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Acid sulfate soils can cause environmental damage and geotechnical problems
when drained or exposed to oxidizing conditions. This makes them one of the
most harmful soils found in nature. In order to reduce possible damage derived
from this type of soil, it is fundamental to create occurrence maps showing their
localization. Nowadays, occurrence maps can be created using machine learning
techniques. The accuracy of these maps depends on two factors: the dataset and
the machine learning method. Previously, different machine learning methods
were evaluated for acid sulfate soil mapping. To improve the precision of the acid
sulfate soil probability maps, in this qualitative modeling study we have added
more environmental covariates (17 in total). Since a greater number of covariates
does not necessarily imply an improvement in the prediction, we have selected the
most relevant environmental covariates for the classification and prediction of
acid sulfate soils. For this, we have applied eleven different variable selection
methods. The predictive abilities of each group of selected variables have been
analyzed using Random Forest and Gradient Boosting. We show that the selection
of each environmental covariate as well as the relationship between them are
extremely important for an accurate prediction of acid sulfate soils. Among the
variable selection methods analyzed, Random Forest stands out, as it is the one
that has best selected the relevant covariates for the classification of these soils.
Furthermore, the combination of two variable selection methods can improve the
prediction of the model. Contrary to the general belief, a low correlation between
the covariates does not guarantee a good performance of the model. In general,
Random Forest has given better results in the prediction than Gradient Boosting.
From the best results obtained, an acid sulfate soils occurrence map has been
created. Compared with previous studies in the same area, variable selection has
improved the accuracy by 15%–17% for the models based on Random Forest. The
present study confirms the importance of variable selection for the prediction of
acid sulfate soils.
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1 Introduction

In general terms, soils that present sulfidic materials in their
composition and a drop or possible drop in their pH values below
4 are considered acid sulfate (AS) soils (Pons, 1973). The drop in
pH values is a consequence of the oxidation of sulfidic materials. The
oxidation process is often initiated by drainage of the soils in
agriculture or forestry. A decrease of the soil-pH below
4 generates acidification of the soil and mobilization of several
metals, and ultimately leaching of acidity and metals from the soil
through subsurface drainpipes and ditches (Åström and Björklund,
1997; Österholm and Åström, 2002; Roos and Åström, 2006).
Therefore, the occurrence of AS soils can lead to the
deterioration of stream waters, which may cause severe ecological
damages (e.g., fish kills (Hudd, 2000; Urho, 2002)), as well as
problems in agriculture and its productivity (Palko, 1994) or in
infrastructures with damages related to the poor stability of sulfidic
sediments and corrosion of concrete and steel constructions as a
consequence of the increased acidity. Due to these environmental
hazards and geotechnical challenges, AS soils are considered one of
the most damaging soils (Michael, 2013). For environmental
authorities, mapping of AS soil occurrence is very important to
identify areas with potential environmental hazards such as
acidifying and metal pollution if the soil materials are disturbed.
The identification (mapping) of these areas would contribute to the
reduction of possible ecological damages. In infrastructure
developments, the knowledge of AS soil occurrence is crucial to
determine the need or not to apply measures to avoid issues related
to the poor stability and corrosion of building materials, which often
lead to increased building costs.

Traditional or conventional methods for mapping AS soils
require a large number of soil samples as well as expert
knowledge to create the maps. As a result, the mapping process
can be very laborious, expensive and time consuming. Moreover, the
accuracy of the resulting maps can be affected by the person who
creates the map. Nowadays, digital soil mapping studies are mostly
based on the use of machine learning techniques (McBratney et al.,
2003). These techniques have several advantages over traditional
methods. First, mapping with these methods requires fewer samples
(Brus et al., 2011), leading to a much faster and less expensive
process. Moreover, these techniques make the mapping process
more objective and easier to replicate than traditional methods. So
far, the most used machine learning techniques for AS soil mapping
have been Artificial Neural Network (ANN) (Beucher et al., 2013;
Beucher et al., 2015; Beucher et al., 2017), Fuzzy logic (Beucher et al.,
2014) and Fuzzy k-means (Huang et al., 2014). Although there are
few works, other techniques such as Convolutional Neural Network
(CNN) (Estévez Nuño, 2020; Beucher et al., 2022) or Extreme
Learning Machine (ELM) (Estévez et al., 2023; Akusok et al.,
2023) have also been studied for the classification of AS soils.
Recently, the suitability of three different machine learning
methods, Random Forest (RF), Gradient Boosting (GB) and
Support Vector Machines (SVM), for the classification and
prediction of AS soils has been analyzed (Estévez et al., 2022).
RF and GB showed high abilities for the classification and prediction
of AS soils, leading to very accurate AS soil probability maps. On the
contrary, it has been shown that SVM is unsuitable for mapping AS
soils due to the fact that it could not adequately recognize AS soils

(Estévez et al., 2022). One of the main goals of this study is to
enhance the accuracy of the AS soil probability maps. For this
reason, the study has been focused on improving RF and GB models
using more environmental covariates. In principle, the consideration
of a greater number of covariates will give more information for a
better characterization of the soils. However, it should be noted that
some covariates may be irrelevant or provide redundant information
that could lead to a poor prediction (Hall and Holmes, 2003). Thus,
the objective is to find the most relevant environmental covariates
that allow the classification and prediction of the AS soils with a very
high accuracy. For this, it will be essential to apply variable selection,
which is one of the most important and complex topics in machine
learning. Variable selection is not only fundamental for improving
the prediction of the model but also to understand the relationship
between the variables and the target, as well as to reduce the
computing time (Guyon and Elisseeff, 2003). Variable selection
has been widely used in different fields such as biomedicine and
bioinformatics (Guyon et al., 2002; Saeys et al., 2007; Osl et al., 2009)
or text classification problems (Forman, 2003). In soil science, the
variable selection have been used for the prediction of soil organic
carbon (Xiong et al., 2014; Fitzpatrick et al., 2016; Lie et al., 2016;
Keskin et al., 2019), soil parent material (Heung et al., 2014), soil
organic matter (Chen et al., 2022), soil depth (Tesfa et al., 2009;
Camera et al., 2017; Castro Franco et al., 2017; Lu et al., 2019) and
soil classes (Behrens et al., 2010; Brungard et al., 2015; Camera et al.,
2017; Campos et al., 2018). So far, there are hardly any works where
the selection of variables has been applied for the prediction of AS
soils. In this study, the variable selection for an accurate prediction
of AS soils has been analyzed in detail. As an environmental
covariate can be relevant for one method but irrelevant for
another (Kohavi and John, 1997), eleven different methods of
variable selection have been considered. This allows the
identification of the most relevant covariates for the
characterization of the AS soils and their prediction. The
methods used are: one Univariate Feature Selection (UFS), RF,
GB, Extra Trees Classifier (ETC), Recursive Feature Elimination
(RFE), Backward Selection and Pearson’s correlation. For RFE, four
different methods have been considered: RF, GB, ETC and Logistic
Regression (LR). The Backward Selection has been analyzed for two
different methods, RF and GB. Moreover, the combination of two
variable selection methods has also been studied. Once the subsets of
environmental covariates were selected, their suitability for the
prediction and classification of AS soils for the two machine
learning methods considered for modeling, RF and GB, has been
evaluated. The AS soil probability map for the study area has been
created using the model and the group of environmental covariates
with the highest abilities for the classification of AS soils. Finally, the
extent of AS soils has been estimated based on the modeled AS soil
probability map.

