
Landslide susceptibility mapping
and management in Western
Serbia: an analysis of ANFIS- and
SVM-based hybrid models

Ismail Elkhrachy1, Rajeev Ranjan Yadav2, Ali Nouh Mabdeh3*,
Phong Nguyen Thanh4,5, Velibor Spalevic6 and Branislav Dudic7,8*
1Civil Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia,
2Department of General and Applied Geography, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya
Pradesh, India, 3Department of Earth Sciences and Environment, Institute of Earth and Environmental
Sciences, Al Al-Bayt University, Mafraq, Jordan, 4Laboratory of Environmental Sciences and Climate
Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh
City, Vietnam, 5Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City,
Vietnam, 6Biotechnical Faculty, University of Montenegro, Podgorica, Montenegro, 7Faculty of
Management, Comenius University Bratislava, Bratislava, Slovakia, 8Faculty of Economics and Engineering
Management, University Business Academy, Novi Sad, Serbia

Landslide susceptibilitymapping (LSM) is essential for land-use planning, as it helps
to identify areas at risk of landslides and enables effective prevention measures to
be taken. Various statistical and machine learning (ML) models are used in LSM,
including SVM and ANFIS, which have shown promising results. However,
determining which model performs better remains a key challenge. To address
this issue, this paper aims to compare six hybrid models constructed with two
well-known and powerful ML models, namely SVM and ANFIS, and three meta-
heuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE),
and Cultural Algorithm (CA), for LSM in a case study in western Serbia. In the
process of building themodels, 359 landslide sites and 14 determinants were used.
The accuracy of the models was evaluated using several indexes, including Root
Mean-Squared Error (RMSE), coefficient of determination (R2), and Area under the
Receiver Operating Characteristic Curve (AUROC). The modeling results showed
that the SVM-GA model has the highest accuracy (AUROC = 0.78) in predicting
landslide incidence, followed by the ANFIS-GA (AUROC = 0.775), SVM-CA
(AUROC = 0.773), ANFIS-DE (AUROC = 0.771), SVM-DE (AUROC = 0.76), and
ANFIS-CA (AUROC = 0.65) models in validation phase. Therefore, the study
suggested that SVM-based hybrid models are more accurate than ANFIS-based
models for LSM, and thus, modelers may use SVM-based hybrid models for such
applications. This study provides valuable insights into identifying the most
appropriate and effective models for LSM, which can help to mitigate the risks
associated with landslides and ensure sustainable land-use practices.
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1 Introduction

Landslides are a type of natural hazard that can have significant
impacts on human lives and the environment. These disasters are
often more manageable than other natural disasters, so studying this
phenomenon is of great importance in order to minimize losses
caused by it (Magliulo et al., 2008; Sestras et al., 2018). This
phenomenon accounts for more than 9.0% of disasters worldwide
(Sestras et al., 2018; Magliulo et al., 2008). It is referred to as the mass
movement of the slope materials such as rocks, soil, and artificial
embankments (or a combination thereof) under the influence of
gravity. Landslides are prevalent in hilly and mountainous areas
(Sestras et al., 2021), occurring along a certain surface of rupture
(Bobrowsky and Highland, 2013). They may occur with heavy
rainfall or due to droughts, earthquakes, or volcanic eruptions,
which are common in areas with long, steep hillsides
(mountains), cliffs, escarpments, or rough hilly terrain (Zêzere
et al., 1999). Mountainous areas are most commonly affected by
this phenomenon, but it can occur in low-altitude areas due to
human activities. These activities include excavation or backfilling
during drilling operations for road and building construction,
rupture of riverbanks, sideways development of landslides,
collapse of deposited masses from mines (especially coal) and
various slope ruptures related to rock mines and open-pit mines
(Zêzere et al., 1999; Wang et al., 2014; Yan et al., 2019). The most
common cause of landslide is when the downslope forces on hillsides
become greater than the strength of the materials composing the
slope. This can occur due to intense rain or snowfall (Yilmaz and
Keskin, 2009). Researchers working on landslide susceptibility
mapping (LSM) investigate the causative factors contributing to
landslides. This information can help decision-makers develop
strategies for mitigating landslide damages. The goal of this study
is to create maps for areas prone to landslides, through zonation of
landslide-susceptible areas, as a key steps to effectively manage
damages caused by landslides (Hearn and Hart, 2019).

