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Rapid industrial development has led to excessive levels of various contaminants in
natural water, which poses a challenge to the innovation of environmental
remediation technology. In recent years, iron sulfide and its modified materials
have attracted extensive attention in environmental remediation due to their high
activity in advanced oxidation processes and widespread existence in anoxic
environment. This paper reviewed the latest advances of the synthesis
methods for iron sulfide and modified FeS. In addition, the application of
persulfate activation by iron sulfide materials (FeS, FeSx, S−ZVI, FeS@Carbon
materials and MFexSy) for contaminants remediation is also reviewed, and the
enhancement of this system by photo irradiation, ultrasound, andmicrowave have
also been concluded. Additionally, the interaction mechanism of iron sulfide and
persulfate with contaminants was reviewed. Based on the above contents, we
concluded that the long−term stability of iron sulfide, the toxicity to organisms of
iron sulfide materials in the treated water, and the combination of FeS/PS with
other assisted technologies should be focused in future.
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1 Introduction

As one of the global environmental problems, water pollution caused by various organic
pollutants (such as drugs and metabolites, endocrine disrupting chemicals (EDCs), dyes,
plastic additives, pesticides, antibiotics, etc.) is increasingly serious (Petrie, et al., 2015; Pan,
et al., 2018; Li, et al., 2019a; Liu, et al., 2019; Bhatt, et al., 2021; Wang, et al., 2021). Advanced
oxidation processes based on persulfates (PS−AOPs) can degrade refractory contaminants
effectively via radical or non−radical routes, the related reactive oxidation species (ROSs)
include SO4

•−, •OH, O2
•−, 1O2, high valent metals, and electron−transfer process.

Various methods such as ultrasonic (Hao, et al., 2014), thermal (Qi, et al., 2014; Wang
and Wang, 2018), electric (Silveira, et al., 2017), photo irradiation (Lin and Wu, 2014) and
transition metal (Anipsitakis and Dionysiou, 2004; Wu, et al., 2022) activation have been
developed to activate persulfates for pollutant degradation, among which Fe−based catalysts
have wider application due to their high reactivity, stability, low cost, environmentally
friendly, and simple synthesis (Li, et al., 2021a; Hou, et al., 2021; Liu, et al., 2022a).
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As a rate−limiting step in Fe−mediated PS−AOPs, the low
regeneration rate from Fe (III) to Fe (II) (0.002–0.01 M−1 s−1)
decrease the efficiency of the catalytic reaction (Wang, et al.,
2014). Therefore, many strategies have been proposed to
accelerate Fe (III)/Fe (II) cycling, such as combining bimetals or
adding some reductants (Hou, et al., 2016; Luo, et al., 2020; Xiang,
et al., 2020; Zhang, et al., 2022). However, the synthesis of those
composite materials is complex and expensive. Therefore, catalyst
with auto−enhanced effect may be more promising (Cai, et al.,
2022a).

Iron sulfide (FeS), also known as mackinawite, is a kind of
tetragonal system common non−toxic mineral (Gong, et al., 2016).
With unique molecular structure and surface chemistry, FeS is very
effective in fixing divalent metals such as Fe2+, Mn2+, Ca2+, Mg2+,
Ni2+, Cd2+ and Hg2+ (Wharton et al., 2000; Mariëtte, et al., 2003).
Due to the reducibility of FeS, both Fe (II) and S (−II) can act as
electron donors. Therefore, both surface−bound Fe (II) and
self−released dissolved Fe2+ in FeS can serve as continuous iron
sources, which can be used to activate persulfate to generate free
radicals (Eqs.1, 2) (Fan, et al., 2018a). In addition, the lattice S (−II)
on FeS surface can also provide electrons to Fe (III), which can
effectively alleviate the excessive consumption of Fe2+ and
accumulation of Fe3+ to maintain the Fe (III)/Fe (II) cycle on the
catalyst surface (Eq. 3) (Hou, et al., 2022). Therefore, FeS have been
used in recent years to activate PS for the degradation of organic
pollutants (Sühnholz, et al., 2021; Xiang, et al., 2022).

≡ Fe2+/Fe2+ + S2O
2−
8 → ≡ Fe3+/Fe3+ + SO•−

4 + SO2−
4 (1)

≡ Fe2+/Fe2+ +HSO−
5 +H+ → ≡ Fe3+/Fe3+ + SO•−

4 +H2O (2)
S2− + 2Fe3+ → S0 + 2Fe2+ (3)

The purpose of this paper is to focus on the synthesis,
modification, and application of iron sulfide to activate PS for
pollutants degradation in recent years. Specifically, this review
aims to: 1) review the synthesis methods of iron sulfide particles;
2) Clarify the activation mechanism of iron sulfides for PMS to
degrade organic pollutants; and 3) Put forward the existing
knowledge gap in exist research and the prospect of future research.

2 Synthesis methods of iron sulfide

2.1 The synthesis of FeS and other FeSx

FeS particles are usually synthesized by physicochemical and
biochemical methods. Physicochemical method is the
co−precipitation of different types of iron salts and sulfide salts
in the aqueous solution under the condition of hypoxia (Eq. 4).
Common source of Fe2+ include ferrous chloride (FeCl2), ferric
sulfate heptahydrate (FeSO4·7H2O), and ammonium ferrous sulfate
(Fe (NH4)2·(SO4)2·6H2O). Sodium sulfide (Na2S) is usually used as
the source of S2− (Chen, et al., 2019).

Fe2+ + S2− → FeS (4)
Biosynthetic FeS has much attracted attention due to its

environmental friendliness. In general, ferroreductive bacteria
(FRBS) and sulfate−reducing bacteria (SRBS) reduce Fe3+ and
sulfur substances (including sulfate, thiosulfate and elemental

sulfur) to S2− and Fe2+ respectively, and subsequently to produce
FeS nanoparticles (Xie, et al., 2013; Zhou, et al., 2017).