2 Materials and methods

2.1 Study area

The area considered for this study is Virolahti and its
surroundings (1,091 km2), located in southeastern Finland
(Figure 1). The land use of this region, which is part of the
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boreal ecosystem, is mainly forestry, agricultural lands and some
urban areas. In this area, as in the rest of Finland, AS soils belong to
the cryic soil temperature regime, where mean annual soil
temperature 0°C–8°C and mean summer soil temperature below
15°C (Yli-Halla and Mokma, 1998). About 905 km2 (83%) of the
study area corresponds to the Littorina Sea maximum extent, which
is the most potential area for AS soil occurrence and where the
conventional AS soil mapping has been made by the Geological
Survey of Finland (GTK). The geological basement is composed
almost entirely of 1.66–1.60 Ga Rapakivi granite (Lehtinen et al.,
1998; Geological Survey of Finland, 2021) and is covered mainly by
glacial till and alluvial deposits (Haavisto-Hyvärinen and Kutvonen,
2007). The uppermost meter in the area is made up of bedrock,
outcrops and block fields (57.66%), different types of soils (38.94%),
water (3.19%) and a small unmapped part (0.22%). The existing soils
in this area are clay (16.91%), fine sand to gravel (7.21%), till
(5.85%), thick peat deposits (4.63%), gyttja (2.01%), fine-grained
sediment or fine silt low humus content 2%–6% (1.21%), fine silt
(1.12%), and man-made soils.

2.2 Soil samples

The soil cores used in this study were collected with a gouge
auger down to 2–3 m depth as part of the national AS soil mapping
done by GTK. The emplacement of the sampling sites was limited to
the Littorina Sea maximal extent, as the majority of the Finnish AS
soils are located here (Palko, 1994; Yli-Halla et al., 1999; Geological
Survey of Finland, 2021). The non-statistical sampling plan used was
designed to create a set of samples where the different types of soils

and materials of the area were included. This was possible thanks to
the consideration of all sediment classes in the quaternary geology
map, different topography locations, and the electric conductivity
(EC) anomalies and non-anomalies in airborne geophysical data.
The sampling density during the AS soil mapping in Finland is about
1 probe/km2. The exclusion of bedrock, outcrops, glacial till, man-
made soils and water from the sampling, as well as the limited road
network, lead to areas where the sampling density is less dense.

The classification of the soil samples or cores into AS and non-
AS soils was determined by the soil-pH, which was measured in the
field and/or in the laboratory after oxidation (incubation). Mineral
soil materials with pH < 4 and organic soil materials with pH <
3 were classified as AS soils, whereas samples having pH-values
above these were classified as non-AS soils, following slightly
modified procedures described in (Boman et al., 2019).

2.3 Environmental covariates

In addition to soil samples, environmental data have been used
in this study. The environmental covariates are raster data generated
from remote sensing data. In this study, the types of remote sensing
data used are LiDAR and geophysics, which originate from airborne
surveys. Some environmental covariates can be fundamental to
characterize different types of soils. These covariates are of
several types: Quaternary geology, airborne electromagnetic or
aerogeophysics data, digital elevation model and topographic or
terrain data. In this study, a total of 17 environmental layers have
been used (Table 2). Contrary to a previous work where only one
terrain layer was considered (Estévez et al., 2022), twelve different

FIGURE 1
(Color online) Main figure: Location of the study area (red color) and extent of the Littorina Sea (diagonal lines). Inset: Location of the training and
validation points for acid sulfate (AS) and non acid sulfate (non-AS) soils in the study area.
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terrain layers have been analyzed for the classification of AS soils in
this study. All environmental covariates have a resolution of 50 m ×
50 m and have been created using Qgis (Qgis Development Team,
2019). Furthermore, the coordinate reference system is the Finnish
one (ETRS89/TM35FIN(E,N)).

2.3.1 Quaternary
The quaternary geology layer 1:200000 (Korpela and Niemelä,

1985) displays the occurrence of 12 different soil materials down to a
depth of 1 m. Fine-grained gyttja bearing sediment is the most
critical indicator of AS soils because they usually consist of fine-
grained sediments, although in some environments it may be made
up of coarse-grained soil materials (Mattbäck et al., 2017).

2.3.2 Aerogeophysics
Airborne electromagnetic data (real, imaginary and apparent

resistivity components) are often useful for discovering sulfidic
deposits, both in the overburden and bedrock (Airo, 2005). The
aeroelectromagnetic data were collected at flight altitudes between
30 and 40 m and a line spacing of 200 m, producing a raster dataset
with a resolution of 50 m. Shallow weak anomalies, that mainly
relate to variations in topsoil thickness and electric conductivity,
may be detected using the imaginary component whereas the real
component mainly enables the detection of deeper anomalies in the
bedrock, e.g., black schists (Airo and Loukola-Ruskeeniemi, 2004).
The apparent resistivity is calculated from In-Phase (real) and
Quadrature (imaginary) components of the measured
electromagnetic field. Soil materials such as clay and gyttja have
high conductivities whereas glacial till and sand have lower (Pernu,
1991).

2.3.3 Digital elevation model
A digital elevation model (DEM) is a representation of the

topographic surface of the terrain. This environmental covariate will
play a fundamental role in the classification of AS soils since in
southern Finland, AS soils generally occurs at an elevation of less
than 50 m (Palko, 1994). The DEM used in this study has been
generated from the LiDAR data of the National Land Survey of
Finland (NLS). The resolution of this layer is 2 m × 2 m but was
down-sampled to a 50 m × 50 m which is the resolution of the
aerogeophysics layers and therefore the one used in this study. The
resolution change has been done in Qgis by reprojection and the
resampling method used is Nearest Neighbors.