Zoning of landslide-prone areas is a standard tool that supports
land use planning and decision-making (Guzzetti et al., 1999). To
achieve this, Geographic Information System (GIS) and remote
sensing (RS) have incorporated knowledge-based models such as
Analytic Hierarchy Process (AHP) and data-driven models like
various neural networks for zoning of landslide-prone areas
(Guzzetti et al., 1999; Althuwaynee et al., 2014; Zhu et al., 2018;
Zheng et al., 2022). Each of these approaches has certain advantages
and disadvantages (Arabameri et al., 2018; Zhu et al., 2018; Meng
et al., 2022). Artificial Intelligence (AI) plays a vital role in numerous
fields including healthcare, finance, and transportation,
revolutionizing processes, enhancing decision-making capabilities,
and facilitating advancements to propel us into a more efficient and
innovative future (Choudhuri et al., 2022; Hu et al., 2022; Shakeel
and Shakeel, 2022). Data-driven models are an integral part of AI
systems, as AI algorithms require large amounts of data to learn and
make intelligent decisions (Ahmad, 2022; Ma et al., 2022; Wu et al.,
2022). In data-driven methods, there may be some uncertainty
associated with the random selection of locations that have no
landslide potential (Pal and Chowdhuri, 2019; Pal et al., 2022a;
Saha et al., 2022). Conversely, while landslide occurrence data are
not required in knowledge-based approaches, human bias can affect
modeling results (Abdul-Hamid et al., 1999; Li and Li, 2009),

thereby also contributing to some degree of uncertainty (Pal
et al., 2022b). Beside these pros and cons of the two approaches,
if accurate data on landslide locations are available, data-driven
models produce better results than knowledge-based models
(Ashournejad et al., 2019). Furthermore, for developing models
in data sparse areas, using knowledge-based approaches can be a
suitable alternative (Daly et al., 2002; Li and Li, 2009; Ashournejad
et al., 2019; Sarkar et al., 2022). Among data-driven models, two
commonly used techniques are the support vector machine (SVM)
and adaptive neuro-fuzzy inference system (ANFIS) (Pradhan, 2013;
Chen et al., 2017; Panahi et al., 2020). Numerous studies have
compared SVM and ANFIS and have shown that one may perform
better than the other (Salahshoor et al., 2010; Tabari et al., 2012;
Pradhan, 2013; Chen et al., 2017; Mokhtarzad et al., 2017; Seifi et al.,
2020). Therefore, the question of which technique performs better in
LSM will be investigated in this study.

The ANFIS model, which combine the fuzzy inference system
(FIS) and artificial neural network (ANN), has proven to be a
powerful and flexible tool for modeling and forecasting natural
disasters such as landslides (Oh and Pradhan, 2011; Polykretis
et al., 2019; Paryani et al., 2020; Chen et al., 2021). Numerous
studies have shown that the combination of FIS and ANN
significantly improves the performance of the ANN (Çaydaş et al.,
2009; Moghaddamnia et al., 2009). However, meta-heuristic
algorithms like genetic algorithm (GA) and cultural algorithm
(CA) must be employed to tube the hyper-parameters of the
ANFIS model (Kaur and Chahal, 2020; Fattahi and Hasanipanah,
2022). Also, researchers have used the SVM model–a data-driven
model combining statistical methods and machine learning–for
hazard mapping (Ballabio and Sterlacchini, 2012; Lee et al., 2017).
The hyper-parameters of the SVM model and its kernels have been
chosen using various methods including grid search (GS) and GA (Li
andKong, 2014; Shafizadeh-Moghadam et al., 2017). Moreover, radial
basis function (RBF) of SVMmodel is the most frequently used kernel
due to its accurate results compared to other kernels like linear,
sigmoid, and polynomial [36]. Also, various studies have shown that
SVM is an accurate model in hazard mapping (Tehrany et al., 2015;
Huang and Zhao, 2018). However, recent studies have paid little
attention to the impact of optimal parameter selection for the SVM
model and its kernels, while the effectiveness of SVM is highly
dependent on the accurate determination of model parameters and
kernels, and this should be taken into account in future research.
Furthermore, there have been few studies comparing the performance
of SVM-based hybrid models to that of ANFIS-based hybrid models.

In this study, we propose the use of six hybrid models that
combine SVM and ANFIS, incorporating GA, Differential Evolution
(DE), and CA meta-heuristic algorithms, to address LSM in a
specific case area located in Serbia. Our primary objective is to
compare the performance and accuracy of the six aforementioned
hybrid models and assess their goodness of fit in LSM applications.
To optimize the performance of the ANFIS and SVM models, we
employ a combination of GA, DE, and CA algorithms to select the
most appropriate set of parameters. It is worth mentioning that very
few studies have explored this particular comparison of modeling
techniques in the context of LSM. Therefore, this study aims to fill
this research gap and contribute to the existing body of knowledge in
the field of LSM by conducting an in-depth analysis of these hybrid
models.
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2 Study area

The area under study covers approximately 625.5 km2 between
longitudes 19°06.3′E to 19°41.9′E, and latitudes 44°12.5′N to
44°29.6′N. It is located on the west of the Republic of Serbia
(Figure 1). Most of the study area belongs to Krupanj and
Osečina municipalities comprising of 63 villages. This study area
includes 65 settlements with about 28,000 residents: 11512 in
Osecina (0.16% of the total population of Serbia) and 16,038 in
Krupanj (0.23% of the total population of Serbia).

