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Introduction: Traditional methods to estimate exposure to PM2.5 (particulate
matter with less than 2.5 µm in diameter) have typically relied on limited
regulatory monitors and do not consider human mobility and travel. However,
the limited spatial coverage of regulatorymonitors and the lack of consideration of
mobility limit the ability to capture actual air pollution exposure.

Methods: This study aims to improve traditional exposure assessment methods
for PM2.5 by incorporating the measurements from a low-cost sensor network
(PurpleAir) and regulatory monitors, an automated machine learning modeling
framework, and big human mobility data. We develop a monthly-aggregated
hourly land use regression (LUR) model based on automated machine learning
(AutoML) and assess the model performance across eight metropolitan areas
within the US.

Results: Our results show that integrating low-cost sensor with regulatory
monitor measurements generally improves the AutoML-LUR model accuracy
and produces higher spatial variation in PM2.5 concentration maps compared
to using regulatory monitor measurements alone. Feature importance analysis
shows factors highly correlated with PM2.5 concentrations, including satellite
aerosol optical depth, meteorological variables, vegetation, and land use. In
addition, we incorporate human mobility data on exposure estimates regarding
where people visit to identify spatiotemporal hotspots of places with higher risks of
exposure, emphasizing the need to consider both visitor numbers and PM2.5

concentrations when developing exposure reduction strategies.

Discussion: This research provides important insights for further public health
studies on air pollution by comprehensively assessing the performance of
AutoML-LUR models and incorporating human mobility into considering
human exposure to air pollution.
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1 Introduction

Exposure to air pollution can directly affect human health and
increase healthcare use (Reid et al., 2016; Black et al., 2017). The
World Health Organization (WHO) estimates that 4.2 million
deaths annually can be attributed to outdoor air pollution
(Shaddick et al., 2020). Among various types of air pollutants,
fine particle (PM2.5) is an air pollutant that is a concern for
people’s health as it penetrates the lungs and circulatory system,
contributing ~98% to ~7 million deaths globally (Butt et al., 2017;
WHO, 2022). PM2.5 often comes from various emission sources,
including the combustion of gas, oil, diesel fuel, and wood, industrial
processes, power generators, and natural phenomena, such as
wildfires, dust storms, and volcanic eruptions (McDuffie et al.,
2021). The accurate and frequent monitoring of PM2.5 is crucial
to notify citizens of potentially poor air quality, as the concentration
of PM2.5 at a particular location might change rapidly depending on
the emission sources, wind speed, wind direction, and other
meteorological factors (Sun et al., 2022). Regulatory monitors
from local and U.S. Environmental Protection Agencies (EPA)
have played an indispensable role in measuring local air quality
but are limited in their sparse distribution and high cost of
maintenance and deployment.

The development of low-cost air quality sensors, such as
PurpleAir and Clarity sensors, provides new opportunities for
capturing air quality dynamics in a high spatial and temporal
resolution (Gupta et al., 2018; Caubel et al., 2019; Fowlie et al.,
2020). These sensors are not only cost-effective and easy to deploy
but can also wirelessly transmit the data they gather, providing a
contrast to the traditional, complex, and expensive regulatory air
monitoring stations. PurpleAir sensors use dual laser particle
counters that can provide a more detailed view of particulate
pollution. Clarity sensors work by measuring the attenuation of
infrared radiation in the air. They consist of an infrared radiation
source, a light-water tube, and an infrared detector with an
appropriate filter. New insights have been discovered using the
low-cost sensor networks regarding the spatial patterns of air
quality on a local or neighborhood scale (Weissert et al., 2020;
Kelly et al., 2021), local influences of emission sources (Zimmerman
et al., 2020; Lu et al., 2021), and fine-scaled human exposure
assessments (Bi et al., 2022). Calibrations and correction methods
have been developed to improve the data plausibility compared to
regulatory monitors (Tryner et al., 2020; Barkjohn et al., 2021;
Wallace et al., 2021).

Land use regression (LUR) models are commonly used in air
pollution exposure assessment to produce averaged exposure risks in
a temporal range with a high spatial resolution (Beelen et al., 2014; Li
et al., 2020; Ren et al., 2020). LUR models are particularly useful for
identifying spatial features that are important determinants of
pollutant concentration variability and for enhancing our
understanding of the spatial distribution of air pollutants (Meng
et al., 2015; Lee et al., 2017; Muttoo et al., 2018). These models are
based on the assumption that the average air quality within a specific
area is linearly associated with geographic covariates such as land
use, road density, and emission sources (Hoek et al., 2008). The LUR
modeling process generally involves the preparation of such
covariates, creating LUR models by linear regression while
selecting variables that are highly correlated with the model and

avoiding redundant variables, validating and selecting the final
model, and applying the final model to a high-resolution grid for
the area where predictions are to be made (Morley and Gulliver,
2018; Ma et al., 2020). The integration of low-cost sensors and
regulatory monitors in LUR models also showed the potential of
better capturing within-city variations (Lu et al., 2022). However,
LUR models generally suffer from their limitations in area
generalizability: a LUR model developed for a particular area
within a specific time range cannot be easily adopted, and
models have to be re-developed for any other spatiotemporal
range (Bi et al., 2022). In addition, while timely-averaged (e.g.,
annual or multi-year) concentrations could reduce the biases
resulting from a few high-level outliers, it is essential to develop
PM2.5 exposure models at finer temporal resolutions (e.g., daily or
hourly) for a more frequent assessment of air pollution exposure
(Masiol et al., 2018; Lu et al., 2021).