2.3.4 Terrain layers
The terrain attributes are obtained from the DEM, and widely

used for classification and prediction in digital soil mapping
(McBratney et al., 2003). In this study 12 terrain layers have
been considered: slope, aspect, hillshade, roughness,
multiresolution index of valley bottom flatness (MRVBF),
multiresolution index of the ridge top flatness (MRRTF),
topographic position index (TPI), terrain ruggedness index (TRI),
topographic wetness index (TWI), valley depth, tangential curvature
and profile curvature. In Finland, AS soils usually occur in low-relief,
flat and heterogenous areas, usually with a close to zero-degree slope
(Österholm et al., 2005; Becher et al., 2018). Covariates such as
hillshade, slope, roughness and terrain ruggedness show this.
However, it is not clear if aspect, profile curvature or tangential

curvature will impact AS soil occurrence, since the direction and
type of ridge do not really affect the occurrence. On the other hand,
valley bottom flatness and valley depth covariates are important
since they reflect depositional environments where AS soils most
likely have formed. Contrary, ridge top flatness might not have that
big of an impact since sulfidic sediments usually do not form on
ridge tops in Finland. While topographic position index should not
have that much of an impact, the wetness index is somewhat similar
to valley bottom flatness and valley depth, which usually indicate
waterlogged soils where AS soils are often found. Exceptions may
occur in sandy areas where coarse-grained AS soils consist of littoral
deposits and, where beach ridges and dunes are common (Mattbäck
et al., 2017).

2.4 Machine learning methods for modeling

For the modeling, two machine learning techniques, Random
Forest (RF) and Gradient Boosting (GB), have been considered.
These two ensemble methods based on decision trees have shown
high performance abilities for the prediction of AS soils (Estévez
et al., 2022). In this work, Python (Van Rossum and Drake, 2009)
has been used for all the codes and the Scikit-learn library
(Pedregosa et al., 2011) for the machine learning methods. For
the optimal performance of machine learning models, tuning
parameters are critical (Müller and Guido, 2016). The
determination of the best tuning parameters for the two machine
learning models have been made with grid search and cross-
validation (GridSearchCV). For more information we refer the
reader to see the previous work (Estévez et al., 2022).

2.4.1 Random forest
Random Forest (RF) (Breiman, 2001) is one of the most used

techniques in classification and regression problems due to its
efficiency and robustness. This supervised machine learning
technique combines the results of multiple decision trees to make
a prediction. Each tree is created from a different sub-dataset, which
has been randomly selected. For each tree, the algorithm will make a
prediction that will be considered for the final prediction. This leads
to a better performance than in the case of a single tree. Moreover,
this technique helps to reduce overfitting. In soil science, this
method has been frequently used for the prediction of soil
properties (Grimm et al., 2008; Behrens et al., 2010; Wiesmeier
et al., 2011; Lie et al., 2012; Schmidt et al., 2014; Veronesi and
Schillaci, 2019; Azizi et al., 2022; Moradpour et al., 2023) and the
classification of soils (Heung et al., 2014; Brungard et al., 2015;
Gambill et al., 2016; Heung et al., 2016; Teng et al., 2018; Estévez
et al., 2022).

2.4.2 Gradient boosting
For classification and regression predictions, one common

supervised machine learning technique is Gradient Boosting
(GB)(Friedman, 2001). This method is very efficient and can lead
to predictions with very high precision if the tuning parameters are
adequate. Unlike RF, GB builds the ensemble trees one by one, based
on the information of the previous tree. This serial manner allows
each new tree to correct the prediction errors made in the previous
one. The goal of the model is to improve the final prediction. In soil
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science, this method has been considered to predict soil properties
(Hengl et al., 2017; Sindayiheburaa et al., 2017; Tziachrisa et al.,
2019) and classes (Lemercier et al., 2012; Estévez et al., 2022).

2.5 Variable selection methods

The selection of the most important covariates for the study is
essential for a good classification of soils. There are covariates that
do not give information to the model and can hinder the prediction
(Hall and Holmes, 2003). Thus, the variable selection is fundamental
for the creation of an effective predictive model. The set of the most
relevant environmental covariates for the model depends on the
variable selection method. Moreover, an optimal covariate set can be
more appropriate for a given machine learning method than for
another. In the case of classification studies, the variable selection
methods are of three types: filter models, wrapper and embedded
methods (Saeys et al., 2007; Kuhn and Johnson, 2013). In this study,
filter models, wrapper methods and the analysis of the correlation
have been considered.

2.5.1 Filter methods
The variable selection in the filter methods is independent of the

machine learning techniques. This independence makes these
methods computationally efficient and generally does not lead to
overfitting (Saeys et al., 2007; Kuhn and Johnson, 2013). However,
the set of variables selected cannot be the most suitable for a given
model. Another problem is that these methods do not take into
account the correlation between the variables. As a result, highly
correlated variables can be selected, adding redundant information
to the model.

2.5.1.1 Univariate feature selection
These methods select the most relevant features by statistical

tests. Univariate refers to the fact that each variable is analyzed
individually, without taking into account the relationship between
the rest of the variables. Thus, the model measures the relationship
of each feature with the target. The resulting values allow the
selection of the most relevant variables for the target. There are
several methods of univariate selection, in this work the method
used is the SelectKBest from Scikit-learn (Pedregosa et al., 2011).

2.5.2 Wrapper methods
The wrapper methods use machine learning techniques for the

selection of variables, which is based on the performance of the
model. The most appropriate features for the model are those that
improve the accuracy. In general, this makes them the best
performing variable selection methods. Unlike the filter methods,
the wrapper methods can cause an excessive adjustment of the
results, i.e., overfitting (Kohavi and John, 1997). Furthermore, these
methods require more computation time. The machine learning
method used for the variable selection can be the same or different to
the one used for the final modeling. In this study, we have evaluated
several wrapper methods for feature selection.

2.5.2.1 Methods based on decision trees
These methods can directly give the importance of each feature

for the model by means of an implemented algorithm. In this work,

RF and GB have also been used for variable selection. One of the
most common methods for variable selection in soil science is RF,
that has been used for the prediction of soil organic carbon (Keskin
et al., 2019), soil organic material (Heung et al., 2014), soil organic
matter (Chen et al., 2022), soil depth (Tesfa et al., 2009; Castro
Franco et al., 2017; Lu et al., 2019) or soil thickness (Li et al., 2020).
In contrast, GB has only been used in variable selection for the
prediction of soil depth (Lacoste et al., 2016).