In morphological terms, the region is characterized as
mountainous, with altitudes ranging from 150 m above sea level
(a.s.l.) to 990 m a.s.l. The study area is predominantly hilly and
mountainous, replete with pastures and forests, through which clear,
rapid streams flow.

The valleys and hills are directed mainly towards the northwest-
southeast, parallel to geological races. The area is surrounded by the
Boranje (856 m a.s.l.), Jagodnje (939 m a.s.l.) and Sokolska Planina
(973 m a.s.l) mountains and experiences moderately continental
weather, with sub-mountain weather elements evident at higher
elevations. The average annual precipitation amounts range from
850 to 1,000 mm. The study area is distinguished with complex
geological structure with sedimentary deposits being the most
prevalent.

Frequent landslides are typically characterized by sharp
topography, active seismicity, geology, climatic phenomena, as
well as anthropogenic activities on unstable slopes. The study
area is one of the regions most affected by natural disasters,
particularly in the middle of May 2014 when heavy rain caused

significant flooding and landslides, impacting Serbia. As a result, a
large number of landslides, demolitions, and damages were
activated, affecting over 700 objects and endangering human lives
(Đokanović, 2016). The property damage was estimated to be about
US$100 million. To this day, a considerable number of landslides
remains active in the area. The landslide cadaster contains
359 recorded landslide locations in the study area. In 2019 alone,
approximately 6,050 individuals in the study area were threatened
by landslides. Critical factors related to landslides.

2.1 Critical factors related to landslides

The first step in hazard zonation is to collect data and
information on previous landslides and explanatory factors that
contribute to landslide incidence (Van Westen et al., 2008). Various
factors such as elevation, slope, aspect, geological structure, mineral
composition of the land, groundwater level, earthquakes, distance
from the fault, land use, vibrations induced by traffic and
construction machinery, waterways, rainfall/snowfall, weathering
cycle (moistened/dried, dissolution), subsidence, trenching, and
digging holes can lead to slopes instability (Domínguez-Cuesta
et al., 2007; Kavzoglu et al., 2015). In this study fourteen factors
including slope, elevation, aspect, land use land cover (LULC),
distance to rivers, rainfall, distance to faults, the normalized
difference vegetation index (NDVI), distance to roads, sediment
transport index (STI), topographic wetness index (TWI), stream
power index (SPI), lithology, and distance to urban areas were
considered significant factors in landslide hazard zonation. These

FIGURE 1
Study area location.
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factors were prepared using spatial analyses in the GIS environment.
The Advanced space-borne thermal emission and reflection
radiometer digital elevation model (ASTEMR DEM) with a
resolution of 30 m was used to extract significant topographic

factors such as slope and aspect, which are essential in
controlling the occurrence of landslides and are used in almost
all landslide zonation studies.

Landslides are more likely to occur at high altitudes since soil
organic matters such as carbon and nitrogen in those areas are
responsible for dehydrogenase activity and have a positive effect on
landslide occurrence. There are different opinions among scholars
about the effect of aspect on landslides occurrence. Some consider it
an influential factor (Yalcin and Bulut, 2007; Galli et al., 2008), while
others showed that aspect is not involved in the occurrence of this
phenomenon (Cevik and Topal, 2003; Ayalew and Yamagishi,
2005). In the current study, this factor was considered one of the
predisposing factors for landslide occurrence. The slope factor is also
an important factor in landslide incidence. Average annual rainfall is
a significant climatic factor in landslide incidence (Martelloni et al.,
2012). Landslides induced by rainfall are generally more frequent
than those induced by earthquakes (Bai et al., 2020). In this study,
this factor was classified into five categories (Figure 2).

NDVI is one of the factors derived from LANDSAT TM/ETM
images and was classified into six classes (Figure 2). STI, SPI, and
TWI present the hydrological conditions and are among the most
common landslide conditioning factors in most studies. SPI
indicates the erosive energy of the stream and was classified into
five classes. TWI reflects the effect of local topography on the
hydrological conditions. Three significant human-made landslide
factors including distance from urban areas, LULC, and distances
from roads were taken into consideration in this study. LULC, as an
important landslide factor, was classified into nine classes. Changes
in LULC can increase the number of landslides and accelerate the
trend of a landslide (Meneses et al., 2019). Roads change the natural
landscape and the natural slope of the land surface. They also apply
an excessive load on the lower parts of the land, which results in
increased landslide hazard in the proximity to roads. This important
factor was classified into five classes. Distance from river is a slope
instability factor that was classified into five classes. Faults are
tectonic fractures that usually reduce the stress applied to the
rocks. However, displacement and activity of faults can be
effective in landslide occurrence. Therefore, distance from faults
as an important factor was used and classified into six classes.
Lithology is another significant factor in the study of landslides,
and rock structures show different reactions to this phenomenon.
Depending on the rock types observed in the study area, this factor
was classified into thirteen classes.