Recent studies have improved LUR models to address the
limitations using generalized additive models (Ravindra et al.,
2019), principal component analysis (de Souza et al., 2018), Least
Absolute Shrinkage and Selection Operator (LASSO) (Roberts and
Martin, 2005), and Bayesian inference (Thomas et al., 2007; Orun
et al., 2018; Han et al., 2022). Spatial and temporal variations
captured at a high spatial and temporal resolution can reveal
conditions where air quality differs from the expected land-use
effect (Weissert et al., 2020). Machine learning approaches,
especially ensemble-based methods such as random forests, have
provided a non-parametric solution without assuming a linear
relationship between air pollutant concentration and the
predictors (Ren et al., 2020; Coker et al., 2021; Jain et al., 2021;
Wong et al., 2021); instead, complex relationships can be captured
within such models. Specifically, Weissert et al. (2020) applied a
random forest model to data from a low-cost sensor network to
analyze the impact of land use on local air quality and to capture air
quality variations on an hourly basis at a detailed spatial scale. Coker
et al. (2021) explored various ML base-learner and ensemble
algorithms to improve LUR predictions in monthly PM2.5 in
urban regions of central and eastern Uganda. Kelly et al. (2021)
developed a Gaussian process model to accurately predict
neighborhood-scale PM2.5 concentrations during pollution events
such as fireworks, wildfires, and persistent cold air pools.

In addition, integrating time-varying predictors (e.g.,
meteorological conditions and satellite-retrieved aerosol optical
depth) has also improved LUR models’ temporal resolution to
daily or hourly (Masiol et al., 2018; Yao et al., 2018; Lu et al.,
2021). Combining the predictor selection procedure in LUR and the
ML-based prediction model in estimating the non-linear
relationships has been explored to leverage both advantages into
an integrated framework (Jain et al., 2021; Wong et al., 2021). A
particular challenge in hourly LUR modeling is the availability of
satellite-observed aerosol optical depth (AOD). Most existing
studies rely on MODIS AOD product, which has an overpass of
twice daily and in the afternoon. The limited availability of satellite-
observed AOD hampers the ability of LUR models to predict hours
that are outside these overpassed times. This is also one of the
reasons why LUR models are used mostly for monthly or yearly
assessments of air pollution.

Human exposure to air pollution has been a longstanding
concern in public policy. Epidemiologic evidence demonstrated
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causal relationships between particulate matter (PM) and health
outcomes and revealed disparities between different groups
regarding their risks of related health effects (Jbaily et al., 2022).
Exposure risks are generally calculated based on pollutant
concentrations and the population affected by the pollutants.
Environmental agencies have been providing online dashboards
for public showcases of environmental justice (EJ) related to air
pollution, e.g., the U.S. EPA’s EJScreen and CalEnviroScreen. These
approaches fail to account for all components of exposure since 1)
there might be a high spatial and temporal variability of air pollutant
concentrations, and 2) people spend time both in places they live
and visit (Canha et al., 2021). Human exposure studies have
considered physical movements and activities of individuals and
the environments in which they spend their time. Most of these
studies rely on individual mobility patterns inferred from mobile
phone data or Call Detail Record (CDR) data collected by mobile
network operators (Nyhan et al., 2016; 2019; Yu et al., 2020), but
focused on a particular area and in a limited time window.
Comprehensive studies across different spatial regions are
necessary to accurately assess the risks of air pollution and
inform public health policy. These studies can help to identify
patterns of exposure and potential health risks and can inform
the development of strategies to reduce or eliminate exposure to
harmful substances.

This research proposes an empirical foundation by
integrating machine learning and low-cost sensor
measurements into estimating spatiotemporal variability of
PM2.5 concentrations in eight major metropolitan areas in the
U.S. and assessing exposure to PM2.5 based on where people
visit. We integrate the measurements of PM2.5 from a low-cost
sensor network (PurpleAir) with EPA’s regulatory monitors into
LUR model development. We use a LUR model based on
automated machine learning, i.e., AutoML-LUR, to capture
the relationship between geographic covariates and PM2.5

concentrations. In addition, we take human mobility into
consideration of human exposure regarding where people
visit and investigate how mobility impact exposure estimates.
Details on the methods used in this study are presented in the
next section, followed by the results of the study and a discussion
of the potential of the methods and data, as well as associated
limitations.