However, FeS particles prepared by traditional methods,
especially co−precipitation, tend to rapidly aggregate, which
greatly reduces their specific surface area and leads to significant
reduction in pollutant removal efficiency (Gong, et al., 2012).
Therefore, the preparation of dispersible FeS nanoparticles with
small particle size, large specific surface area and high reactivity has
attracted extensive attention. Previous studies have explored various
techniques to prepare FeS nanoparticles with controllable particle
morphology and size distribution, such as reverse micelles (Ajay,
et al., 1996), SRB−assisted production (Watson, et al., 2001),
high−energy mechanical grinding (Soori, et al., 2016), wet
chemical synthesis (Paknikar, et al., 2005), etc.

Recent studies have shown that the presence of polymer
stabilizers and surfactants during the synthesis of FeS particles
can effectively control the nucleation and growth of nanoparticles
through simultaneous electrostatic repulsion and steric hindrance,
thus effectively promoting the size control of FeS in aqueous
solution. This can not only reduce the aggregation of
nanostructured materials, but provide a large number of
functional groups to degrade pollutants (Shao, et al., 2016). For
example, polyelectrolyte stabilizer carboxymethyl cellulose (CMC) is
widely used to modify nanoparticles to enhance the stability of nano
FeS due to a large number of carboxylic and hydroxyl groups in its
macromolecular chains (Xiong, et al., 2009; Gong, et al., 2012; Gong,
et al., 2014; Van Koetsem, 2016). Additionally, other
macromolecular biomaterials with similar physical and chemical
properties, such as starch, cyclodextrin (CD), chitosan,
polysaccharide sodium alginate (SA), etc., have also been used as
stabilizers to synthesize nano FeS particles (Shao, et al., 2016; Wu,
et al., 2017; Sun, et al., 2018a; Sun, et al., 2018b). The mechanism and
processes of synthesis of iron sulfide are exhibited in Figures 1A, B.

In aqueous solution, the reducibility of ferrous ions will decrease
with the pH value decreasing, which means acidic environment can
inhibit the oxidation of ferrous ions to ferric ions (Liu, et al., 2022b).
Therefore, the elemental valence state of the synthesized iron sulfide
catalysts can also be adjusted. Liu et al. (Liu, et al., 2022a) obtained
three kinds of iron sulfides by controlling the pH of the
co−precipitation system of iron and sulfide salt to synthesize
FeS2, Fe7S8, Fe3S4 at pH � 3, 5, 7, respectively. Hydrothermal
method is also a common method for the synthesis of FeSx. To
mix dissolved ferrous salts (FeSO4·7H2O, FeCl2·4H2O, etc.) with
sulfide (thiourea, Na2S2O3, etc.) in a reaction vessel, and keep the
vessel at 200°C for 24 h to obtain FeS2 (Wang, et al., 2020a;
Mohamed, et al., 2023). Magnetic Fe3S4 was obtained by
dissolving FeCl3·6H2O and thiourea in ethylene glycol, and then
heating in a hydrothermal kettle at 180°C for 12 h (Shi, et al., 2020;
Li, et al., 2022b). The mechanism and processes of synthesis of FeSx
are exhibited in Figure 1C

Because of the synergistic effect between zero−valent iron (ZVI)
and FexSy (FeS and FeS2), S−ZVI has high reactivity and selectivity
for PS activation to degrade refractory contaminants (Li, et al.,
2017a; Wei, et al., 2022). S−ZVI can be synthesized by the “one−pot”
process, where ferrous ions react with borohydrides and sulfides.
While in the two−step process, sulfur compounds (sodium sulfide
and thiosulfate) are added to the synthesized nZVI to form S−ZVI
(Li, et al., 2017b). For S−ZVI prepared by one−pot process, FeSx are
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distributed both inside and on the surface of ZVI particles, while
prepared by two−step method, FeSx are only formed on the surface
of ZVI to form a core−shell structure (Su, et al., 2018; Xu, et al.,
2019). In addition, vulcanized micro−scale S−ZVI can be prepared
by ball−milling S and ZVI powders under dry conditions (Gu, et al.,
2017; He, et al., 2022). The structure, physicochemical properties
and performance in PS based Fenton−like reactions of S−ZVI
produced by various synthesis methods are mainly affected by
the molar ratio of S/Fe (Fan, et al., 2017; Zhang, et al., 2020).
Kim et al. (Kim, et al., 2011) reported that the degradation rate of
TCE by S−nZVI increased linearly with increasing molar ratio of S/
Fe, but decreased with increasing molar ratio of S/Fe when the
concentration of Na2S2O4 increased to 2.0 g/L (S/Fe molar ratio was

0.33). However, Han et al. (Han and Yan, 2016) reported that when
S/Fe ratio is smaller than 0.025, the degradation rate of TCE
becomes faster with the increase of S/Fe molar ratio, and then
becomes stable when the molar ratio of S/Fe molar ratio exceeds
0.025. Rajajayavel et al. (Rajajayavel and Ghoshal, 2015) showed that
the reducing ability of S−nZVI on TCE was strongly dependent on
the S/Fe molar ratio, which provided the highest TCE dechlorination
rate in the range of 0.04–0.083. Since the reaction conditions
(including synthesis methods, reaction conditions and the
properties of the target stain, etc.) used by different researchers
to obtain the optimal S/Fe molar ratio are very different, the optimal
S/Fe molar ratio values in different studies are not comparable.
Based on the above examples, higher S/Femolar ratio results in more

FIGURE 1
(A) The mechanism of biological and abiotic synthesis of FeS. (B) The modified methods of nano−sized FeS particles by coating stabilizers. Adapted
with permission from (Chen et al., 2019). Copyright 2019 Elsevier. (C) The mechanism of synthesis of FeSx and multicomponent iron sulfide.
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production of FeSx and a larger surface area of the synthesized
S−ZVI, thus facilitates the pollutants degradation (Gu, et al., 2017;
Huang, et al., 2017). However, excess S content blocks the active Fe
site on the surface, which will decrease their activity for PS
activation. In addition, the conversion of Fe0 to ferric/ferrous
(hydrogen) oxides may be intensified at high S/Fe ratio, leading
to waste of ZVI with strong reducing capacity (Li, et al., 2017a).
Therefore, it is essential to find the optimal S/Fe molar ratio in
different reaction systems. The mechanism and processes of
synthesis of S−ZVI are exhibited in Figure 2A.