3 Methodology

Fourteen factors and 359 landslide locations were used to train the
models. Of the 359 landslide locations, 70.0% were used during the
training runs and the remaining 30.0%were used in the validation runs.
The correlation between the classes corresponding to each factor and
the occurrence of landslides was calculated using the frequency ratio
(FR) method. After weighing every class of the factors, the hyper-
parameters of the SVM model and the parameters of ANFIS model
were calculated and tuned using three meta-heuristic algorithms,
namely GA, DE, and CA. Once these hyper-parameters were
calculated, hybrid models were developed by using the three models
and the accuracy of each model was assessed using the Root Mean-

FIGURE 2
Conditioning factors for landslide susceptibility mapping.
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Squared Error (RMSE) and the Area under the Receiver Operating
Characteristic Curve [AUROC; (Ruidas et al., 2022b; Ruidas et al.,
2023)] criteria. Subsequently, landslide susceptibility maps were
generated. Figure 3 presents the methodological flow chart of the
modeling framework for LSM in this paper. The details of all
models are explained in the following sections.

3.1 Support vector machine (SVM)

SVM has been directly derived from Vapnik’s statistical
learning theory and is primarily used for classification problems
(Vapnik et al., 1995). Later, this algorithm was developed to solve
regression problems or data estimation as well (Benkedjouh et al.,
2015; Ruidas et al., 2021; Ruidas et al., 2022a). Let assume that we
have a set of data in the form of [(Xi, Yi), X ∈ Rn andY ∈ [0, 1]].
This implies that each sample (X) has n dimensions (an
n-dimensional vector of predictor variables), and binary values
of 0 or 1 correspond to each of these samples for the Y variable (e.g.
landslide occurrence). Eq. 1 shows the final equation of the SVM
model:

f x( ) � ∑n
i�1

αi( − α*i )K xi, x( ) + b (1)

In Eq. 1, αi ≥0 and α*i ≥0 are the Lagrange coefficients;K(xi, x) is
a kernel function and b is calculated by Eqs 2, 3:

b � yi − wTxi − ε for 0< αi <C (2)
b � yi − wTxi + ε for 0< α*i <C (3)

Where w is the weight vector; C is constant and ε is deviation
from hyper-plane.

SVM includes four types of functions, each of which consists of
three parameters: the regularization parameter (C) that avoids over-
fitting and controls the trade-off between SVM errors on the training
data and the margins; a margin of tolerance (ε) that approximates
the SVM model; and kernel parameters, such as the Gamma (γ)
parameter that controls the degree of non-linearity for the RBF
kernel (Chapelle et al., 2002). To achieve better performance, these
parameters should be tuned. Eq. 4 shows RBF kernel function with
its related parameters. This study used the LIBSVM package, a
library for SVM implementation in MATLAB to run the models
(Chang and Lin, 2011). Additionally, hyper-parameters of the SVM
model will be tuned using GA, DE, and CA.

k x, y( ) � exp −γ x − y
���� ����2( ) (4)

3.2 Adaptive neuro-fuzzy inference system
(ANFIS)

ANFIS, first proposed by Jang (1993), is a type of Neuro-Fuzzy
System intended to solve nonlinear and complex problems by
implementing the principles of fuzzy logic and ANN in one
framework (Jang, 1993). The ANFIS structure has two main
parts: premise and consequence parameters, which need to be
determined and optimized. The determination of these
parameters is part of the training process of ANFIS (Karaboga
and Kaya, 2019). The ANFIS model consists of 5 layers (Ahmadlou
et al., 2019). To train ANFIS, it is necessary to determine the values
of premise and consequence parameters using an optimization
algorithm. In this study, three meta-heuristic algorithms (GA,
DE, and CA) were used to tune the values of these parameters.