In addition, another method based on decision trees has been
considered for variable selection: Extra Trees Classifier (ETC).

2.5.2.1.1 Extra trees classifier. Extra trees classifier (ETC)
(Geurts et al., 2006) or extremely randomized trees is an
ensemble machine learning technique quite similar to RF. One
difference is that in the, ETC, the decision trees are created on
the whole data and not on the randomly selected data as in RF.
However, the main difference in both methods is the selection of the
split points in a decision tree. RF selects an optimal split point taking
into account the best features, while, ETC chooses randomly the split
points independently of the features. So far, ETC has never been
used for classification or prediction of soil classes or properties. In
this study, the method is only used for variable selection.

2.5.2.2 Backward selection
This method is based on the elimination of the irrelevant

features. Initially all variables or features are considered, and in
each step the least important feature for the model is eliminated. The
idea is to improve the accuracy of the model. The elimination of
variables will take place until the performance of the model does not
improve. In this study, the machine learning techniques used for the
backward selection are RF and GB. Previously, Backward Selection
has been applied for the prediction of soil organic carbon (Lie et al.,
2016; Veronesi and Schillaci, 2019).

2.5.2.3 Recursive feature elimination
This method is an iterative feature selection based on the

elimination of the least important features (Guyon et al., 2002).
This is also a backward selection, but in this case, a subset of the
features with higher weight in the model is selected at once. In this
way, the variable selection method is optimized due to the features
selected are relevant when they are combined together. It should be
noted that a feature can be relevant in presence of other features but
not by itself (Guyon and Elisseeff, 2003). Recursive Feature
Elimination (RFE) needs other methods to measure the weight of
the features. In this study, RFE have been analyzed using four
different machine learning techniques: RF, GB, ETC and Logistic
Regression (LR). So far, of these methods only the RFE with RF has
been used in the variable selection of environmental covariates in
soil science (Brungard et al., 2015; Camera et al., 2017; Veronesi and
Schillaci, 2019; Beucher et al., 2022).

2.5.2.3.1 Logistic regression. This machine learning method is
widely used in binary classification problems (Müller and Guido,
2016). LR is a linear model that has been used in soil science to
predict the occurrence of soil types (Giasson et al., 2006; Debella-
Gilo and Etzelmüller, 2009), soil drainage classes (Campling et al.,
2002) or diagnostic horizons (Jafari et al., 2012). However, LR has
never been used for variable selection in soil science.
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2.5.3 Correlation
Unlike previous variable selection methods, the correlation is an

unsupervised method, which does not take into account the target or
label. The correlation indicates the relationship between two
variables, which gives information about the redundancy of the
variables. In the case of highly correlated variables the information
they provide is redundant (Guyon and Elisseeff, 2003). Thus, some
of them can be removed without the loss of information. The
correlation can be positive or negative. In the positive case, both
variables increase or decrease. Whereas in the case of negative
correlation, when a variable increases the other decreases. In this
study, the linear correlation between features is analyzed through the
Pearson correlation coefficient, whose values are in the range
of −1 to 1. A correlation equal to −1 corresponds to a perfect
negative correlation, while +1 is a perfect positive correlation. A
coefficient equal to 0 means that there is no relationship between the
features. The interpretation of the coefficient can be [0–0.2),
[0.2–0.4), [0.4–0.6), [0.6–0.8) and [0.8–1], which correspond to a
very low, low, moderate, high and very high correlation, respectively.
The negative correlation works in the same way but with a negative
sign. Pearson’s correlation is a frequent method for variable
selection, which has been used for the prediction of soil classes
(Camera et al., 2017; Campos et al., 2018), soil depth (Camera et al.,
2017; Lu et al., 2019) and soil organic matter (Chen et al., 2022).

2.6 Data pre-processing: training and
validation points

In order to predict the occurrence of AS soils in the study area,
the model must first be trained and validated with the soil samples
and their corresponding values of the environmental covariates. The
relationship between the soil samples and the values of the covariates
allows the model to learn the characteristics of both classes during
training. In this way, the model will be able to predict the AS soils
from the values of the covariates. This study is a binary classification
between AS and non-AS soils. For a good classification of both
classes with machine learning techniques, it is important to have a
balanced dataset with an equal number of samples of each class
(Weiss and Provost, 2001; Porwal et al., 2003; Wei and Dunbrack,
2013). In this study, the dataset consists of 186 soil samples or cores,
93 for each class. The soil samples have been divided in two groups,
the larger with 80% of the samples for training the model, and the
smaller one with 20% of the samples for the validation. It should be
noted that for a good performance of the model, both the training set
and the validation set must also be balanced. Therefore, in the
training dataset there are 148 soil samples, 74 for each class.
Whereas, in the validation dataset there are 38 samples, 19 for
each class. Inset of Figure 1 shows the soil samples in the study area.
The same training and validation sets used in the previous work by
(Estévez et al., 2022) have been considered in this study.

2.7 Metrics for evaluation

The metrics associated with the confusion matrix have been
considered to evaluate the effectiveness of the models for the
classification and prediction of the AS soil occurrence. These

metrics give information about the classification and prediction
of each class, which allows a better interpretation of the performance
of the model in a binary classification. The metrics related to the
confusion matrix are precision, recall and F1-score (Powers, 2011).
The precision indicates the proportion of correctly predicted
samples for a given class compared to the total number of
predicted samples for that class. The recall is the percentage of
samples properly classified for a given class. This metric also receives
other names such as sensitivity, true positive rate, or hit rate (Müller
and Guido, 2016). In order to avoid misinterpretation of the model
performance, the precision and the recall have to be considered
together. High values of both metrics for a given class show a good
ability of the model to correctly predict and classify this class. On the
other hand, the F1-score is a metric that merges the precision and
the recall, which equation is

F1 − score � 2
precisionprecall

precision + recall
( ) (1)

This metric is very important in binary classification and
specially with unbalanced datasets, as it gives information about
how the model works for each class. A high value of the F1-score, the
closer to one the better, indicates that the model performs well for a
given class.

