantial inter-seasonal variations. The range of DO
concentrations throughout the year is 6–14mg/L, with the lowest average
values observed in summer and the highest average values occurring
during the colder winter months, suggesting uneven seasonal distribution
of DO concentrations in the monitored sections of Lake Taihu, likely
influenced by temperature. Pearson correlation analysis indicates a
significant negative correlation between DO concentrations and water
temperature in the monitoring sections, with a Pearson coefficient
of −0.81 and p-value <0.01.

Regarding spatial heterogeneity, the Tuoshan monitoring
section shows higher overall DO concentrations, with an average
DO concentration of 9.99 mg/L from January 2019 to December
2021. On the other hand, the Xidongshuichang monitoring section
exhibits lower overall DO concentrations, with an average DO
concentration of 9.10 mg/L during the same period. In general,
DO concentrations in the western part of Lake Taihu are slightly
higher than in the eastern part, especially during winter, where
Tuoshan and Lanshanzui sections have relatively higher DO
concentrations. These findings indicate the presence of spatial
heterogeneity among the four monitoring sections in Lake Taihu.

3.2 Feature selection

After merging the DO concentrations from the four monitoring
sections, the correlation between all remote sensing features and DO
concentrations was examined using the Pearson correlation analysis
method. Table 4 displays pearson correlation coefficient between
DO and various characteristics, indicating the feasibility of using
remote sensing information such as visible, near-infrared, and

TABLE 3 Calculation formula, value range, and optimal value of evaluation
indicators.

Index Formula Value range Best value

adj_R2
adj R2 � (1 − (1−R2 )(n−1)

(n−p−1) ) [0,1] 1

R2

R2 � (1 − ∑n

i�1(yi−ŷi )2∑n

i�1(yi−�y)2 )
[0,1] 1

RMSE
RMSE �

											
1
n∑n
i�1
(yi − ŷi)2

√
[0,+∞) 0

Pbias
Pbias � ∑n

i�1(yi−ŷi )∑n

i�1yi

(-∞,+∞) 0

SMAPE
SMAPE � ∑n

i�1
|ŷi−yi | × 2

(|ŷi |+|yi |) × n

[0,+∞) 0
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shortwave infrared bands of Rrs, spectral indices, and
surface temperature in the infrared band for DO concentration
inversion.

3.3 Model performance

The evaluation results on the test set were chosen to represent the
model’s performance in practical applications. Firstly, six machine
learning models were used to compare the effectiveness of the DO-
MDNN method. As shown in Figure 5, the LightGBM model
demonstrated the best performance among the six models, with adj_
R2, RMSE, SMAPE, and Pbias values of 74.18%, 0.70 mg/L, 5.94%,

and −0.007% respectively. On the other hand, the ElasticNet model
showed the poorest performance, with adj_R2, RMSE, SMAPE, and
Pbias values of 69.73%, 0.76 mg/L, 6.61%, and −0.003% respectively.
Using the same dataset, we trained and validated the DO-MDNN
model developed in this study to further investigate its advantages. As
illustrated in Figure 6, the DO-MDNN model developed in this study
provided more accurate DO concentration estimations (adj_R2, RMSE,
SMAPE, and Pbias values of 77.11%, 0.66 mg/L, 5.36%, and −0.44%
respectively), as expected. The evaluation results indicated that the DO-
MDNN model outperformed all other models. Compared to the
average performance of the other baseline models, DO-MDNN
showed a 6.40% increase in adj_R2, an 8.27% reduction in RMSE,
and a 12.1% decrease in SMAPE. The density plot shown in Figure 6

FIGURE 4
Monthly Average Trends of DO Concentration from 2019 to 2021.

TABLE 4 Pearson correlation coefficient between DO and various characteristics.

Modal Features Pearson Modal Features Pearson

A

Rrs_01 0.15**

B

Tbb_12 −0.70**

Rrs_02 0.14** Tbb_13 −0.64**

Rrs_03 0.09** Tbb_14 −0.57**

Rrs_04 −0.30** Tbb_15 −0.47**

Rrs_05 −0.30** Tbb_16 −0.50**

Rrs_06 −0.21**

C

NDVI −0.41**

B

Tbb_07 −0.79** NDWI 0.40**

Tbb_08 0.02** MNDWI 0.36**

Tbb_09 0.01** FAI −0.40**

Tbb_10 −0.09** ρChl 0.05**

Tbb_11 −0.66**

** Indicates a significant correlation at the 0.01 level (two-tailed) based on Pearson correlation analysis.
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visually demonstrates the performance of the DO-MDNNmodel’s DO
estimations compared to the actual measurements on the test set,
effectively avoiding data stacking issues.