2.2 The synthesis of carbon modified FeS

The large surface area of carbon material can greatly reduce the
agglomeration of iron−based nanoparticles, thus improving the
activity of catalyst. Additionally, strong electron transfer capacity
of carbon material can greatly enhance the electron transfer rate of
iron−based catalyst (Li, et al., 2018; Ma, et al., 2021). Due to
environmentally friendly, good surface physical and chemical
properties, and rich oxygen−containing functional groups.
Biochar (BC), graphene/graphene oxide (GO)/reductive graphene
oxide (rGO), carbon nanotubes (CNTs), graphite carbon nitride
(g−C3N4), etc., are commonly selected as supports to load FeS. They
have been proven to significantly reduce the aggregation of FeS,
resulting in better catalytic activity (Ma, et al., 2015; Sun, et al., 2020;
Lyu, et al., 2018a; Zhang, et al., 2019a; Bin, et al., 2020; Zhuang, et al.,
2020; Han, et al., 2022; Xu, et al., 2022). Generally, the composite of
FeS and carbon materials can be obtained by loading iron salt on
carbon materials firstly followed with sulfidation process, and
freeze−drying, ultrasound or mechanical stirring are widely used
loading methods (Sun, et al., 2020; Han, et al., 2022; Xu, et al., 2022).
Specifically, these hybrids can be synthesized by mixing carbon
materials with ferrous salt and sulfide and then reacted at high
temperature under hypoxia condition (Ma, et al., 2015; Lyu, et al.,
2018b; Hong, et al., 2021), or carbon materials mixed with
pre−synthesized iron sulfide and then treated by hydrothermal
method (Li, et al., 2022a). In addition, ball−milling can also

achieve the combination of FeS with some carbon materials (Lyu,
et al., 2018b; He, et al., 2021; Xia, et al., 2022). The mechanism and
processes of synthesis of FeS@Carbon materials are exhibited in
Figure 2B.

2.3 The synthesis of multicomponent iron
sulfide

Multicomponent iron sulfides exhibit better electrochemical and
catalytic properties due to the synergistic effect between metal ions
and redox reactions. It can be synthesized by improved
hydrothermal methods. Li et al. (Li, et al., 2020) mixed FeCl2, Co
(NO3)2, NH4F and g−C3N4 powders at 25°C for 30 min, then heated
the mixture in hydrothermal reactor at 140°C for 9 h. Put the Fe−Co
precursor and thionoacetamide solution in hydrothermal reactor at
160°C for 6 h, FeCo2S4−CN composite can then be obtained. Nie
et al. (Nie, et al., 2019) mixed CuCl, FeCl3·6H2O and (NH4)2S for
30 min, and heated at 200°C for 10 h in hydrothermal reactor to
obtain CuFeS2 NPs. Yan et al. (Yan, et al., 2020) loaded ferric nitrate,
cobalt nitrate hexahydrate, ammonium fluoride, urea solution, and
reduced graphene oxide film (RGOF) in a hydrothermal kettle at
120°C for 8 h, and then placed the obtained Fe−Co precursor and
sodium sulfide solution in the hydrothermal reactor at 160°C for 8 h
to obtain FeCo2S4/RGOF composite material. The mechanism and
processes of synthesis of multicomponent iron sulfide are exhibited
in Figure 1C.

3 Applications and mechanism of iron
sulfides in AOPs

3.1 Bare FeS

Among various iron sulfides, FeS and FeS2 are the most
commonly used materials for persulfate activation. Since FeS is
widely distributed in anoxic environment, and has strong
reducibility and high reactivity to organic pollutants, it has been

FIGURE 2
(A) The mechanism synthesis of S−ZVI. (B) The mechanism synthesis of Fe@Carbon materials.
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widely used as PS activators for water remediation. As shown in
Figure 3, Xu et al. (Xu and Sheng, 2021) used FeS/PMS system to
degrade chloramphenicol (CAP), sulfoxamycin (TAP),
ciprofloxacin (CIP) and norfloxacin (NOR), and 100% NOR,
100% CIP, 93.5% CAP and 98.5% TAP was degraded within 2 h.
Fan et al. (Fan, et al., 2018b) used FeS/PDS system to degrade PCA,
and PCA degradation reached nearly 100% in acidic conditions
within 240 min. And Sarah et al. used FeS as PDS activator and
reached nearly complete removal of TCE within 20 min. These
results showed that the FeS/PS system can effectively remediate
the organic pollutants containing wastewater. In addition, the
catalytic performance of iron−based catalysts in PS based
Fenton−like reactions is summarized in Table 1.