3 Results and discussion

3.1 Selected covariate groups and their
evaluation for the classification of acid
sulfate soils

In general, machine learning models perform better for large
datasets. Thus, it is expected that increasing the number of the
environmental covariates will contribute to a better classification of
the AS soils. In a previous work, five environmental covariates
(DEM, slope, quaternary, real and imaginary components of the
aerogeophysics layer) were used for the classification and prediction
of AS soils for the same soil samples (Estévez et al., 2022). In this
study, the initial raster dataset consists of 17 environmental
covariates. First, the machine learning models, RF and GB, have
been evaluated considering all covariates. In the case of RF, the
consideration of the 17 covariates improves the results between 6%–
10% compared to the previous study with only five covariates
(Estévez et al., 2022). However, GB gives the same results, as
shown in Table 1, where the metrics calculated from the
confusion matrix are represented for both methods. This
indicates that the consideration of all variables does not
necessarily lead to better results. Therefore, the selection of the
most relevant variables for an accurate classification of AS soils is
essential. However, the variable selection is a complex task. In this
work, we have made the selection of variables in three different ways,
which allows a more precise selection. The first way is to select a
fixed number of most important variables for a given method. As a
result, the set of selected variables will perform well when they are
together. It is important to note that an irrelevant feature by itself
can improve the performance of the model when other features are
considered (Guyon and Elisseeff, 2003). As the selection of
variables depends on the method, different variable selection
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methods have been used. Table 2 shows the environmental
covariates selected by eight different methods: UFS, RF, GB,
ETC, RFE + RF, RFE + GB, RFE + ETC and RFE + LR. The
number of selected variables is limited to the ten most important
for each method. From these results, the frequently selected
covariates can be determined. As it can be seen, DEM is
selected by all methods, while MRRTF is never selected. Thus,
DEM is a very important variable for the characterization of AS
soils in this case study, whereas MRRTF is irrelevant. Among the

most frequently selected variables are the ten covariates selected by
RF (Table 2). Furthermore, with this group of variables, both RF
and GB obtain their best results. This can be seen in Tables 3, 4
where the results of the models for the different covariate groups
are shown for RF and GB, respectively. This indicates that RF is a
very good method to select important variables for AS soils. On the
contrary, the group of variables selected by ETC is the one that
gives the worst results for both methods (Tables 3, 4).
Furthermore, it should be noted that for this group of
covariates, the results for both methods are worse than the ones
obtained in the previous study, where only five covariates were
considered (Estévez et al., 2022). Thus, ETC is not one of the best
methods to select the most important environmental covariates for
the classification of AS soils.

Another set of variables that gives very good results with RF is
the one selected by RFE + RF (Table 3). However, for this group the
results do not improve for GB with respect to the study of five
covariates (Estévez et al., 2022). It should be noted that increasing
the number of environmental covariates to ten improves the results
of RF for all the groups except for the one selected by ETC (Table 3).
On the contrary, in the case of GB, the increase of environmental
covariates only improves the results for two cases, those selected by

TABLE 1 Metrics related to the confusion matrix for the case in which all
environmental covariates are considered for Random Forest (RF) and Gradient
Boosting (GB). The two classes are non acid sulfate (non-AS) and acid sulfate
(AS) soils.

Method Class Precision Recall F1-score

RF non-AS 0.82 0.74 0.78

AS 0.76 0.84 0.80

GB non-AS 0.78 0.74 0.76

AS 0.75 0.79 0.77

TABLE 2 Environmental covariates selected by different variable selection methods.

Covariates UFS RF GB ETC RFE + RF RFE + GB RFE + ETC RFE + LR

DEM • • • • • • • •
Slope • • • • •
Quaternary • • • • • • •
aem-real • • • • •
aem-im • • • • • • •
aem-resist • • • • • • •
Aspect • • •
Hillshade • • • • • • •
Roughness • • • •
Profilecur • • •
tang-cur • • •
MRRTF

MRVBF • • • •
TPI • •
TRI • • •
valley-dep • • • • • •
TWI • • • • • •

Variable selection methods: Univariate feature selection (UFS), Random Forest (RF), Gradient Boosting (GB), Extra Trees Classifier (ETC), and Recursive feature elimination (RFE) in

combination with other techniques: RF, GB, ETC, and Logistic regression (LR). Covariates: DEM, digital elevation model; slope; quaternary; aem-real, aem-im, aem-resist: real, imaginary and

apparent resistivity aeroelectromagnetic components; Aspect; Hillshade; Roughness; Profilecur, profile curvature; tang-cur, tangential curvature; MRRTF: multiresolution index of ridge top

flatness; MRVBF, multiresolution index of valley bottom flatness; TPI, topographic position index; TRI, terrain ruggedness index; valley-dep, valley depth; TWI, topographic wetness index.
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RF and GB (Table 4). Therefore, a greater number of variables
generally benefits the classification in the case of RF but not
necessarily when using GB. It could be related to the fact that
unlike other methods, the consideration of irrelevant variables does
not have a serious impact on the RF model (Kuhn and Johnson,
2013).

Contrary to the wrapped methods, the filter method UFS makes
the selection based on the relationship between each environmental
covariate and AS soils. Thus, the environmental covariates selected
by this method give relevant information for the classification of AS
soils. As it can be seen in Table 2, the covariates selected by UFS are
the same as by RF except for one, roughness instead of quaternary.
However, the results obtained for the group selected by UFS are not
as good as for the one selected by RF, see Tables 3, 4. Even for the GB
model the results for this group do not improve with respect to the
previous study with five covariates (Estévez et al., 2022). This shows
that the selection of each variable, as well as the combination
between them, is extremely important for an accurate prediction
or classification of AS soils.

So far, we have made the selection taking into account the
importance of the covariates for the given methods. However, the
redundancy of the variables is also very important for their selection.
A pertinent question is how the correlation between variables affects
the performance of the model. The linear correlation between the
17 environmental covariates considered in this study is shown in
Figure 2. In the heatmap, dark green colors represent a strong
positive correlation, whereas dark red colors indicate a strong
negative correlation. A very low, low, moderate, high and very
high correlation correspond to [0–0.2), [0.2–0.4), [0.4–0.6),
[0.6–0.8) and [0.8–1], respectively. In general, variables with a
high correlation provide redundant information, which can
hinder the prediction. This could be the case of the group
selected by RFE + LG, where some variables are strongly
correlated with values close to one such as slope, roughness and
TRI or profile curvature and TPI. For both, RF and GB models, the
results obtained with this group are similar to the results by (Estévez
et al., 2022) with five covariates and GB model. However, there are
other covariates that are highly correlated and together give good
results as in the case of the real and imaginary components of the
aerogeophysics layers. Although these covariates are correlated, they