2 Materials and methods

2.1 Study regions

Our analyses aimed to assess data and modeling performance
frommulti-city low-cost sensors and existing regulatory monitoring
networks. We selected core-based statistical areas (CBSAs) with at
least seven EPA regulatory monitors and seven PurpleAir sensors
between 1 January 2018, and 31 December 2021 (Table 1). The
choice of requiring at least seven sensors from each type (EPA
monitors and PurpleAir sensors) in the study is based on our goal to
ensure a sufficient spatial coverage for LUR models. The specific
number, seven, is chosen in reference to Lu et al. (2022), which
deployed seven sensors of each type in six cities across the
United States, and this configuration showed promising results in
assessing data and modeling performance for low-cost sensors in
different urban environments. Following this approach, we aimed to
ensure a similar level of representativeness in our analyses.

2.2 EPA and PurpleAir PM2.5 measurements

Hourly PM2.5 measurements are downloaded from the EPA Air
Quality System (AQS) database for Federal Reference Method
(FRM) monitors and Federal Equivalent Method (FEM)
monitors. In addition, we downloaded publicly available outdoor
PM2.5 measurements from the PurpleAir website via an open-source
R package: AirSensor, developed by the South Coast Air Quality
Management District (South Coast AQMD) and Mazama Science.
The raw data was aggregated into hourly averages using the quality
control function provided by AirSensor. The function creates a
PM2.5 time series by averaging the A and B channels and removing
the invalidate date when 1) the measurement count is lower than 20,
2) the hourly difference between A and B channels is higher than 5,
and 3) the hourly percent difference between A and B channels is
higher than 70%. Samples with PM2.5 measurements greater than
1,000 μg/m3 and with missing or abnormal temperature and
humidity readings were removed (humidity readings should be
within 0%–100%; temperature readings should be within 20°F to
140°F). Approximately 15% of the raw PurpleAir measurements
were removed due to these quality issues. We applied the correction

TABLE 1 Selected core-based statistical areas in the study, 2018–2021.

Core-based statistical areas (CBSAs) Short name Number of EPA monitors Number of PurpleAir sensors Area (km2)

Chicago-Naperville-Elgin, IL-IN-WI Chicago 10 50 18,920.52

Riverside-San Bernardino-Ontario, CA Riverside 7 154 70,988.93

Las Vegas-Henderson-Paradise, NV Las Vegas 11 18 20,876.66

Los Angeles-Long Beach-Anaheim, CA Los Angeles 8 541 12,691.04

San Francisco-Oakland-Hayward, CA San Francisco 7 1794 6,637.35

New York-Newark-Jersey City, NY-NJ-PA New York 10 106 23,381.94

Houston-The Woodlands-Sugar Land, TX Houston 10 56 22,273.72

Phoenix-Mesa-Scottsdale, AZ Phoenix 13 41 37,809.73
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to the PurpleAir PM2.5 measurements based on the U.S.-wide
calibration proposed by Barkjohn et al. (2021).

Comparing the monthly hourly PM2.5 concentrations between
EPA and PurpleAir in the selected study regions (Figure 1),
measurements from the PurpleAir sensors generally have a
lower median value than the EPA monitors. There could be
several reasons why EPA air quality measurements are
consistently higher than PurpleAir measurements. One reason
could be that the EPA uses more sophisticated and expensive
air quality monitoring equipment, which is subject to strict quality
control and calibration procedures to ensure the accuracy of the
measurements. In contrast, PurpleAir monitors are designed for
personal use and are not subject to the same level of quality control
and calibration, which can lead to a more significant margin of
error in the readings. Another reason could be the placement of the
monitors. The EPA often selects monitoring sites based on strict
criteria to ensure that they represent the air quality in a given area
(Raffuse et al., 2007). In contrast, PurpleAir monitors are typically
installed by individuals in their own homes or businesses, and the
placement of the monitors can vary widely (Ardon-Dryer et al.,
2020). It is also worth noting that the EPA and PurpleAir use
different methods to measure air quality. The EPA primarily
measures PM2.5 using gravimetric analysis, while PurpleAir uses
a laser-based sensor technology. While both methods are
considered reliable, they can produce slightly different
measurements depending on factors such as humidity and
temperature.

2.3 Land use regression modeling

Traditional LUR models are statistical methods developed to
estimate PM2.5 concentrations based on geographical features. The
models can create an empirical relationship between PM2.5

concentrations and land use variables such as traffic volume,

distance to major roads, population density, and presence of
emission sources. A typical LUR model can be formulated as:

C � β0 + β1X1 + β2X2 + . . . + βnXn + ε (1)
where C is the PM2.5 concentration, β0 is the intercept term,X1,X2,
. . .,Xn are the predictor variables, i.e., different land use, traffic, and
geographical features, β1, β2, . . ., βn are the coefficients for these
variables that indicate the strength and direction of the relationships
between each predictor variable and PM2.5 concentration, and ε is
the error term that captures the variation in PM2.5 concentration not
explained by the model. The β coefficients are estimated using
regression techniques, most commonly multiple linear regression.
The goal is to find the set of β values that minimizes the sum of the
squared differences between the observed and predicted PM2.5

concentrations.
In this study, we used automated machine learning (detailed in

Section 2.3.3) to construct more sophisticated versions of LUR
models. Traditional LUR models, illustrated in Eq. 1, use
multiple linear regression, which assumes a linear relationship
between predictor variables and the target outcome. However,
real-world relationships between land-use variables and PM2.5

concentrations may be nonlinear or involve complex interactions,
which can be better captured with machine learning techniques.