So far, the mechanism of PS activation through FeS has been
considered to be homogeneous and heterogeneous activation.
Homogeneous activation refers to the continuous release of
dissolved Fe2+ by FeS for persulfate activation, and the slow
release of Fe2+ by FeS can effectively inhibit the self−quenching
effect on SO4

•− to promote the degradation of pollutants (Eqs. 5, 6).
Heterogeneous activation refers to the surface of FeS combines Fe
(II) or structural ≡Fe (II) for persulfate activation (Yuan, et al., 2015;
Chen, et al., 2017; Fan, et al., 2018a; Sühnholz, et al., 2022). Fan et al.
(Fan, et al., 2018b) found the presence of binding free radicals
(≡SO4

•−) on the surface of the catalyst through radical quenching
experiments, indicating the activation of persulfate by structural Fe
(Ⅱ). In addition, it was found that Saq

2− ion itself could not activate
PS to produce oxidation radicals (Eq. 7) (Oh, et al., 2011), but SO4

2−,
S0, polysulfide (Sn

2−) and S− were detected on the surface of FeS after
PS activation by X−ray photoelectron spectroscopy (XPS) and
FT−IR analysis (Eq. 3 and Eqs. 8, 9), indicating that S (−Ⅱ) in
FeS can indirectly provide electrons to PS by facilitating the
reduction of Fe (III) to Fe (II). Once S2− is exhausted, Fe (II)

regeneration via PS reduction will dominate, since S2− is
non−renewable in FeS/PS systems (Eq. 10). In addition, Xu et al.
(Xu and Sheng, 2021) also demonstrated that Fe (Ⅳ) was generated
in the FeS/PS system, but its contribution to pollutant degradation as
reactive species is not significant.

SO•−
4 +HSO−

5 → SO•−
5 + SO2−

4 +H+ (5)
SO•−

4 + SO•−
4 → S2O

2−
8 (6)

S2− + S2O
2−
8 → 9SO2−

4 (7)
n − 1( )S0 +HS− → S2−n +H+ n � 2 − 6( ) (8)

S2−n + FeS → S2−n−1 + FeS2 (9)
Fe3+ +HSO−

5 → Fe2+ + SO•−
5 +H+ (10)

Therefore, the mechanism of FeS for persulfate activation can be
proposed in Figures 4A, B, which is also explained as follows:

Homogeneous activation process: Firstly, FeS release Fe2+ ions
(Eqs. 11, 12), which can activate PS to form SO4

•− (Eqs. 1, 2). The
Fe3+ can be reduced to Fe2+ by reacting with FeS or S2− (Eq. 3, 13).
Finally, the regenerated Fe2+ continue to maintain PS activation for
pollutant degradation.

Heterogeneous activation process: ≡Fe (II) in FeS activates PS as
electron donor to produce SO4

•−(Eqs. 1, 2), then ≡S2− and HS−

adsorbed on the surface of FeS can also give electrons to ≡Fe (III)
and reduce it to ≡Fe (II), ensuring that the heterogeneous activation
process can be continued (Eqs. 14, 15) (Yang, et al., 2022).

FeS +H2O → Fe2+ +HS− +OH− (11)
FeS +H+ → Fe2+ +HS− (12)

FeS + 8Fe3+ + 4H2O → 9Fe2+ + SO2−
4 + 8H+ (13)

2 ≡ Fe3+ +HS− → 2 ≡ Fe2+ + S0 +H+ (14)
≡ Fe3+ + S2− → ≡ Fe2+ + S0 (15)

FIGURE 3
Degradation of four antibiotics in the FeS/PMS, PMS and FeS systems (A)CAP (B) TAP (C)CIP (D)NOR. Conditions [Contaminants]0 = 30 μM [PMS]0 =
6 mM [FeS]0 = 0.6 g/L, initial pH � 7.0. Adapted with permission from (Xu and Sheng, 2021). Copyright 2021 Elsevier. (E) PCA degradation in FeS/PS
system. Conditions [PCA]0 = 0.2 mM [PS]0 = 4 mM [FeS]0 = 0.35 g/L [Fe (II)]0 = 29 mg/L. Adapted with permission from (Fan, et al., 2018a). Copyright
2018 Elsevier. (F) Decrease in TCE concentration during the oxidation by peroxydisulfate activated with FeS. Conditions [TCE]0 = 150 μM [PS]0 =
6 mM [FeS]0 = 3 mM, initial pH � 3. Adapted with permission from (Sühnholz, et al., 2020). Copyright 2020 Elsevier.
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TABLE 1 Summary of the reported work on the activation of persulfates by Fe−based catalysts for the removal of target pollutant.

Catalyst Target pollutant Oxidant Condition Removal
efficiency

Mechanism Ref

FeSO4 Aniline (AN) PDS T = 25°C; [Na2S2O8] = 8 mM;
[AN] = 0.1 mM; [FeSO4] = 2 mM;

Reaction time = 8 min

97.73% SO4
•− Yan, et al.

(2021)

FeSO4 Trichloroethylene (TCE) PS T = 20°C ± 0.5°C; [TCE] =
0.15 mM; [PS] = 2.25 mM;

[FeSO4] = 0.3 mM; Reaction time =
30 min

100% SO4
•−, •OH, O2

•− Wu, et al.
(2015)

FeSO4 Diatrizoate (DTZ) PS [DTZ] = 5 mg/L; [PS] = 10 mM;
[FeSO4] = 0.1 mM; Reaction time =

120 min

69% SO4
•−, •OH Shang,

et al.
(2019)

nZVI Sulfamethazine (SMT) PS/H2O2 [PS] = 1 mM; [H2O2] = 0.5 mM;
[ZVI] = 2 mM; [SMT] = 50 mg/L;
pH � 6.8; Reaction time = 30 min

96% SO4
•−, •OH Wu, et al.

(2020a)

nZVI Chloramphenicol (CAP) PMS [PMS] = 0.2 mM; [CAP] = 10 mg/
L; [nZVI] = 0.5 g/L; pH � 7;
Reaction time = 120 min

95.2% SO4
•−, •OH Tan, et al.