FIGURE 3
Methodological flow chart of modeling framework for landslide susceptibility mapping.
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3.3 Genetic algorithm (GA)

The GA is a principal meta-heuristic algorithm inspired by
Darwin’s evolutionary theory (Holland, 1992). In the GA, a random
set of solutions to the problems is initially generated (Holland,
1992). An evaluation function is then used to select the solutions
with the best goodness-of-fit index. Special operators like mutation
and crossover are then used to produce the next solution set. In this
algorithm, each solution is represented by a chromosome, and each
solution parameter is a gene. The total set of all solutions is also
known as a generation. The primary genetic operators are selection,
crossover, and mutation. The selection operator plays a crucial role
in the GA by identifying promising solutions that will form the basis
of the next-generation. The fitness function is used to evaluate each
candidate solution’s suitability for solving the problem at hand, and
this information is then used to determine their probability of being
selected for the next-generation. By using techniques like the
roulette wheel or other methods, the selection operator can
effectively balance exploration (i.e., sampling widely across the
solution space) with exploitation (i.e., focusing on promising
solutions). This helps ensure that the algorithm converges
towards high-quality solutions over time. Using the crossover
operator, the selected solutions are then combined to generate
new solutions. The crossover can be of one-point, two-point,
multi-point, or uniform types. The mutation operator randomly
selects some solutions and randomly changes some of their genes. In
this algorithm, solutions can be coded via different ways like
permutation encoding, binary encoding, tree encoding, and value
encoding. In other words, in the GA, instead of directly working on
problem parameters and variables, their encoded form is utilized.

3.4 Differential Evolution (DE)

DE is one of the evolutionary algorithms, and its main difference
with GA lies in order of mutation and crossover operators, and how
the selection operator works (Storn, 1999; Price et al., 2006). DE uses
a differential operator to produce new solutions, allowing for an
exchange of information among populationmembers. An advantage
of DE is that it can retain the information from good solutions in
memory. This algorithm begins by setting three parameters: scaling
factor (F), crossover rate (CR), and population size (N), and includes
four main steps, initiation, mutation, crossover, and selection.

Initiation: In this step, the initial population size (Np) is
randomly generated. Next, four members are randomly select
from the population. One of these four members is randomly
chosen as the target vector, and the others are considered vectors
1, 2, and 3 (Tien Bui et al., 2017).

Mutation: In this step, to produce the mutated or differential
(donor) vectors, the difference between vector 2 and vector 3 is first
multiplied by the F factor and then added to vector 1. The mutated
vector is calculated according to Eq. 5:

Xj,gen+1 � Xr1,gen + F Xr2,gen −Xr3,gen( ) (5)

In this equation, r1, r2, and r3 are indices that are randomly
selected such that [r1 ≠ r2 ≠ r3 ≠ i]. Xr1,gen, Xr2,gen, and Xr3,gen are
vectors that are randomly chosen from the populations.

Crossover: In this step, a crossover is performed between the
mutated and target vector, and the trial vector is generated using Eq.
6 (Hong et al., 2018);

Xj,i,gen+1′ � Xj,i,gen+1 if ρj ≤CRor j � q
Xj,i,gen else

{ (6)

where ρj ∈ [0, 1] is a uniform random number and q is the index
used to confirm the selection of at least one parameter in the mutant
vector.

Selection: The selection operation is employed to select the
optimum solutions for the forthcoming generation using Eq. 7.
In this step, the fitness value of the trial and target vectors is
compared. If the trial vector has a greater value than the target
vector, it will be one of the members of the new generation.

Xi,gen+1 � Xi,gen+1′ if f Xi,gen+1′ )( ≤f Xi,gen( )
Xi,gen else

{ (7)

Where,Xi,gen is the parent vector, and f (*) is the fitness function.

3.5 Cultural algorithm (CA)

Reynolds introduced CA as an evolutionary algorithm in 1994
(Reynolds, 1994). With the concept of collective intelligence
developed in the 19th century, CA offers an ideal framework for
numerous theories of social evolution. It is a computer-based model
of cultural evolution used to solve optimization issues that require a
large amount of domain knowledge to guide the collective actions of
a population of individuals. CA has been used to solve problems
with a bundle of data, with various parameters and a lot of agents in
a big distributed social network. CA combines evolutionary systems
and agents employing different knowledge sources for the evolution
process, as determined by social structures (Tien Bui et al., 2018).

3.6 SVM and ANFIS-based meta-heuristic
hybrid models for LSM

Tuning SVM hyper-parameters is essential for achieving a
model with good performance. GS method, which involves
changing the hyper-parameters with the fixed step size, is one of
the traditional methods used to determine these parameters.
However, this approach has high computational complexity and
may not be suitable when dealing with numerous parameters. To
address this limitation, evolutionary algorithms have been employed
for hyper-parameter selection in various models such as ANNs,
ANFIS, among others. In these study, we applied three meta-
heuristic algorithms namely GA, DE, and CA to tune the RBF
kernel hyper-parameters (γ, C, ε) of SVM. For the GA algorithm, we
followed the procedure outlined below:

Firstly, the population size and chromosome length were set at
20 and 3, respectively, to tune the three parameters. Subsequently,
the values of these three parameters in each chromosome were
inserted into the SVM model, and modeling was performed using
training data. Afterward, the output of the models was compared
with the real values and the RMSE values were calculated using Eq. 8
(Pal et al., 2022b):
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TABLE 1 Spatial relationships of landslides with variables according to FR.