We analyzed 4 years of available PM2.5 concentration data for
LUR modeling. Hourly measurements of PM2.5 concentration were
used to compute monthly averages for each hour (e.g., January
2021 will have 24 h averages; monthly-hourly thereafter). These
monthly-hourly averages were used to train and test the LUR
models. To test the usefulness of low-cost sensor networks for
developing AutoML-LUR models, we developed three types of
models 1) using the EPA measurements, 2) using the PurpleAir
measurements, and 3) incorporating PM2.5 measurements from
EPA monitors and PurpleAir sensors for the eight CBSAs. For
each monitoring location, we prepare the geographic covariates
following the guidelines from the Multi-Ethnic Study of

FIGURE 1
Boxplots of PM2.5 concentrations measured by EPA monitors and PurpleAir monitors in eight metropolitan areas. Each box extends from the first
quartile (Q1) to the third quartile (Q3) of the data, with a line at the median. The whiskers extend from the box by 1.5x the interquartile range (IQR). Outlier
points are those past the end of the whiskers.
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Atherosclerosis and Air Pollution (Keller et al., 2015; Kirwa et al.,
2021).

2.3.1 Geographic covariates
The initial set of geographic covariates for LUR modeling

contains proximity and buffer variables regarding land-use
categories, emission sources, and vegetation indices (Keller
et al., 2015; Kirwa et al., 2021). Proximity variables include
distances to major land use categories, roads and truck routes,
airports, coastlines and railroads, ports, and point emission
sources. Buffer variables include summarized statistics of spatial
features within a group of buffer ratios (0.5–30 km). These features
include the sum of road or truck route length, total emission,
percentiles of NDVI, average imperviousness value, and average
elevation, respectively, calculated in buffers. Beyond the time-
invariant variables suggested in MESA Air, we also added time-
varying variables that account for the complex dynamics of air
pollutant concentrations, such as meteorological conditions and
satellite-retrieved aerosol optical depth (AOD). The complete list
of variables is illustrated in Table 2.

To ensure the geographic covariates included in the models
provide sufficiently useful information, we apply the following
criteria to filter out variables when 1) >80% of monitors had the
same value, 2) >2% of observations were more than five standard
deviations (SDs) away from the mean, 3) the SD of the
distribution of values at cohort participant residences was
more than five times the SD of the distribution of values at

monitor locations, and 4) the maximum value of a percentage
variable was 10% among all monitors. In addition, we removed
correlated and redundant variables to avoid model overfitting by
optimizing the selection of specific predictor variables with
varying buffer sizes (e.g., land use type and NDVI).
Specifically, using the complete set of candidate predictors,
we ran an initial Random Forest model and computed
variable importance scores (VIS). We then chose the buffer
size for each spatial predictor as the most optimal predictor
based on VIS ranking.

2.3.2 Hourly AOD gap filling
MAIAC AOD has a high spatial resolution of ~1 km with local

spatial variation but is only available twice daily in the afternoon. To
fill the gaps of hourly AOD, we followed the work of MERRA-2
AOD downscaling using elevation. TheMERRA-2 aerosol reanalysis
product is simulated by Goddard Chemistry Aerosol Radiation and
Transport (GOCART) coupled with the Goddard Earth Observing
System, Version 5 (GEOS-5) atmospheric general circulation model
(Molod et al., 2015; Gelaro et al., 2017; Randles et al., 2017).
However, the 0.5 o MERRA-2 AOD might not appropriately
represent the spatial distribution of aerosol loading, especially
over highly polluted areas with large gradients of AOD.
Therefore, MERRA-2 AOD is further downscaled from 0.5o to
1 km based on elevation (Sengupta et al., 2018) and used to fill
the gaps of hourly AOD when MAIAC AOD has missing
information.

TABLE 2 Geographical covariates.

Category Measure Variable description

Location Location of the monitoring station Longitude and latitude

Time Temporal indicators Hour, month, year (dt_year, dt_month, dt_hour)

Traffic a Distance to the nearest road Distances to primary roads (dist_A1), secondary roads (dist_A23), and truck route
(dist_tr)

Sum within buffers of 0.05–15 km

Land use/land cover Percent within buffers of 0.05–15 km Developed low, medium, and high density; developed open space; agricultural land
(cropland, groves, feeding); forest land (deciduous, evergreen, mixed); open water, etc.
(lu_<type_num>)

Source * Distance to the nearest source Distances to coastline (dist_cl), railroad (dist_rail), airport (dist_airp), major airport
(dist_l_airp), large port (dist_port)

Emission Sum of site-specific facility emissions within buffers of 3–30 km Total emission in PM2.5 (emission)

Vegetation Quantiles within buffers of 0.5–10 km Normalized Difference Vegetation Index (ndvi)

Imperviousness Percent within buffers of 0.05–5 km Impervious surface value (im)

Elevation Elevation above sea levels Elevation value (elevation)