(2018)

mZVI 1,1,1−trichloroethane (TCA) PDS T = 20°C; [PDS] = 9.0 mM; [ZVI] =
2.08 g/L; [TCA] = 0.15mM;
Reaction time = 720 min

97% SO4
•−, •OH Gu, et al.

(2015)

nZVI/BC Nonylphenol (NP) PDS T = 25 °C; [PDS] = 5 mM; [nZVI/
BC3] = 0.4 g/L; [NP] = 20 mg/L;
pH � 7 Reaction time = 120 min

96.2% SO4
•−, •OH Hussain,

et al.
(2017)

Fe@GBC 17β−Estradiol (E2) PDS [PDS] = 400 mg/L; [Fe@GBC] =
40 mg/L; [E2] = 6 mg/L; pH � 6;

Reaction time = 90 min

100% SO4
•−, •OH Zhang,

et al.
(2019b)

Fe@AC 2,4−dinitrotoluene (2,4−DNT) PDS T = 15°C; [PDS] = 100 mg/L; [Fe] =
300 mg; [AC] = 100 mg;

[2,4−DNT] = 100 mg/L; pH � 7;
Reaction time = 340 min

94% SO4
•− Ma, et al.

(2017)

NZVI/zeolite Acid orange 7 (AO7) PMS pH � 3.0; [PMS] = 0.2 mM;
[AO7] = 8.4 mg/L; [z−nZVI] =
0.1 g/L; Reaction time = 40 min

100% SO4
•−, •OH, O2

•− Fu, et al.
(2020)

Iron−based
MOF

(MIL−88−A)

Naproxen (NPX) PDS [PS � 5 mM; [NPX] = 50 mg/L;
[MIL−88−A] = 125 mg/L;

Ph � 6.48; UVA irradiation =
450 μW cm−2; Reaction time =

180 min

100% SO4
•−, •OH El Asmar,

et al.
(2021)

Fe−N/C Bisphenol F (BPF) PMS T = 30°C; [PMS] = 1.0 Mm; [Fe−N/
C] = 50.0 mg/L; [BPF] = 10.0 mg/L;
pH 7.0; Reaction time = 90 min

97.1% SO4
•−, •OH, 1O2 Wu, et al.

(2020b)

Fe−N/C Bisphenol A (BPA) PMS T = 30°C; [PMS] = 0.5 mM; [Fe−N/
C] = 100.0 mg/L; [BPA] = 10.0 mg/

L; pH � 7.0; Reaction time =
90 min

96.4% 1O2, high−valent
iron−oxo species
(HV–Fe–O)

Wang,
et al.

(2023a)

Fe@C−PDA Tetracycline (TC) PDS [PDS] = 0.20 g/L; [Fe@C−PDA] =
0.20 g/L; [TC] = 100 mg/L;

pH � 7.0; Reaction time = 60 min

99.7% SO4
•−, •OH Zhu, et al.

(2019)

Fe3O4 Acetaminophen (APAP) PMS [PMS] = 0.2 mM; [Fe3O4 MNPs] =
0.8 g/L; [APAP] = 10 mg/L;
Reaction time = 120 min

74.7% SO4
•−, •OH Tan, et al.

(2014)

α−Fe2O3 Rhodamine B (Rh B) PDS [PDS] = 10 mM; [α−Fe2O3] =
0.3 g/L; [Rh B] = 20 mg/L; Initial
pH � 6.7; Reaction time = 30 min

100% SO4
•−, •OH Meng,

et al.
(2020)

FeOOH Acid orange 7 (AO7) PMS T = 25°C ± 1 °C; [PMS]: [AO7]
(mol) = 20: 1; [FeOOH] = 0.3 g/L;
pH � 5; Reaction time = 30 min

91.4% (δ−FeOOH); 42%
(α−FeOOH); 24.9%
(β−FeOOH); 29.5%

(γ−FeOOH)

SO4
•−, O2

•− Fan, et al.
(2018b)

(Continued on following page)
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In addition, it is worth mentioning that solution pH is one of the
most significant influencing factors in the remediation of
contaminants by nano−sized FeS, which not only plays an

important role in the decomposition of oxidants, but affects the
surface charge of FeS−based catalysts and the speciation of
substrates to be transformed (Chen, et al., 2019; Li, et al., 2021b).

TABLE 1 (Continued) Summary of the reported work on the activation of persulfates by Fe−based catalysts for the removal of target pollutant.

Catalyst Target pollutant Oxidant Condition Removal
efficiency

Mechanism Ref

FeS Chloramphenicol (CAP);
Thiamphenicol (TAP);
Ciprofloxacin (CIP);
Norfloxacin (NOR)

PMS T = 25°C; pH � 7; [PMS] = 6 mM;
[Organics] = 30 μM; [FeS] = 0.6 g/

L; Reaction time = 120 min

93.5% (CAP); 98.5%
(TAP); 100% (CIP);

100% (NOR)

SO4
•−, •OH, Fe (Ⅳ) Xu and

Sheng
(2021)

Pyrite (FeS2) Atrazine (ATR) PS PS � 3 Mm; [FeS2] = 4.2 mM;
[ATR] = 20 mg/L; pH � 7.0

100% SO4
•−, •OH Wang,

et al.
(2020b)

S−mFe0 Sulfamethoxazole (SMX) PMS [PMS] = 0.3 mM; S/Fe = 0.1 (molar
ratio), T = 30°C, [S−mFe0] = 0.15 g/
L; [SMX] = 10 mg/L; Reaction

time = 15 min

89.8% SO4
•−, •OH Li, et al.