Factor Class No. of pixels No. of landslides FR weights

Altitude (meter) 150–200 60802 8 0.82

200–400 880036 132 0.94

400–600 422154 102 1.51

600–800 140390 8 0.36

> 800 60956 0 0

Aspect Flat 23970 2 0.52

North 213365 31 0.91

North east 211820 36 1.06

East 196371 40 1.27

Southeast 192268 37 1.20

South 178309 29 1.01

Southeast 175108 21 0.75

West 175180 28 1.00

Northwest 197947 26 0.82

Slope (degree) 0–5 165575 12 0.45

5–15 695326 125 1.12

15–30 655957 113 1.08

> 30 47480 0 0

Rainfall (millimeters) 846–875 201662 15 0.46

875–895 285811 40 0.87

895–914 366078 68 1.16

914–934 441744 75 1.06

> 934 267230 52 1.22

NDVI <-0.05 2 0 0

−0.05–0.05 1105 1 5.66

0.05–0.15 323969 26 0.50

0.15–0.25 1055144 175 1.04

0.25–0.35 169894 47 1.73

> 0.35 12902 1 0.48

SPI <-1.33 39695 9 1.42

−1.33–0.75 113843 20 1.10

−0.75–0.20 125929 10 0.50

−0.20–0.27 887284 126 0.89

>0.27 397587 85 1.34

STI 0–110 1117887 168 0.94

110–360 407464 80 1.23

> 360 38987 2 0.32

(Continued on following page)
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TABLE 1 (Continued) Spatial relationships of landslides with variables according to FR.

Factor Class No. of pixels No. of landslides FR weights

TWI <7 1173945 188 1.00

7–12 346425 58 1.05

>12 43968 4 0.57

Distance to rivers (meter) 0–150 227298 50 1.38

150–300 219276 44 1.26

300–450 206833 28 0.85

450–600 197311 42 1.33

> 600 713620 86 0.75

Distance to faults (meter) 0–500 100547 5 0.31

500–1000 103668 8 0.48

1000–1500 113521 17 0.94

1500–2000 116770 17 0.91

2000–2500 124104 21 1.06

> 2500 1005728 182 1.13

Distance to roads (meter) 0–500 443883 129 1.82

500–1500 617437 102 1.03

1500–2500 287488 14 0.30

2500–3500 136850 5 0.23

> 3500 78680 0 0

Distance to urban areas (meter) 0–500 89766 22 1.53

500–1500 654747 114 1.09

1500–2500 625933 90 90

2500–3500 179025 24 0.84

> 3500 14867 0 0

LULC 1 7777 3 2.41

2 40178 3 0.47

3 304381 60 1.23

4 572411 125 1.37

5 548562 53 0.60

6 9552 0 0

7 72200 6 0.52

8 2353 0 0

9 6911 0 0

Lithology Group1 241 0 0

Group2 12724 2 0.98

Group3 32890 0 0

Group4 19987 0 0

Group5 18888 0 0

Group6 182165 19 0.65

(Continued on following page)
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RMSE �
												∑N

i�1 xi − x′
i( )2

N

√
(8)

Where N, xi, and x′
i represent the number of samples, actual

landslide observations, and model outputs, respectively.
Chromosomes with low RMSE values indicate good fitness.
Tournament selection was used to select chromosomes for the
next generations due to its efficiency and ease of implementation.
In the designed GA, the elitism ration, crossover rate, crossover
method, mutation ratio, number of generations, and elite count were
set to 0.7, 1, 0.05, two points, 400, and 1 respectively. A similar
procedure was chosen for the other two algorithms. ANFIS is one of
the most widely used and well-known LSM algorithms which
require tuning of two sets of hyper-parameters–consequence and
premise. GA, DE, and CA were used to tune these parameters and
obtain an accurate prediction model. All models were coded in
MATLAB software.

4 Results

The weight of each class of variables that influence landslide
incidence was determined using FR (Table 1). In the altitude factor,
although the highest number of the landslides was found in the
200–400 m class, the class 400–600 m had the highest weight in the
FRmodel. Areas with a height above 800 m did not affect the incidence
of landslide in this factor. For the aspect factor, all classes had almost
similar impacts on the incidence of landslides and the ‘flat’ class only
had the lowest importance. Concerning the slope factor, slopes below
5% and above 30% had the least participation in the occurrence of
landslides, whereas slopes between 5% to 15% and 15%–30% had a
significant effect on the incidence of landslides. Landslides were more
prevalent in precipitation classes 895–914 m and 914–934 m.
Moreover, the highest weights for the remaining factors were
associated with SPI<−1.33, TWI between 7 and 12, STI between
110 and 360, distance from the river within 0–150 m, distance to
fault greater than 2,500 m, NDVI between −0.05 and 0.05, Brakish
deposits, Tortonian and Messinian classes from the geology class, and
discontinuous urban fabric from the land use factor. Tables 2, 3 show
various types of classes for LULC and lithology factors, respectively.