Counts of points above or below a threshold within buffers of
1–5 km

Satellite-based Multi-Angle Implementation of Atmospheric Correction
(MAIAC)

Aerosol optical depth (aod)

Reanalysis AOD Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2)

Total Aerosol Extinction AOT [550 nm]

Meteorological
variables

ECMWF Reanalysis v5 (ERA5) 2 m dewpoint temperature (meteo_d2m), 2 m temperature (meteo_t2m), 10 m
u-component of wind (meteo_u10), 10 m v-component of wind (meteo_v10), surface
pressure (meteo_sp), total precipitation (meteo_tp)

aDistances calculated to spatial features are truncated at 25 km.
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2.3.3 AutoML-LUR model development
We employed Automated Machine Learning (AutoML) to

capture the non-linear relationships between geographic
covariates and air pollutant concentrations (Breiman, 2001), as
illustrated in Figure 2. AutoML is the process of automating
various aspects of the machine learning workflow, including data
preparation, feature engineering, model selection, hyperparameter
tuning, and model deployment. AutoML is typically used to address
the following challenges in machine learning: 1) time-consuming
and repetitive tasks and 2) hyperparameter tuning. We used one of
the AutoML open-source toolkits, Auto-sklearn (Feurer et al., 2022;
2015), built on top of the scikit-learn machine learning library.
Auto-sklearn uses a Bayesian optimization approach to search the
hyperparameter space efficiently and identify the best-performing
model for a given dataset. It employs ensemble methods to combine
multiple models and enhance the overall performance.

During the model training for the new dataset, the meta-features
of the new dataset are first computed and used to compare it to the
reference datasets in the meta-feature space by comparing datasets
using the L1 distance, which measures the absolute differences
between the meta-features of the new dataset and the reference
datasets. The reference datasets are then ranked based on their
distance to the new dataset, and the top 25 nearest reference datasets
are selected. The hyperparameters that gave the best performance on
these datasets are then used to instantiate the Bayesian optimizer for
the new dataset. This helps to reduce the search space for
hyperparameters and can lead to faster and more efficient
hyperparameter optimization.

2.3.4 Model evaluation
To test the model’s overall capability, we conducted a 10-fold

cross-validation and computed the root mean squared error (RMSE)
and R2 (coefficient of determination) of the observed versus fitted
values to assess the model’s predictive accuracy. In addition, we
evaluated the LUR results in the spatial and temporal dimensions
using spatial cross-validation and temporal cross-validation
separately, which involves partitioning the data into subsets and
using one subset for training the LUR model and the remaining

subset for testing. These evaluationmetrics can help assess the ability
of the LUR model to generalize to data in other spatial regions and
new time periods and to estimate the spatial and temporal variations
of air pollution exposure.

2.4 Exposure estimation

Quantifying human exposure to air pollution depends on two
factors: 1) the population living within the area and 2) the air
pollution concentration to which they are exposed. Combining the
two factors, existing studies utilized population-weighted annual
average concentration as a score to estimate population exposures,
thus giving greater weight to the air pollution exposure where most
people live (Reis et al., 2018). The population-weighted exposure is
generally defined as E � P × C, where E is the annual mean
population exposure for a certain area, P is the respective
population number in this area, and C is the annual mean
concentration of the pollutant for this area.

To account for human mobility in the estimation of PM2.5

exposure, we used the publicly available human mobility dataset
SafeGraph to calculate population-weighted exposure. Specifically,
we used the SafeGraph Patterns data product, which contains
mobility patterns from approximately 47 million (around 10% of)
mobile devices in the United States (Squire, 2019; Coston et al.,
2021). The monthly Patterns data product used in this study
provides anonymized counts of how many people visit
commercial points of interest (POIs) each month, which can be
divided by the visitor’s home census block group (CBG). Note that
the term “visitors” is not used in the conventional sense to
distinguish between residents and non-residents. Rather, it
refers to individuals visiting Points of Interest (POIs) in a
specific area. This can be helpful for understanding how
mobility patterns may impact exposure to air pollution, as
people who spend more time in areas with higher pollution
concentrations may be at greater risk of exposure. Since the
data is aggregated into monthly patterns, home CBG
information is not directly linked to a specific device,

FIGURE 2
AutoML land use regression model architecture.

Frontiers in Environmental Science frontiersin.org06

Yu et al. 10.3389/fenvs.2023.1223160

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1223160


differentiating SafeGraph mobility data from other individual
mobility tracking datasets, such as Call Detailed Records (CDR)
or mobility survey datasets. Therefore, patterns are aggregated and
approximated as community-level mobility instead of individual-
based. For the visitor population, we used the ‘popularity by hour’
field from SafeGraph data for each point of interest (POI) and
aggregated the values into each CBG.

Based on the estimated population, a mobility-based exposure
(MBE) is calculated by matching visit locations with PM2.5

concentrations estimated from the AutoML-LUR model.
Specifically, MBE is calculated as follows:

MBEcbg,mh � PMH × C (2)
where PMH is the percentage of mobility-based visitor number
estimated from SafeGraph for a particular census block group
over all visitors in a particular month and hour, and C is the
PM2.5 concentration derived for the census block group for a
particular month and hour from the 1 km-resolution AutoML-
LUR results.