Therefore, the DO -MDNNmodel developed in this study has been
demonstrated to successfully invert DO concentration usingH8 satellite
data and can be used for high-frequency dynamic monitoring of DO.

In order to verify the application of the DO-MDNN model in the
whole Lake Taihu region, we selected the H8 data from 08:00-13:00 on
May 16, 2022, and mapped the DO concentration in the Lake Taihu
region on a time-by-time basis, and the results are shown in Figure 7.
DO concentration varied from 8.5 to 11.5 mg/L from 8:00 to 13:00, with
an overall increase and then a decrease in DO concentration values,
with an overall increase in DO concentration values from 8:00 to 10:00,
and a beginning of a decrease in DO concentration values from 11:00 to
13:00, especially in littoral areas such as the southwestern and
northeastern parts of the country. The southwestern part of Lake
Taihu is mostly the river inlet, with vigorous vegetation and shallow
water nearby leading to strong photosynthesis and higher DO
concentrations. The northeastern part of Lake Taihu is mainly an
economically developed urban area with a large population density,
which is affected by anthropogenic factors all year round, and the littoral
areas of the lake are in a state of nutrient fertilization all year round,
resulting in a higher DO concentration. The above results show that the
DO-MDNN model has some applicability in the Taihu Lake region.

4 Discussion

4.1 Model advantages and limitations

4.1.1 Model advantages
(1) The DO-MDNN model constructed in this study validates the

feasibility of using geostationary satellite remote sensing data for
the inversion of non-optical active parameter, DO
concentration. The model demonstrates high accuracy and

FIGURE 5
Fitting Plots of Six Machine Learning Models.

FIGURE 6
Fitting Plot of the DO-MDNN Model.
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provides reliable data support for lake water quality inversion
using geostationary satellite data, which complements the
limitations of traditional water quality monitoring and
estimation. It offers advantages such as wide coverage, rapid
monitoring, and addresses the low revisit rate of polar-orbiting
satellites, thereby enhancing the current level of water
environment protection and management.

(2) Firstly, this model divides the input features into three
modalities, enabling the model to capture multimodal
information. Each modality can focus on extracting and
learning specific types of features, thus reflecting the
influencing factors of DO more comprehensively. Secondly,
the adoption of multimodal neural networks allows for the
full utilization of the expressive capabilities of each modality.
Through hierarchical feature extraction and combination, the
model enhances its ability to represent the input features and
better learn the complex relationship between DO and these
features. Finally, different modalities of features may possess
distinct scales, distributions, and correlations. By handling them
separately, the model can reduce interference during the
learning process. Moreover, multimodal neural networks can
effectively learn correlations between different modalities
through appropriate weight sharing and joint training,
thereby improving the model’s generalization ability.

(3) The H8 satellite data inversion model not only shows technical
advantages in DO monitoring, but also has the potential to be

extended to other water quality indicators, such as total
phosphorus and total nitrogen. Specific spectral channels
may capture optical features associated with total phosphorus
and total nitrogen concentrations, such as particulate matter
concentrations, the presence of nitrogen compounds, and the
color of the water column. In addition, changes in temperature
distribution and biological activity may also be affected by total
nitrogen. Through in-depth research and model development,
we can further explore how to effectively utilize H8 data as well
as deep learning models to enable remote monitoring and
estimation of key water quality indicators such as total
phosphorus and total nitrogen, which can provide important
support for water resource management and ecosystem
monitoring.