After assigning weights to the various classes of variables that
influence landslide occurrence, the hyper-parameters of the SVM

and its RBF kernel were calculated using GA, DE, and CA (as shown
in Table 4). Additionally, Figures 4–6 depict the actual and predicted
values for both the training and testing data, along with theMSE and

TABLE 1 (Continued) Spatial relationships of landslides with variables according to FR.

Factor Class No. of pixels No. of landslides FR weights

Group7 986807 180 1.14

Group8 215564 29 0.84

Group9 18693 4 1.34

Group10 3299 0 0

Group11 5256 2 2.38

Group12 49554 14 1.77

Group13 18270 0 0

TABLE 2 The classes of LULC factors presented in Table 1.

Class no. LULC type

1 Discontinuous urban fabric

2 Pastures

3 Complex cultivation patterns

4 Agricultural lands

5 Broad leaved forest

6 Mixed forest

7 Woodland shrub

8 Coniferous forest

9 Non irrigated arable land

TABLE 3 The classes of lithology factor presented in Table 2.

Class no. Lithology type

1 Terrestrial deposits, Quaternary

2 Flysch and other basin deposits, Upper Cretaceous

3 Flysch and other basin deposits, Upper Jurassic

4 Volcanic rocks, Triassic

5 Ophiolite sequence, Jurassic

6 Platform carbonate rocks, Triassic

7 Predominantly clastic rocks, Upper Paleozoic

8 Clastic and carbonate rocks, Permian

9 Predominantly clastic rocks, Carboniferous

10 Plutonic rocks, Paleozoic

11 Brakish deposits, Tortonian and Messinian

12 Marine clastic rocks, Langhian and Serravallian

13 Plutonic rocks, Miocene and Oligocene
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RMSE for the ANFIS-GA, ANFIS-DE, and ANFIS-CA models,
respectively. Among the six hybrid models, the ANFIS-GA model
exhibited a lower RMSE (0.386) during training than other models.
Furthermore, during validation, this model showed slightly lower
RMSE (0.441) compared to the other models.

After analyzing the AUROC values (Figure 7), it was
observed that the SVM-DE model achieved the highest
accuracy during the training phase (0.923), followed by SVM-
CA (0.879), ANFIS-GA & ANFIS-DE (0.877), SVM-GA (0.844),

and ANFIS-CA (0.798). On the other hand, during validation
phase, SVM-GA (AUROC = 0.780) outperformed the other
models, followed by ANFIS-GA (AUROC = 0.775), SVM-CA
(AUROC = 0.773), ANFIS-DE (AUROC = 0.771), SVM-DE
(AUROC = 0.760), and ANFIS-CA (AUROC = 0.657). These
results indicate that SVM-based hybrid models performed better
than AFNIS-based hybrid models in both the training and
testing phases. Figure 8 displays the LSMs generated from the
six models.

TABLE 4 The SVR kernel tuned parameter values that have been produced by the GA, DE, and CA me-taheuristic algorithms.

SVR-RBF Epsilon (ε) Gamma (γ) Cost (C) R2 (Train) RMSE (Train) R2 (Test) RMSE (Test)

GA 0.0010386 3.2202 7.696 0.83 0.380 0.82 0.391

DE 0.2500 0.125 0.03125 0.88 0.368 0.80 0.404

CA 0.0010386 3.2202 7.696 0.84 0.361 0.81 0.398

FIGURE 4
(A and B) the ANFIS-GA output and real output for training and
test data, respectively, (C and E) the RMSE and MSE values of the
training and validation sets, respectively, (D and F) the frequency
errors of the training and test sets, respectively.

FIGURE 5
(A,B) the ANFIS-DE output and real output for training and test
data, respectively, (C,E) the RMSE and MSE values of the training and
validation sets, respectively, (D,F) the frequency errors of the training
and test sets, respectively.
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5 Discussion

In this study, six hybrid models were developed for LSM namely
ANFIS-CA, ANFIS-DE, ANFIS-GA, SVM-CA, SVM -DE, and
SVM-GA. The ANFIS model uses the fuzzy Sugeno setup for
integration and optimizes the final fuzzy inference system
through neural network training for classification. On the other
hand, The SVM model splits classes of input data on a hyperplane
(Devadas et al., 2012). The proposed hybrid models use three
evolutionary algorithms which are advantageous as they do not
require statistical assumptions about the distribution of data. After
conducting further studies using different hybrid models to enhance
accuracy and robustness in LSM (Chen et al., 2019; Moayedi et al.,
2019; Pham et al., 2019), this present study used three models, CA,
DE, and GA, to improve the accuracy of both ANFIS & SVMmodels
for LSM.