3 Results

3.1 AutoML-LUR model performance

The model prediction performance varied temporally and
spatially (Table 3). Replacing EPA data with PurpleAir data to
train AutoML-LUR models resulted in significant decreases in
the root mean squared error (RMSE), with a decrease of 0.51 μg/
m3 (SD = 0.22 μg/m3) on average. In addition, using EPA +
PurpleAir data to train AutoML-LUR models also resulted in
significant decreases in RMSE compared to using EPA data only,
with a decrease of 0.32 μg/m3 (SD = 0.26 μg/m3) on average.
However, diverging patterns of RMSE and R2values are observed
across different regions. For example, in regions such as Chicago
and Houston, lower RMSE and higher R2 values were observed

when only PurpleAir sensor data were used. However, in other
regions such as Los Angeles, models trained on combined EPA
and PurpleAir data outperformed those using only PurpleAir
data. Several underlying factors may explain these observed
variations. Firstly, the geographical placement of sensors is a
significant determinant. PurpleAir sensors, predominantly
purchased by private residents, are often situated within
residential areas. In contrast, EPA monitors are strategically
positioned near pollution emission sources or within areas
characterized by particular land use types. Consequently, the
heightened performance of models in regions using solely
PurpleAir data (such as Chicago) could be attributed to their
greater sensitivity in capturing the air quality variations within
residential environments. Secondly, the spatial distribution and
density of sensors is another potential influencer. In the regions
where combined sensor data yielded higher performance (such as
Los Angeles), the heterogeneous sensor locations and increased
sensor density could be contributing factors. The amalgamation
of data from both types of sensors provides a broader
representation of air quality variations across distinct land
uses and proximities to emission sources. Furthermore, the
level of congruity between readings from different sensors
may impact model performance. As supported by Figure 1,
PurpleAir sensors demonstrate greater consistency among
themselves compared to their consistency with EPA monitors,
thus resulting in enhanced performance when solely PurpleAir
data is employed.

The trained models allow the mapping of pollutant
concentrations in the eight CBSAs. Local variations of PM2.5

concentrations also vary by the input and can be significantly
different among models (Figures 3A–C). AutoML-LUR models
trained with EPA data tend to produce a higher concentration of
PM2.5 than models trained with PurpleAir data. Models trained with
EPA + PurpleAir data showed higher spatial variance than the other
two models, with high PM2.5 concentrations varying spatially
according to the observation used to train the AutoML-LUR

TABLE 3 Model performances–Auto-ML.

Model Chicago-naperville-Elgin,
IL-in-WI

Houston-the Woodlands-
Sugar land, TX

Las Vegas-Henderson-
Paradise, NV

Los Angeles-Long Beach-
Anaheim, CA

n RMSE R2 n RMSE R2 n RMSE R2 n RMSE R2

EPA 8,452 0.81 0.91 7,211 1.00 0.86 7,880 0.62 0.97 6,960 1.34 0.94

PurpleAir 11,049 0.46 0.97 12,961 0.40 0.92 4,312 0.43 0.95 243,394 0.68 0.96

EPA + PurpleAir 19,501 0.81 0.91 38,364 0.67 0.90 12,192 0.62 0.96 146,392 0.67 0.97

Model New York-Newark-Jersey
City, NY-NJ-PA

Phoenix-Mesa-
Scottsdale, AZ

Riverside-San Bernardino-
Ontario, CA

San Francisco-Oakland-
Hayward, CA

n RMSE R2 n RMSE R2 n RMSE R2 n RMSE R2

EPA 8,952 0.74 0.90 11,279 1.28 0.92 7,974 1.22 0.94 5,547 1.19 0.90

PurpleAir 23,067 0.58 0.95 10,558 0.46 0.90 99,601 0.66 0.96 603,499 0.43 0.95

EPA + PurpleAir 32,019 0.69 0.93 21,837 1.04 0.91 79,965 0.68 0.96 609,046 0.46 0.95

Frontiers in Environmental Science frontiersin.org07

Yu et al. 10.3389/fenvs.2023.1223160

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1223160


FIGURE 3
(A–C) AutoML-LUR results for PM2.5 concentrations at Local Hour 0 January 2021 from models trained using EPA data, PurpleAir data, and EPA +
PurpleAir data (B–G) Hourly estimates of PM2.5 concentrations in Los Angeles for January 2021. Unit: µg/m.3.

FIGURE 4
Boxplots of monthly predictions in 2021 for AutoML-LUR models for each CBSA. Unit: µg/m.3.
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model. Examples of predicting PM2.5 for different hours in January
2021 in Los Angeles are shown in Figure 3D–G).