also provide different information that can help to localize AS soils.
The real component may show deep bedrock anomalies related to
sulfide deposits, while the imaginary component allows the
identification of weak surface anomalies associated to variations
in the thickness of the topsoil. In order to analyze the role that the
correlation is playing in the performance of the models, we have
compared the correlation of two of the groups of variables. The two
groups considered are those that have given the best and worst
results. Curiously, the group with the best results, the one selected by
RF, has more correlation than the one selected by ETC. Contrary to
what might be expected, the group that shows the poorest results in
the classification of AS soils has a very low correlation. Thus, a low
correlation between the covariates does not guarantee the best
prediction of the model. Comparing both groups, it can be seen
that they only differ in three covariates, slope, real component of the
aerogeophysics layer and valley depth in the group selected by RF,
and aspect, profile curvature and tangential curvature in the ETC
one (Table 2). Therefore, it seems that slope, real component of the
aerogeophysics layer and valley depth are more important for the
classification of AS soils than aspect, profile curvature or tangential
curvature. Looking at Tables 2, 3 and Table 4, it is verified that the
best results are obtained for the groups where these three covariates
are presented. Moreover, valley depth is selected by 75% of the
methods as one of the most important, slope and real component of
the aerogeophysics layer by 62.5%, whereas aspect, profile curvature
and tangential curvature are only selected by 37.5% of the methods.
On the other hand, the correlation between the covariates selected by
RFE + RF is very high. For example, slope, roughness, and TRI are
strongly correlated with values close to one, and real and imaginary
components of the aerogeophysics layer are highly correlated
(Figure 2). In addition, there are several cases with moderate
correlation. Despite the high correlation, the RF model also gives
the best results for this group, but this is not the case for GB (Tables
3, 4). This could mean that GB is more affected by the correlation. By
removing the slope and roughness of the RFE + RF group, the
correlation related to the terrain layers disappears, and the results for
both models improve. In the case of RF, the different metrics related
to the confusion matrix increase between 1%–5%, leading to the best
results of this model (Table 5). For GB, all the metrics improve by
5%, matching the best results obtained with this model for the group
selected by RF (Table 4). Thus, for a good performance of the model
there must be a balance between the importance of the covariates
and their correlation.

TABLE 3 Metrics related to the confusion matrix for different groups of
environmental covariates for Random Forest (RF). The classes are acid sulfate
(AS) and non acid sulfate (non-AS) soils.

Covariates selected by Class Precision Recall F1-score

UFS non-AS 0.82 0.74 0.78

AS 0.76 0.84 0.80

RF, RFE + RF non-AS 0.88 0.79 0.83

AS 0.81 0.89 0.85

GB, RFE + ETC, RFE + LG non-AS 0.78 0.74 0.76

AS 0.75 0.79 0.77

ETC non-AS 0.67 0.63 0.65

AS 0.65 0.68 0.67

RFE + GB non-AS 0.83 0.79 0.81

AS 0.80 0.84 0.82

TABLE 4 Metrics related to the confusion matrix for different groups of
environmental covariates for Gradient Boosting (GB). The classes are acid
sulfate (AS) and non acid sulfate (non-AS) soils.

Covariates selected by Class Precision Recall F1-score

UFS, RFE + RF, RFE + GB, non-AS 0.78 0.74 0.76

RFE + ETC, RFE + LR AS 0.75 0.79 0.77

RF non-AS 0.83 0.79 0.81

AS 0.80 0.84 0.82

GB non-AS 0.82 0.74 0.78

AS 0.76 0.84 0.80

ETC non-AS 0.72 0.68 0.70

AS 0.70 0.74 0.72
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In this work, the second way of variable selection has been carried
out considering only the correlation. The selection has been made
avoiding the high correlation between the covariates. If some variables
have a correlation larger than 0.5 only one of them is selected. This
allows to introduce more information in the model but without
redundancy. All possible combinations have been analyzed, leading
to different groups with eleven variables. It is worth highlighting the
group formed by the following covariates: DEM, quaternary, imaginary
and apparent resistivity components of the aerogeophysics layer, aspect,
hillshade, tangential curvature, MRVBF, TRI, valley depth and TWI.
For this group, RF also gives the best results, the same ones as for the

case selected by RFE + RF but without slope and roughness (Table 5).
For GB, the results for this group are similar to the results obtained with
the group selected by RF except for the recall, which increases by 5% for
AS soils but decreases by 5% for non-AS soils (Table 4). This once again
demonstrates the complexity of variable selection.

The Backward Selection is the third method considered for
variable selection in this study. As it was already explained in
subsection 2.5.2.2, the method is based on the elimination of the
irrelevant features for the model. Starting from the entire set of
environmental covariates, the importance of each variable for the
model is measured, and the most irrelevant one is removed. This

FIGURE 2
(Color online) Heatmap of Pearson correlation coefficient between the environmental covariates considered in the study.
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process is repeated until the performance of the model stops
improving. The importance of the variables is given by the
model. In this study, Backward Selection has been analyzed using
RF and GB. In the case of RF, the first covariate eliminated is
MRRTF, which improves the results between 0%–5%. The second
feature eliminated is the roughness, which leads to equal the results
obtained by the groups selected by RF and RFE + RF (Table 3).
However, removing the next least relevant covariate, MRVBF, the
results are worse. For the GB model, the elimination of the first four
irrelevant variables (MRVBF, TRI, MRRTF and slope) does not
affect the results. By removing TPI, the results improve by 5%,
matching the best results for this model, the ones obtained for the
group selected by RF (Table 4). But by eliminating the following
most irrelevant variable, aspect, the results are slightly worse. This
indicates that the one-by-one backward selection method may select
a set of variables that is not the best one for the performance of the
model. This can be clearly seen in the case of the RF model, where
the best results are obtained with 15 covariates. However, the same
or better results are achieved with a smaller number of variables
selected by other methods. The main problem with this backward
selection is that the importance of the variables depends on the
relationship between the variables considered, which changes as the
variables are eliminated in each step. As already mentioned, an
irrelevant variable by itself can be critical for a good performance of
the model if other variables are present. Therefore, removing one of
the variables can change the importance of certain variables. As a
result, the selection of variables with this method is quite complex
and does not guarantee that the variables selected are the most
suitable for the model. It should be noted the difference between this
one-by-one backward selection and the backward selection of the
RFE method, where all variables are selected at the same time and
are relevant to the model when they are together.