Analysis showed that SVM-based models, specifically SVM-
DE (AUROC = 0.923) and SVM-GA (AUROC = 0.780)

outperformed the other models in training and testing,
respectively. Results also revealed that the ANFIS-CA with
AUROC 0.789 in the training phase and 0.657 in the testing
phase had the lowest accuracy. Furthermore, the SVM-CA model
performed moderately better than ANFIS-CA in both training
and testing phases. This indicates that SVM-CA is a better hybrid
model than ANFIS-CA for LSM, although this conclusion may
not be applicable in other study areas and different scenario,
given important aspects such as quality of input data, selection of
conditioning factors, distribution of training and testing samples,
variances in optimization of models, and limitation of computing
facilities. It can be concluded that the CA-based hybrid model
with SVM performed better than ANFIS in this present study.
Similarly, SVM-DE performed better than SVM-GA during
training [SVM-DE (AUROC = 0.923), SVM-GA (AUROC =
0.844)] but less so during testing [SVM-DE (AUROC =
0.760), SVM-GA (AUROC = 0.780)], identifying another
scenario found in similar studies where the model
performance was better during training for a model but not
during testing (Al-Fugara et al., 2022).

Spatial accuracy is an important aspect in hazard mapping
and modeling. The LSMs produced by all six models are
presented in Figure 8, categorized into five categories: Very
High, High, Moderate, Low, and Very Low. Maps were

FIGURE 6
(A,B) the ANFIS-CA output and real output for training and test
data, respectively, (C,E) the RMSE and MSE values of the training and
validation sets, respectively, (D,F) the frequency errors of the training
and test sets, respectively.

FIGURE 7
The AUROC curves for the six hybrid models in the training and
the testing phases.
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normalized between 0 and 1 for easy monitoring and comparison
purposes. The figures reveal that about two-thirds of the area
under study are highly susceptible to landslides in the SVM-CA
model (Figure 8F), which is absurd for this type of study. Hence,
the performance check for this model was also found to have low
performance compared to any other SVM-based models (SVM-
DE & SVM-GA) during AUROC assessment. However, the SVM-
DE model-based map (Figure 8D) provides a better layout
covering the maximum number of training and testing
datasets of occurred landslides.

6 Conclusion

In recent years, landslides have become amajor concern inmany
regions of the world, especially in areas with high population density
and rapid urbanization. The occurrence of landslides has been
attributed to several factors such as geological and geotechnical
properties, hydrological conditions, anthropogenic activities, and
climate change. In Serbia, landslides have caused significant
economic losses and human casualties over the past decades.
Therefore, accurate forecasting of landslides can help reduce the

FIGURE 8
The LSMs generated by (A) ANFIS-GA, (B) SVM-GA, (C) ANFIS-DE, (D) SVM-DE, (E) ANFIS-CA, and (F) SVM-CA hybrid models.
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risk of damage and loss in affected areas. To achieve this goal, this
study compared three SVM-based hybrid models with three ANFIS-
based hybrid models for LSM in Serbia. By comparing the results of
SVM-based hybrid models with ANFIS-based hybrid models, the
study aimed to provide insights into the most effective approach for
LSMmodeling in Serbia. Fourteen drivers that play effective roles in
landslide occurrence were considered, including slope, elevation,
aspect, LULC, distance to rivers, rainfall, distance to faults, NDVI,
distance to roads, STI, TWI, SPI, lithology, and distance to urban
areas. Classes corresponding to each factor were weighed using the
FR method and then entered into the models, which were verified by
AUROC. The results showed that the SVM-based hybrid models can
provide accurate and reliable predictions of landslide susceptibility
in Serbia. Among the six hybrid models tested, the SVM-GA model
demonstrated the best performance, while the ANFIS-CA model
performed the worst in forecasting landslides. These findings have
important implications for decision-makers and stakeholders in
developing effective landslide risk management strategies in
Serbia. By accurately forecasting landslides, the risk of damage
and loss in affected areas can be significantly reduced. Moreover,
this research contributes to the global interest in landslide research
by providing insights into the most effective approach for LSM. The
use of SVM-based hybrid models in this study can be applicable to
other regions with similar geological and environmental conditions
worldwide. Overall, this study makes a valuable contribution to
scientific research by conducting a comparative study for LSM. The
superior model in this study holds great potential for global
implementation in landslide risk management.
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