Figure 4 demonstrates the monthly trends of PM2.5 predictions in
the target CBSAs. Most CBSAs show a seasonal trend of PM2.5

concentrations, but the levels of PM2.5 concentrations vary
significantly depending on location. For example, the levels of
PM2.5 concentrations tend to be the highest during the winter
months in Los Angeles, primarily because of the increased
emission and weather patterns in winter months, such as
temperature inversions which can trap pollutants near the ground
leading to higher PM2.5 level (Wallace et al., 2010). On the other hand,
PM2.5 concentrations increased during the summer months in San
Francisco, primarily because of natural sources such as wildfires. Some
other CBSAs have higher PM2.5 concentrations during summer
months due to a variety of factors, such as increased heat and
sunlight, which can lead to the formation of ground-level ozone, a
major component of smog. Other factors that may contribute to the
high PM2.5 levels during summer include increased use of air
conditioning and wildfires, which can release particles into the air.

3.2 Variable importance

Permutation feature importance was calculated to represent
the increase in the prediction error of the model after we
permuted feature’s values, which breaks the relationship
between the feature and the true outcome (Fisher et al., 2019).
Analyses of feature importance revealed the key factors that were
spatially correlated with PM2.5 concentrations (Figure 5).
Spatially aggregated feature importance scores showed that
satellite AOD, temporal indicators, and meteorological
variables were highly correlated with PM2.5 concentrations

(Figure 5A). City-wise feature important scores reflect city-
wide features most relevant to air pollutant concentrations. In
most CBSAs, satellite AOD, meteorological variables, temporal
indicators, NDVI, and land use remain highly correlated with
PM2.5 concentrations. Figure 5B–I provides a decomposed
analysis for each CBSA. Spatial heterogeneity is observed
regarding the CBSA’s most relevant sources of PM2.5 other
than AOD and meteorological conditions (e.g., distance to
large airports for Chicago; imperviousness for Houston;
nearby primary road length for Las Vegas; emission for Los
Angeles, New York and Riverside; distance to coastline for
New York, Riverside, and San Francisco; elevation for Phoenix
and San Francisco).

3.3 Mobility-based exposure

Mobility-based exposure (MWE) for each census block group
was calculated to analyze visitor exposure to air pollution, which
was shown to vary significantly in terms of spatial distribution and
temporal variation. Spatial patterns of MWE reveal hotspots of
high visitor number weighted exposure to PM2.5 and places where
visitors are less exposed to this pollutant. For Los Angeles, the
highest MWE values are found in areas near major transportation
hubs and business districts, such as the Los Angeles International
Airport, the Port of Los Angeles and Port of Long Beach, and
Hollywood (Figure 6A). These values can vary over the time of the
day and month of the year, as illustrated in the enlarged areas
(Figures 6B–F). The months chosen to illustrate the temporal
variation in Figures 6B–F were selected to represent different
seasons throughout the year, to capture the potential seasonal
differences in PM2.5 exposure and visitor patterns in various areas

FIGURE 5
(A) Top 20 feature importance scores averaged from all eight CBSAs for all time scales, and (B–I) Top 15 feature importance scores separately for
each CBSA for the yearly models. x-axes: feature importance scores, y-axes: feature abbreviations.
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FIGURE 6
(A) Spatial patterns of percentiles for the annual average MBE for Los Angeles (B–F) Zoomed in high MBE-valued regions and their hourly MBE
changes during a selected month. Each line corresponds to a particular CBG.

FIGURE 7
Spatial patterns of MBE, AutoML-LUR estimates of PM2.5, and visitor numbers at different hours of a particular month for two subset regions in Los
Angeles. CBGs with black boundaries represent AutoML-LUR estimates of PM2.5 higher than 12 μg/m3.
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of Los Angeles. These months also provide a comprehensive
picture of visitor exposure to PM2.5 throughout the year. Most
of the CBGs demonstrate a relatively consistent pattern of MWE
throughout the day, which might result from the levels of PM2.5 or
a relatively low number of visitors throughout the day. CBGs that
are significantly deviating from the general temporal patterns show
clear diurnal trends. One typical trend is that MWE increases
during the day, peaking in the late morning to early afternoon as
people arrive for work or other activities. MWE declines in the late
afternoon and evening as people finish their activities and return
home or to their lodging. Another typical trend is that MWE
remains high at night and decreases during the day, which might
result from high PM2.5 concentrations or high visitor numbers at
night.

MWE to PM2.5 is a measure of the average exposure of visitors
to a particular area, considering both the concentration of PM2.5

in the air and the number of visitors present in the area.
Supposing either of these factors is exceptionally high, the
MWE value may appear as a hotspot within the region,
indicating a potential area of concern for air quality and
public health. However, it is important to note that a high
MWE value on its own does not necessarily indicate
significant exposure risks without examining both factors
separately. For example, a high MWE value may be due to a
high number of visitors in an area with relatively low PM2.5

concentrations (Figure 7A. Airport), or it could be due to a
relatively low number of visitors in an area with very high PM2.5

concentrations (Figure 7B. Long Beach). In the first case, the risk
of exposure to PM2.5 for visitors may be relatively low, while in
the second case, the risk may be much higher. Therefore,
examining the visitor numbers and PM2.5 concentrations
separately is important to get a complete picture of potential
exposure risks. This can help policymakers and public health
officials develop targeted strategies to reduce exposure to PM2.5

and improve air quality in areas with high levels of visitor
activity.