4.1.2 Model limitations
The discrepancy between the model’s output and the true values

can be attributed to several factors. Firstly, the water quality
parameters are collected from fixed monitoring points, while the
spatial resolution of the satellite data used in this study is relatively
low (2 km). As a result, the presence of other interfering factors
within the same remote sensing pixel adds complexity and makes it
challenging to achieve a perfect match. Secondly, the DO
concentrations outputted by the proposed DO inversion model
represent average values within the remote sensing pixel and may
not directly correspond to themeasured concentrations at automatic

FIGURE 7
Remote sensing mapping of DO concentrations in the Lake Taihu region from 08:00 to 13:00 (order is from top left to bottom right).
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monitoring stations. The proximity to the land adjacency effect (e.g.,
Sun et al. 2022) negatively impacts the inversion results, with poorer
performance observed in areas closer to the lake shore (e.g., Zhao
et al. 2021). Additionally, the measurements taken at automatic
monitoring stations may be affected by unexpected events such as
changes in sensor environment, network failures, or the presence of
boats and fish. Furthermore, remote sensing satellites are unable to
monitor the vertical profiles of water bodies, and different water
bodies exhibit significant individual variations in their optical
properties. All of these factors can contribute to certain errors in
water quality inversion and prediction.

4.2 Reasons for the uneven distribution of
DO over time

Based on the analysis of DO measured data over time, it is
evident that the DO concentration in Lake Taihu exhibits an uneven
temporal distribution, with higher levels observed in summer and
autumn compared to spring and winter. This phenomenon is likely
attributed to several factors. During the summer and autumn, local
water temperature rises, and there is abundant sunlight, leading to
significant reproduction of aquatic organisms. Additionally,
increased rainfall in summer results in a higher influx of
pollution loads into Lake Taihu, leading to eutrophication and
increased DO consumption, thereby causing higher-than-normal
occurrences of cyanobacterial blooms and a gradual decline in water
quality (e.g., Dai et al., 2020). In the winter, the Lake Taihu
ecosystem enters a dormant state, although some aquatic
organisms remain active due to the subtropical monsoon climate
of the region (e.g., Lyu et al., 2015). Cyanobacterial frequency
decreases during this period, resulting in gradually higher DO
content in the water. As a result, the correlation between DO
concentration and cyanobacterial blooms becomes weaker during
non-blooming periods, while during cyanobacterial bloom
outbreaks, there is a negative correlation between DO
concentration and the frequency of bloom events. Rapid
increases in cyanobacterial populations lead to a large amount of
photosynthesis, depleting DO levels in the water. Moreover, after
cyanobacteria die, they also consume oxygen, further reducing the
DO concentration in the water. Hence, cyanobacterial bloom
periods are often associated with lower DO concentrations in the
water. These combined factors result in the uneven temporal
distribution of DO concentrations in Lake Taihu during different
seasons. Analyzing the spatiotemporal distribution changes of non-
optical active parameters in different research areas is crucial for
improving the precision of remote sensing inversion of non-optical
active parameters.

4.3 Comparison of models based on time
series decomposition

In typical situations, during the training of a machine learning
model, the high correlation between the input and output data may
be due to both exhibiting simultaneous upward or downward trends
in time, rather than a true fit. This phenomenon is particularly
evident in time series data. If the trend component (a persistent

upward or downward movement or state that develops over a long
period) and the seasonal component (regular variations in the level
of development caused by seasonal changes) cannot be eliminated, it
becomes challenging to accurately map features in residual analysis.
This is also referred to as the “spurious regression” phenomenon
(e.g., Tian, 2014).

This study takes the “Xuhuxin” section as an example. Due to
the longer data sequence of this site, it was chosen as the research
object. The measured DO data can be treated as a time series Y(t),
and the Seasonal and Trend decomposition using Loess (STL)
algorithm (e.g., Rojo et al., 2017) is used to decompose it.

Y t( ) � S t( ) + T t( ) + R t( ) (9)
Where Y(t) represents the DO concentration at time t, S(t)

represents the periodic component at time t, T(t) represents the
trend component at time t, and R(t) represents the residual
component at time t. The time series Y(t) exhibit a fixed “annual
cycle” Syear(t) over the course of a year and a fixed “daily cycle”
Sday(t) within a day. The parameters for the annual cycle are set
as np−year = 365 days, and for the daily cycle as np−day = 24 h. Since
a single STL decomposition can only extract one type of periodic
component, the first step is to remove the annual cycle
component Syear(t) from Y(t) to obtain a new time series
X1(t) without the annual cycle. Then, the daily cycle
component Sday(t) is removed from X1(t) to obtain the
combined trend and residual components of the DO measured
data in the series X2(t).