(2019b)

S−nZVI Sulfamethazine (SMT) PDS [PDS] = 1 mM; [S−nZVI] = 56 mg/
L; [Fe/S] = 20; [SMT] = 40 mg/L;
pH � 3.0; Reaction time = 60 min

100% SO4
•−, •OH Dong, et al.

(2019b)

CoFe2O4 Triphenyl phosphate (TPhP) PMS T = 25°C; [PMS] = 0.2 Mm;
[CoFe2O4] = 0.25 g/L; [TPhP] =
10μM; pH � 7.0; Reaction time =

90 min

78% SO4
•−, •OH, SO5

•− Song, et al.
(2019)

CuFe2O4 p−nitrophenol (PNP) PDS [PDS] = 8 mM; [CuFe2O4] = 30 g/
L; [PNP] = 50 mg/L; [pH] = 7.0;

Reaction time = 60 min

89% SO4
•−, •OH Li, et al.

(2017a)

MFe2O4 (M =
Co, Cu, Mn,
and Zn)

Di−n−butyl phthalate (DBP) PMS [PMS] = 20 μM; [MFe2O4] = 0.1 g/
L; [DBP] = 20 μM; pH � 7.0;

Reaction time = 30 min

81% (CoFe2O4); 62.3%
(CuFe2O4); 42.3%
(MnFe2O4); 30.0%

(ZnFe2O4)

SO4
•−, •OH Ren, et al.

(2015)

FIGURE 4
(A) The catalyticmechanism ofmackinawite/PDS system. Adaptedwith permission from (Fan, et al., 2018a). Copyright 2018 Elsevier. (B) The possible
mechanism of reactive species generation in the FeS/PMS system. Adapted with permission from (Xu and Sheng, 2021). Copyright 2021 Elsevier. (C)
Degradation mechanism of atrazine by pyrite/PS. Adapted with permission from (Wang, et al., 2020c). Copyright 2020 Elsevier. (D) Proposed pathways of
PMS activation by pyrite. Adapted with permission from (Zhou, et al., 2018). Copyright 2018 Elsevier.
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In general, when the solution pH is greater than the pH value at
point of zero charge (pHpzc), the surface of the catalyst is negatively
charged, otherwise positively charged (Li, et al., 2020). Under
strongly alkaline or strongly acidic conditions, the adsorption
capacity is significantly reduced, which not only destroys the
active sites on surface and accelerates the corrosion of FeS
nanoparticles, but promotes the hydrolysis of bio−modifiers, thus
decrease the stability and dispersion of modified nano−FeS. In
addition, under strongly alkaline conditions, Fe (II) species will
be reduced due to the precipitation of ferric hydroxide in reaction
system and produce passivation layer on the surface of FeS.
Additionally, negatively charged hydroxide ions compete for
absorption with other negatively charged contaminants, which
will influence the degradation of contaminants by FeS. Therefore,
neutral conditions can provide optimal degradation of pollutants
with FeS materials as catalysts for PS.

3.2 FeSx

FeS2 can also effectively activate persulfate to degrade pollutants,
and the good persulfate activation performance is attributed to the
low−valent Fe and S (Fe2+ and S−1) (Hou, et al., 2021). By being fully
oxidized to SO4

2− and Fe3+, FeS2 can provide 15 electrons. Therefore,
FeS2 can slowly and sustainably releases dissolved Fe2+, which
activates persulfates to produce reactive free radicals to degrade
pollutants (Eqs. 1, 2). Fe2+ comes from the water corrosion process of
FeS2 (Oh, et al., 2011), and Fe2+ will activate persulfate to be
consumed, which will accelerate the water corrosion reaction of
FeS2 (Eq. 10 and Eqs. 16–18). ≡S−1 could also give electrons to
persulfate or Fe (III), which would cause Fe2+ to continue to form
(Liang, et al., 2010). In addition, surface−bound ≡Fe (Ⅱ) can activate
molecular oxygen to produce O2

•− through single electron transfer
pathway (Liu, et al., 2015), while surface−bound ≡Fe (Ⅱ) is also
reduced, allowing the degradation to continue. The mechanism of
FeS2 for persulfate activation can be proposed in Figures 4C, D.

FeS2 +H2O → S0 + Fe2+ +HS− +OH− (16)
FeS2 + 2S2O

2−
8 → Fe2+ + 2SO•−

4 + 2SO2−
4 + 2S0 (17)

FeS2 + 14Fe3+ + 8H2O → 15Fe2+ + 2SO2−
4 + 16H+ (18)

S−ZVI has been widely used in activating persulfate to degrade
refractory organic pollutants, such as tetracycline (Dong, et al.,
2019a), bisphenol S (Cai and Zhang, 2022), tetrabromobisphenol
A (Quoc, et al., 2021), trichloroethylene (Zhou, et al., 2021a),
sulfadiazine (SDZ) (Guo, et al., 2020), etc., indicating that
S−ZVI/PS system can effectively treat organic wastewater.

S−ZVI has high electron utilization efficiency, 10–50 times
larger than that of unsulfide ZVI. Its sulfide layer can
significantly enhance the activity of ZVI and promote to release
ferrous ions into the environment (Fan, et al., 2016; Fan, et al.,
2018b). This is because there are delocalized electrons in the FeS
layer, which has good electrical conductivity and facilitates the
transfer of electrons from Fe0, thus accelerating the ferrous ions
formation (Kim, et al., 2011; Song, et al., 2017). According to
electrochemical test, the results of Tafel curve and
electrochemical impedance spectroscopy (EIS) also confirm that
S−ZVI supports better electron transfer (Turcio−Ortega, et al., 2012;

Wang, et al., 2019). Hence, the sulfide layer mainly acts as conductor
of electrons to promote the release of Fe2+ during the reaction
process, rather than source of Fe2+ production, which can be used to
activate persulfate.