4 Discussion

This research aimed to improve the accuracy of LUR models
for urban air pollution exposure assessments by integrating
AutoML and low-cost sensor networks. AutoML-LUR models
were developed and tested in eight CBSAs in the US, and results
showed that integrating PurpleAir data into the model improves
their prediction performance, particularly in areas with scarce
regulatory monitoring stations. However, models developed
using both EPA and PurpleAir data showed higher variance
across different CBSAs compared to those developed using
only EPA data. Based on the AutoML-LUR models, feature
importance was calculated to identify the key factors that are
spatially correlated with PM2.5 concentrations. Results showed
that in most CBSAs, satellite AOD, meteorological variables,
temporal indicators, NDVI, and land use remain highly
correlated with PM2.5 concentrations, while the other
important features vary in different spatial regions.
Additionally, the study calculated mobility-based exposure
(MBE) to PM2.5 using aggregated human mobility data from

SafeGraph to understand how these exposures vary spatially and
temporally. The results showed that areas with higher MBE
values are found in neighborhoods with a high number of
major transportation hubs, industries, and businesses, which
might result from a high PM2.5 concentration or large visitor
numbers.

This study has several implications for environmental science and
public health. First, integratingAutoML and low-cost sensor networks
can improve the accuracy of LUR models for air pollution exposure
assessments, which provides more precise and reliable data for public
health studies and decision-making. Second, spatial heterogeneity and
temporal variations in the key factors relevant to PM2.5 concentrations
can be used to develop more effective strategies to reduce exposure to
air pollution and improve public health. Public health officials and
policymakers can use the outcome of this research to 1) develop
targeted interventions, such as reducing emissions from major
transportation hubs or promoting green spaces in areas with high
PM2.5 concentrations, at a finer temporal interval; 2) identify areas
where vulnerable populations may be at higher risk of exposure to air
pollution, 3) promote the use of low-cost sensor networks to improve
air quality monitoring in their communities, and 4) support evidence-
based decision-making on issues such as air quality regulations, land
use planning, and transportation policies using AutoML algorithms to
integrate multiple sources of data.

There are several limitations of this study. First, the AutoML-
LUR method relies heavily on the data availability and accuracy of
air quality monitors. Incorporating PurpleAir measurements
improved overall accuracy, but their data quality needs
screening and calibration. Limited sensor distribution in some
areas can result in higher uncertainty in the predictions made by
the model for these areas. Second, models with higher temporal
resolution may suffer from higher uncertainty due to the greater
complexity of the model and the need to account for more
variables. This can be particularly challenging in estimating
PM2.5, which can dramatically vary event by event due to
scenarios such as wildfires, fireworks, and dust storms. To
address this issue, it may be necessary to develop event-specific
models or use more sophisticated models incorporating pattern
shifts due to these events (Yu et al., 2022). Third, SafeGraph data
represents approximate mobility patterns for a community rather
than individual people, limiting its representativeness in
estimating the visitor population for each census block
group. Using data from the American Community Survey
(ACS) can supplement the mobility data and improve
representativeness. Although ACS is conducted annually and
does not provide real-time individual-level data, it can provide
valuable context to the SafeGraph mobility data. For example,
using the ACS data, we can infer demographic and socioeconomic
characteristics of individuals such as income, education level, race/
ethnicity, and age. By combining this information with SafeGraph
data, we can enhance our understanding of who is visiting these
locations and thus refine our exposure estimates by accounting for
these demographics, which can influence exposure susceptibility
and behavior. Lastly, SafeGraph employs data suppression
techniques to protect individual privacy. This can result in
underrepresentation or inaccuracies in visitation data for
locations with low foot traffic or device count, potentially
impacting the accuracy of our exposure estimates in these areas
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(Hu et al., 2021). Future research should explore methods to
counteract the effects of data suppression and investigate the
specific impacts of these techniques on exposure estimates.

Future studies should address several challenges to improve our
understanding of human exposure to air pollution and its impact on
public health. First, socio-economic disparities in human exposure to
PM2.5 can be further analyzed to identify and address potential health
inequities. Understanding how different groups are affected by air
pollution, based on their socioeconomic and demographic
characteristics, is essential for public health planning and policy-
making. Second, exposure models integrating numerical and human
mobility simulation have been valuable tools for understanding and
predicting human exposure to air pollution and other environmental
hazards. These simulations involve 1) physical processes that govern the
movement and dispersion of pollutants in the environment and 2) the
movements and activities of individuals to estimate their exposure to
these pollutants. Using data on human mobility, such as that provided
by SafeGraph, can help to improve the accuracy and reliability of these
models by providing more detailed and realistic information on the
movements and activities of individuals. By incorporating this
information into the model, it may be possible to predict and
understand how people are exposed to air pollution more accurately.
Finally, follow-up research should investigate indoor air quality
exposure and compare it to outdoor exposure in this study.
Understanding the differences between indoor and outdoor exposure
and their effects on public health outcomes can help to inform strategies
for improving air quality and reducing exposure to pollutants.
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