The Augmented Dickey-Fuller (ADF) test (e.g., Zaini et al.,
2021b) is applied to the merged component X2(t) to check for
stationarity. If X2(t) is not stationary, differencing will be
performed. If X2(t) is stationary, a white noise test will be
conducted. If X2(t) is a white noise sequence, it indicates that
the data is invalid and the experiment should be stopped. If X2(t) is
a stationary non-white noise sequence, it implies that the output
data has eliminated periodic variations, andX2(t) can be used as the
output for model construction in the next section.

The evaluation results on the test set were chosen to represent
the model’s performance in practical applications. Firstly, six
machine learning models were used to compare the effectiveness
of the STL method. The merged component X2(t) obtained from
the second STL decomposition of DO concentration was used as the
model output, and the performance of the models before and after
STL decomposition was compared. As shown in Figure 8 and
Table 5, the comparison models after STL processing exhibited
significant improvements compared to the models without STL
decomposition. The average adj_R2 of the six machine learning
models increased by 0.26, RMSE decreased by 0.24 mg/L, and
SMAPE decreased by 2.2% after STL processing. Among them,
the ElasticNet model showed the largest improvement in the
comparison before and after STL decomposition, with a
difference of 0.19 in adj_R2, 0.23 mg/L in RMSE, and 1.56% in
SMAPE, indicating a significant enhancement in its performance.
Meanwhile, the DO-MDNN model showed an increase of 0.14 in
adj_R2, a decrease of 0.23 mg/L in RMSE, and a decrease of 2.1% in
SMAPE after STL decomposition. The above results demonstrate
that STL decomposition helps remove noise and trend components
from the DO concentration time series, thereby improving the
accuracy of DO inversion.

Frontiers in Environmental Science frontiersin.org11

Shi et al. 10.3389/fenvs.2023.1230778

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1230778


The model constructed in this section is specifically designed for
the single observation station “Xuhuxin” and does not have the
feasibility to be applied to other areas within Lake Taihu or other
water bodies outside of Lake Taihu. In this study, only the time series
of the “Xuhuxin” site were relatively complete for the four sites,

while the time series of the other three sites were not complete
enough. Therefore, the accuracy of the removed periodic terms in
the overall time series decomposition cannot be determined.
Therefore, this study only used the “Xuhuxin” site. In practical
applications, it is necessary to increase the number of DO
observation stations and establish a unified model that fits all
DO observation stations. Only then can we consider the model
to be applicable to the water bodies represented by these DO
observation stations.

4.4 Optical basis for remote sensing
inversion methods

In the field of water ecology and bio-optics, the optical
mechanism and bio-optical processes of DO are of great
significance for monitoring and analyzing ecosystems, and the
H8 satellite plays a key role in this regard. DO, as the dissolved
state of oxygen in water, is essential for sustaining aquatic
organisms. Optical analysis methods, such as oxygen sensors,
utilize the H8 satellite’s high-resolution optical sensors to achieve
accurate measurements of DO concentration through the
interaction of fluorescence or absorption properties with oxygen
molecules. At the same time, the H8 satellite monitored the
refraction and reflection of light on the surface of water bodies,
providing important data for processes such as photosynthesis and
oxygen dissolution. In addition, the H8 satellite was able to capture
the temperature distribution of the water body, helping us to
understand the effect of light on the interrelationship between

FIGURE 8
Comparison plots of each model before and after STL processing.

TABLE 5 Comparison of each model before and after STL processing.

Model adj_R2 RMSE(mg/L) Pbias(%) SMAPE(%)

ElasticNet 0.58 0.87 0.60 7.01

KNN 0.58 0.87 −0.05 7.21

SVR 0.63 0.82 0.31 6.68

RF 0.65 0.79 0.29 6.44

XGBoost 0.64 0.80 0.35 6.67

LightGBM 0.67 0.78 0.26 6.45

DO-MDNN 0.74 0.71 1.41 5.67

STL-ElasticNet 0.77 0.64 −0.15 5.45

STL-KNN 0.77 0.65 −0.27 5.47

STL-SVR 0.78 0.63 −0.09 5.26

STL-RF 0.81 0.59 −0.21 5.02

STL-XGBoost 0.79 0.62 0.01 5.15

STL-LightGBM 0.80 0.61 −0.33 5.14

STL-DO-MDNN 0.84 0.55 −0.79 4.50

Frontiers in Environmental Science frontiersin.org12

Shi et al. 10.3389/fenvs.2023.1230778

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1230778


temperature and oxygen solubility. In summary, the optical
mechanism and bio-optical processes of DO are integrated with
the H8 satellite observation data, which will help to explore the
dynamics of aquatic ecosystems in depth and provide scientific
support for ecological protection and sustainable management.