From all these results it can be seen that the environmental
covariates DEM, slope, quaternary, the three components of the
aerogephysics layers, hillshade, MRVBF, valley depth and TWI are
very important for the classification of AS soils. In this study, the
consideration of these covariates leads to a very accurate
classification and prediction of this type of soil for the two
models analyzed, RF and GB. In general, for the same groups of
covariates better results are obtained with RF than with GB. It
should be noted that the RF model improves the accuracies between
15%–17% for the case of eight relevant covariates with respect to a
previous study where five covariates were considered (Estévez et al.,
2022). Unlike RF, the results for most of the groups analyzed with
the GB model do not improve with the increase of the number of
covariates. Furthermore, in the cases in which the results improve
with respect to the case of five covariates, the accuracies improve by
at most 5%. In the study by (Estévez et al., 2022), the accuracies
obtained with the GB model are 5%–6% higher than those obtained
with the RF model. This leads to two pertinent questions: Is GB a
model that works better for a small number of covariates? or are
these results related to the importance of the covariates considered?
In order to answer these questions, a new group of five covariates has
been analyzed. In the case of RF, there are six covariates that appear
in all the groups with the best results, i.e., with values of F1-score
equal or larger than 0.83 and 0.85 for non-AS and AS soils,
respectively (Tables 3, 5). These environmental covariates are:
DEM, quaternary, imaginary and apparent resistivity components

of the aerogeophysics layer, hillshade and valley depth. As the
quaternary layer is very relevant for GB, this layer is not
included in the study. For this set of variables, the RF model
improves the classification between 5%–6% with respect to the
results obtained in a previous work where the five covariates
considered were DEM, slope, quaternary, real and imaginary
components of the aerogeophysics layer (Estévez et al., 2022).
For GB, the results obtained for this set of variables are worse
than the ones for the previous work. This is because the quaternary
layer, which is very important for GB model, is not included in this
study. Thus, this shows the great importance of the selection of
features in the classification and prediction of AS soils for each
model.

3.2 Probability map for acid sulfate soil
occurrences

In general the accuracies obtained in this study are greater for RF
than for GB. Therefore, RF is the model chosen for the mapping of
AS soils. The group of covariates from which the best results have
been obtained is the one used to create the AS soil probability
map. There are two sets of variables that have given the best results
with the RF model (Table 5), one where only the correlation was
taken into account in the selection, and the other the one selected by
RFE + RF without the correlation between terrain layers. The first
one has eleven covariates whereas the second one eight covariates. In
general, smaller datasets reduce computation time (Guyon and
Elisseeff, 2003). Although in our case there will be hardly any
difference between the two groups, the smaller one has been
used. Figure 3 shows the AS soil probability map created with RF
for the group composed of the environmental covariates: DEM,
quaternary, the real, imaginary and apparent resistivity components
of the aerogephysics layer, hillshade, TRI and valley depth. The
prediction of the probability of encountering AS soils has been
performed for each of the 434,036 cells of 50 m × 50 m that make up
the study area. The calculation is based on the values of the
environmental covariates. For the representation of the map, the
probability of encountering AS soils has been divided into four
different probability classes: very low, low, high and very high, which
correspond to [0–0.25), [0.25–0.5), [0.5–0.75) and [0.75–1],
respectively. The corresponding areas of the AS soil probability
map in percentage and km2 for each probability class are represented
in Table 6. For 21% of the study area the probability of encountering
AS soils is high and very high, whereas in the remaining 79% the
probability is low and very low. As has already been mentioned, the
RF model for this group of covariates increases the accuracies with
respect to the previous study (Estévez et al., 2022), between 15%–

TABLE 5 Metrics related to the confusion matrix for the case RFE + RF without
the correlation of the terrain layers and for the group selected by hand
considering only the correlation for Random Forest (RF) model. The classes are
acid sulfate (AS) and non acid sulfate (non-AS) soils.

Method Class Precision Recall F1-score

RF non-AS 0.89 0.84 0.86

AS 0.85 0.89 0.87
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17% for the RF model and between 10%–11% for the GB model.
Comparing the AS soil probability maps created with the RF model
in both cases, it can be seen that the areas with very high, high and
very low probabilities are smaller in the present map, the one with
greater accuracies. On the contrary, the area with low probability has
increased to represent about half (51%) of the study area (Table 6). It
should be noted that approximately 58% of the uppermost meter in
the study area is made up of bedrock, outcrops and block fields,
where the probability of encountering AS soils is usually very low to
low. Although the model has not been trained with samples from the
areas where bedrock, outcrops and rockfields are located, the model
has predicted around 86% of these areas as very low and low
probability. This demonstrates a high ability of the RF model to
predict and classify AS soils with this set of environmental
covariates.

On the other hand, there is a linear feature in the probability
map (Figure 3), which is related to a visible power line in the
aerogeophysics layers. These layers show the components of the
electromagnetic induction, which is very strong in the power line.
Thus, the information of the area of the line is related to the power
line but not to the soil. This can affect the prediction of the model for
the area of the power line depending on the importance of the
different covariates. If the aerogeophysics layers are very important
for the model, the prediction in the area of the power line may be
incorrect. A more accurate prediction will be made if some of the
covariates that give soil information in the power line area are the
most relevant for the model. Unlike the line feature shown in the AS
soil probability maps created with different models in the previous

study (Estévez et al., 2022), the line feature is not as sharp on this
map, i.e., the predictions for this line are much more similar to the
predictions of the neighboring cells (Figure 3). This is due to the
number of covariates that give information about the soil in the area
of the power line is larger in this study, which facilitates a more
accurate prediction. In order to avoid possible linear features in the
maps in future studies, it should be good to mask any power lines
present in the aerogeophysics layers before doing the prediction for
the area.

Finally, the validation of the AS soil probability map can be
performed by comparing the validation points to the prediction
made by the model for the cells where these points are located.
These results are shown in Table 6. For this validation, the same
points used to evaluate the models for the different groups of
environmental covariates have been considered. These validation
points are displayed in the probability map (Figure 3). For the AS
soil validation points, 89% of the predicted probability classes for
the corresponding cells are correctly classified. Most of these
points (65%) are located in areas predicted as very high
probability areas, whereas the remaining points (35%) in high
probability areas. There are two points located in cells that have
been predicted as belonging to the low probability class. For the
case of non-AS soils validation points, 84% of their corresponding
cells are correctly classified in the low and very low probability
areas in equal proportion for both areas (Table 6). There are three
validation points (16%) located in cells that have been incorrectly
classified, two points are in the high probability area and one point
in the very high probability area.