In addition to promoting the release of ferrous ions, the sulfur
compounds in the sulfide layer have strong reducing capacity, which
can reduce Fe3+ to Fe2+ (Eq. 3), and these ferrous species will be
subsequently used to activate persulfate based on the electron
transfer capacity of the sulfide layer (Fan, et al., 2018a; Li, et al.,
2019a). Fe0 in S−ZVI can also reduce Fe (III) to Fe (Ⅱ) (Eq. 19), and a
small amount of FeS2 in S−ZVI can react with water to produce Fe2+

to further enhancing the iron cycle (Eq. 20). The cycle of iron species
enables the degradation reaction to be carried out contumely and
efficiently (Liu, et al., 2015). The mechanism of S−ZVI for persulfate
activation can be proposed in Figure 5.

Fe0 + 2 ≡ Fe − S − Fe3+ → Fe2+ + 2 ≡ Fe − S − Fe2+ (19)
2FeS2 + 7O2 +H2O → 2FeSO4 + 2H2SO4 (20)

3.3 Carbon modified FeS

FeS@Caobon materials has been widely used to activate
persulfate for degradation of organic pollutants, such as
petroleum hydrocarbons (Xia, et al., 2022), 2,
4−dichlorophenoxyacetic acid (Hong, et al., 2021), tetracycline
(He, et al., 2021), sulfamethazine (Jin, et al., 2022), etc.,
indicating the potential of FeS@Caobon/PMS system in
wastewater remediation.

It has been reported that in heterogeneous activation systems,
radicals are first produced near the surface of the activator and then
diffused into the solution to degrade pollutants (Liu, et al., 2014), but
it has also been reported that both activation and degradation
processes may occur near the surface of the carbon−based
activator (He, et al., 2019). By measuring the levels of dissolved
ion (dissolved Fe2+ and total Fe) in the reaction system, and using
hydrophobic phenol and 1, 10−phenanthroline to chelate with
surface−bound Fe (II) and dissolved Fe2+ as quenchers,
confirming that the active radicals were mainly generated on the
Fe@Carbon surface (He, et al., 2021; Han, et al., 2022). According to
the XPS results of catalysts before and after the reaction, the ratio of
Fe2+ to S2− decreased significantly after the reaction, while that of
other sulfur species such as Sn

2− and SO4
2− increased, indicating that

Fe (II) and S (−II) species were involved in the reaction process, and
S (−II) contribute to the conversion of Fe (III) and Fe (II), which will
further enhance the activation of PS (Xia, et al., 2022; Yu, et al.,
2022). All of these results suggest that surface−bound Fe (II) plays an
important role in the PS activation process and generates ROSs on
the FeS@Carbon surface. In addition, a small amount of Fe2+

dissolved in solution can also directly activate persulfate to
produce free radicals (He, et al., 2021).

During the process of contaminants degradation in FeS@
Carbon/PS system, carbon materials can prevent the
agglomeration of FeS particles to make FeS particles evenly
dispersed, which increase the chance of catalyst contact with
solution and further increase the concentration of sustainably
released Fe2+ (Wang, et al., 2017). Besides, the adsorption
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capacity of carbon materials can make contaminants adsorbed on
the surface or inside of composite materials, which make the free
radicals produced easier to contact with contaminants (Qu, et al.,

2022). Additionally, carbon material itself can act as intermediary of
electron transport to accelerate the electron transfer process and
improve the degradation efficiency (Qiu, et al., 2021), CNTs and BC

FIGURE 5
Possible degradation mechanism of TCE in S−ZVI/PS system. Adapted with permission from (Dong, et al., 2019a). Copyright 2019 Elsevier.

FIGURE 6
(A) Possible degradation mechanism of sulfadimethacil (SMT) in FeS@BC/PS system. Adapted with permission from (Jin, et al., 2022). Copyright
2022 Elsevier. (B) Mechanism of tetracycline removal by an FeS/graphene−based catalyst (DMG). Adapted with permission from (Zhuang, et al., 2020).
Copyright 2020 Royal Society of Chemistry. (C) Proposed mechanism for various contaminants degradation in the S−Fe@C/PDS system. Adapted with
permission from (Yu, et al., 2022). Copyright 2022 Elsevier. (D) Possiblemechanism of peroxymonosulfate activation by FeS@MS for TC degradation.
Adapted with permission from (Han, et al., 2022). Copyright 2022 Elsevier.

Frontiers in Environmental Science frontiersin.org09

Sun et al. 10.3389/fenvs.2023.1212355

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1212355


has strong electron donor groups on surface, such as hydrogen
peroxide (−OOH) and hydroxyl (−OH), which can also activate
persulfate to produce more radicals (Eqs. 21−24) (Zhou, et al., 2020;
Qiu, et al., 2022). In the composite of FeS and graphene, the bond
length between FeS and graphene layer is relatively long, which
indicates the weaker bonding, resulting in the higher activity of S to
react with SO5

2− during PMS activation. With long bond length,
greater electron localization could be facilitated on the S sites to
reduce the barrier of pollutant bonding and accelerate the
regeneration of metal species (Zhuang, et al., 2020).

Therefore, there are three possible mechanisms of FeS@
Carbon to activate persulfate: 1) the adsorption of
contaminants by FeS@Carbon; 2) The active sites on catalyst
surface, such as oxygen−containing functional groups, Fe2+, S2−,
etc. act as electron donors in reaction process to activate PS and
then produce ROSs for pollutants degradation (Eqs. 21−30). In
addition, S2− also participates in the reduction of Fe3+, enabling
the continuous generation of Fe2+, which can be further used for
the activation of PS (Eqs. 1−3); 3) Carbon materials can
accelerate the electron transfer process, which promote the
electron transfer from pollutants to PS and further improve
the generation rate of radicals on catalyst surface. The
mechanism of FeS@Carbon for persulfate activation can be
proposed in Figure 6.