Among them, Tbb_07, Tbb_08, Tbb_10, Tbb_12 as infrared
bands are mainly used to invert the water temperature (e.g.,
Yamamoto et al., 2018), and the correlation between the water
temperature and DO is high (e.g., Rajwa-Kuligiewicz et al., 2015), so
Tbb_07, Tbb_08, Tbb_10, and Tbb_12 have strong correlation to
DO in this study; MNDWI (e.g., Guha and Govil, 2022), ρChl (e.g.,
Feng et al., 2022) and others as spectral indices are assess the
vegetation growth condition by calculating the ratio between the
reflectance of red, near-infrared and blue light bands, so it can
indirectly reflect the concentration of DO; Wang, et al. (2013)
pointed out that DO was negatively correlated with the remote
sensing reflectance with the center wavelength in the range of 400-
900 nm, and the highest correlation was found at 686 nm, and the
center wavelength of Rrs_03 was 640 nm, and the correlation to the
DO The center wavelength of Rrs_03 is 640 nm, and the correlation
of Rrs_03 to DO is stronger, which is consistent with the conclusion
of its research; Rrs_06 and Rrs_05 mainly invert environmental
parameters such as vegetation index (e.g., Wang et al., 2022b), soil
moisture, surface temperature, etc., which are indirectly related to
DO, and therefore the correlation of Rrs_06 and Rrs_05 to DO is
also higher.

5 Conclusion

With the rapid development of artificial intelligence and remote
sensing technology, the application of machine learning or
deep learning models in the inversion and prediction of lake
water quality has become a hot topic in the interdisciplinary field
of artificial intelligence and environment. The process of obtaining
traditional water quality indicators is time-consuming and labor-
intensive, often requiring on-site collection of water samples,
appropriate storage, and transportation to laboratories for testing.
Even data generated by automatic monitoring stations may
have some defects. To address the shortcomings of traditional
water quality monitoring, this study combines a large amount of
historical monitoring water quality data with satellite remote sensing
data and uses the DO-MDNN model to achieve more frequent
and macroscopic monitoring activities. This approach has the
advantages of wide coverage and fast monitoring, providing
an effective reference for improving the level of water
environment monitoring and holding significant importance for
protecting lake water quality. The conclusions of this research are as
follows:

(1) Based on H8 data and DO measured data, a deep learning
method was employed to propose a DO inversion model called
DO-MDNN. The results showed that the average performance
of the DO-MDNNmodel was adj_R2 of 0.77, RMSE of 0.66 mg/
L, Pbias of −0.44%, and SMAPE of 5.36%. Compared to other
baseline models, DO-MDNN exhibited better average
performance, with a 6.40% increase in adj_R2, an 8.27%
decrease in RMSE, and a 12.1% decrease in SMAPE.

(2) The comparison models after STL processing exhibited
significant improvement compared to the models without
STL decomposition. The six machine learning models
showed an average increase of 0.26 in adj_R2, a decrease of
0.24 mg/L in RMSE, and a decrease of 2.2% in SMAPE. Among
them, the ElasticNet model showed the largest difference in the
before and after STL decomposition comparison, with a
0.19 difference in adj_R2, a 0.23 mg/L difference in RMSE,
and a 1.56% difference in SMAPE, showing a significantly
improved performance. Additionally, the DO-MDNN model
had an increase of 0.14 in adj_R2, a decrease of 0.23 mg/L in
RMSE, and a decrease of 2.1% in SMAPE compared to before
STL decomposition. The above results indicate that STL
decomposition helps remove noise and trend components
from the DO concentration time series, thereby enhancing
the accuracy of DO inversion.

(3) Based on the H8 data, DO measurements, and the DO-MDNN
model, it is possible to achieve hourly monitoring of DO
concentration. This capability meets the demand for high-
frequency and dynamic monitoring of DO concentration,
providing strong support for marine environmental
management and conservation efforts.
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