FIGURE 3
(Color online) Probability map created from Random Forest (RF) for the covariate group selected by RFE + RF without slope and roughness.
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3.3 Extents of acid sulfate soil areas

The main objective of mapping the occurrence of the AS soils is
to locate areas that could have a negative environmental impact if
the soil materials are disturbed for instance in agriculture and
during infrastructure developments. Furthermore, it is important
to know the extent of AS soils in order to estimate potential or
ongoing mobilization of environmentally hazardous elements
(e.g., Cd and Ni) into watercourses. So far, the extent of AS
soils has been calculated from conventional occurrence maps.
In the study area, a conventional probability map of AS soil
occurrence within the Littorina Sea maximum extent area (83%
of the study area) was presented in (Estévez et al., 2022). This
conventional AS soil probability map has four different probability
classes: high, moderate, low and very low, which probabilities of
encountering AS soils are 98.5%, 52.5%, 1.7% and 0%, respectively.
The total area of the conventional map is 904.48 km2, where
24.65 km2 corresponds to the high class, 78.88 km2 to the
moderate class, 207.72 km2 to the low class and 593.23 km2 to
the very low class. In this paper, the extent of AS soils for this
conventional map has been calculated based on a similar approach
previously used for calculating the extent of AS soils in Denmark
(Madsen and Jensen, 1988). In total, the study area comprises
69.29 km2 AS soils (7.7% of the area) of which 24.28 km2 are
present in the high probability class, 41.43 km2 in the moderate
probability class and 3.58 km2 in the low probability class. The
distribution of roughly 8% of AS soils in the study area is
considerably somewhat lower compared to a larger area of
3,106 km2 located in Northern Ostrobothnia, Finland, where
about 25% of the total area is covered by AS soils (Becher et al.,
2019). This discrepancy is most likely due to differences in
topography between the two regions, with much more variation
in the study area and with a general abundance of bedrock
outcrops and a lack of larger rivers feeding sedimentary basins
with sediment and organic matter required for iron sulfide
formation in southern Finland. However, it should be noted
that almost 60% of the study area described in this paper is
covered by bedrock, outcrops and block fields that could not be
sampled. In the conventional AS soil occurrence map, the
probability of finding AS soils in an area is determined from
the proportion of soil samples classified as AS soils and the total
number of soil samples of the area. Thus, the probability of the 60%
of the study area is equal to zero as there are not soil samples in that
area. This may affect the estimation of the extent of AS soils in the
conventional AS soil probability map.

In this paper, a new approach for the calculation of the extent of
AS soils in modeled AS soil probability maps is shown. Unlike in the
conventional map, the probability of encountering AS soils in a
modeled probability map has been calculated for each pixel of the
map (50 m × 50 m). Therefore, the extent of AS soils can be
calculated by multiplying each pixel area by its probability of
finding AS soils. This allows a much more accurate calculation of
the extent of AS soils. The extent of AS soils in the modeled
probability map has been calculated for the same area as the
conventional map, the part corresponding to the Littorina Sea
maximum extent. The total extent of AS soils in the modeled
map is 315.5 km2, of which 42.7 km2 are located in the very high
probability area, 87.2 km2 in the high probability area, 151.5 km2 in
the low probability area and 34.1 km2 in the very low probability
area. The total extent of AS soils represents 35% of the study area.
This value must be interpreted as the maximum extent of AS soils as
all cells of the map have been considered. For the potential
environmental hazards, it should be noted that only 129.9 km2 of
the calculated extents of AS soils have a probability of encountering
AS soils greater than 50%.

4 Conclusion

As it has been shown in this study, considering a larger number of
environmental covariates does not necessarily improve the prediction of
themodel. For this reason, in this study, variable selection has been used
to improve the prediction accuracy for acid sulfate soil mapping. Eleven
different variable selection methods have been considered for the
selection of the most relevant environmental covariates for the
correct classification and prediction of acid sulfate (AS) soils.
Among the most frequently chosen variables are those selected by
RandomForest (RF). Furthermore, the best results for the twomodeling
methods, RF and Gradient Boosting (GB), have been obtained for the
group of covariates selected by RF. Therefore, in this case study, RF is a
very good method in the selection of environmental covariates for the
prediction of AS soils. On the contrary, Extra Trees Classifier (ETC) is
the method whose selection of environmental covariates has led to the
worst results for both modeling methods.

On the other hand, it has been seen that the combination of two
variable selection methods can improve the prediction accuracy. This
has been the case when considering RFE + RF and Pearson’s
correlation, where the results have improved between 1%–5%, if the
correlation is taken into account. However, it has been seen that the
correlation alone is not enough to select the most important covariates

TABLE 6 Validation of the probability map created from Random Forest (RF) for the group of covariates: DEM, quaternary, aem-real, aem-im, aem-resist, hillshade,
TRI and valley depth. Validation points are acid sulfate (AS) and non-acid sulfate (non-AS) soils.

Probability zone % Of study area km2 of study area Validation points

AS non-AS

Very high [0.75–1] 5 44 11 1

High [0.5–0.75) 16 177 6 2

Low [0.25–0.5) 51 556 2 8

Very low [0–0.25) 28 297 0 8
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for the prediction of AS soils. For instance, there are strongly correlated
covariates such as the real and imaginary components of the
aerogeophysical layers that combined have given very good results
in the prediction. Others covariates, such as highly correlated terrain
layers, have made prediction difficult. Furthermore, it has been shown
that a group of covariates without correlation does not necessarily give a
good prediction. Finally, the results of the Backward Selection analysis
have shown that this method does not generally select the most
appropriate covariates for a correct model prediction.

In general, better results have been obtained in the prediction
of AS soils with the RF model than with the GB model. The AS soil
probability map has been created for the group of covariates with
the best results in prediction for the RF model. Variable selection
has enabled the RF model to improve the results of the prediction
by up to 15%–17% for a group of eight covariates as compared with
a previous study in the same area where five covariates were
considered. It should be noted that this improvement is not
produced by the increase of three extra covariates in the study,
but by the consideration of eight covariates in particular. For eight
different layers, that improvement does not occur. This
demonstrates the importance of variable selection for the
prediction of AS soils. From the validation of the AS soil
probability map, it can be seen that the model has been able to
correctly predict 89% of the cells where the validation points are
located for AS soils, and 84% for non-AS soils. Finally, this study
presents a new approach that allows an accurate estimation of the
extent of AS soils in modeled probability maps.

Future studies should address the importance of these selected
environmental covariates for classification and prediction of AS
soils in other areas where AS soils may be slightly different.
Another important study would be the analysis of the relevance
of these environmental covariates for machine learning methods
with a very different algorithm, such as a Convolutional Neural
Network.
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