−OOHsurf + S2O
2−
8 → −OO•surf + SO•−

4 +HSO−
4 (21)

−OOHsurf +HSO−
5 → −OO•surf + SO•−

4 +H2O (22)
−OHsurf + S2O

2−
8 → −O•surf + SO•−

4 +HSO−
4 (23)

−OHsurf +HSO−
5 → −O•surf + SO•−

4 +H2O (24)
SO•−

4 +H2O → SO2−
4 + •OH +H+ (25)

SO•−
4 +OH− → SO2−

4 + •OH (26)
S2O

2−
8 + 2H2O → HO−

2 + 2SO2−
4 + 3H+ (27)

S2O
2−
8 +HO−

2 → SO•−
4 + SO2−

4 +H+ +O•−
2 (28)

O•−
2 + 2H2O → H2O2 + 2OH− + 1O2 (29)

•OH/SO•−
4 /1O2 + contaminants → intermediates → CO2 +H2O

(30)

3.4 Multicomponent iron sulfide

Compared with single−component sulfide, multi−component
metal sulfide exhibits better catalytic performance due to its richer
redox reactions and synergistic effects between metals (Li, et al.,
2019c). Moreover, as an electron donor, the low electronegativity of
S2− can promote the redox cycle of metal ions, making
multi−component metal sulfide an effective catalyst for the
activation of PMS. CuFeS2 (Nie, et al., 2019), NiFe2S4 (Fan, et al.,
2022), Cu2FeSnS4 (CFTS) (Li, et al., 2022a), CoFe2S4 (Li, et al.,
2022b) etc., have been widely used in the field of persulfate activation
to degrade organic pollutants, showing good pollutant removal
effect.

During the process of persulfate activation by polymetallic
sulfide, Cu+, Co2+, Fe2+, Ni2+ act as active sites to accelerate the
generation of radicals such as SO4

•−, •OH, O2
•− by destroying the

O−O bond of PS, and they are themselves oxidized into Ni3+, Fe2+,

Ni3+, Co3+. (Eqs. 31, 32). Due to the strong reducibility of sulfur
species such as S2− and S2

2−, the high valent metal ions formed can
be reduced to low valent states (Eqs. 33−35). The reduction of
Fe3+ by Cu+ and Ni2+ is easy to achieve, which is
thermodynamically advantageous (Eqs. 36, 37) (Nie, et al.,
2019; Fan, et al., 2022). Therefore, the synergistic interaction
between these metals on the catalyst surface facilitates interfacial
electron transfer. In addition, ROSs produced by hydrolysis of
persulfate can also oxidize high−valent metals to low−valent
metals (Eq. 10), and the regenerated active sites such as Cu+,
Ni2+ and Fe2+ on the surface can again participate in the
continuous generation of ROSs induced by persulfate
activation. In the CFTS/PMS system, there is S→M σ bond
((M = Cu, Fe, and Sn) which is favorable for electron transfer
and contribute to form ≡Fe (II)*. It has been reported that Sn(Ⅱ)
can also activate persulfate to produce active free radicals due to
the synergy between ≡Fe (II)* and Sn (Eqs. 38−40) (Kong, et al.,
2019). The mechanism of multicomponent iron sulfide for
persulfate activation can be proposed in Figures 7A−C.

Fe2+/Cu+/Ni2+/Co2+ +HSO−
5 → Fe3+/Cu2+/Ni3+/Co3+ + SO•−

4

+OH−

(31)
Fe2+/Cu+/Ni2+/Co2+ + S2O

2−
8 → Fe3+/Cu2+/Ni3+/Co3+ + SO•−

4

+ SO2−
4

(32)
2S2− + Fe3+/Cu2+/Ni3+/Co3+ → Fe2+/Cu+/Ni2+/Co2+ + S2−n (33)
S2−n + Fe3+/Cu2+/Ni3+/Co3+ → Fe2+/Cu+/Ni2+/Co2+ + S0 (34)
S0 + Fe3+/Cu2+/Ni3+/Co3+ → Fe2+/Cu+/Ni2+/Co2+ + SO2−

4 (35)
≡ Cu Ⅰ( )/Cu+ + ≡ Fe Ⅲ( )/Fe3+ → ≡ Fe Ⅲ( )/Fe2+ + ≡ Cu Ⅱ( )/Cu2+ (36)
≡ Ni Ⅱ( )/Ni2+ + ≡ Fe Ⅲ( )/Fe3+ → ≡ Fe Ⅲ( )/Fe2+ + ≡ Ni Ⅲ( )/Ni3+ (37)

Fe Ⅱ( ) + ≡ →S→Mσ
S → Mσ ≡ Fe Ⅱ( )* (38)

2 ≡ Fe Ⅱ( )* + ≡ Sn Ⅳ( ) → 2 ≡ Fe Ⅲ( ) + ≡ Sn Ⅱ( ) (39)
≡ Sn Ⅱ( ) + 2S2O

2−
8 → ≡ Sn Ⅳ( ) + 2SO•−

4 + 2SO2−
4 (40)

Considering the poor dispersion of metal sulfides and large
amount of metal ions leaching, the researchers further modified
these catalysts. For example, Li. et al. (Li, et al., 2020) used
FeCo2S4 modified g−C3N4 (FeCo2S4−CN) composite for PMS
activation to degrade sulfamethoxazole (SMX). As shown in
Figure 7D, in this system, there is a synergistic effect between
FeCo2S4 and g−C3N4, thus the removal rate of SMX is higher than
that of FeCo2S4/PMS, g−C3N4/PMS and PMS alone. Moreover,
due to the synergistic effect between metal ions and g−C3N4, iron
and cobalt ions, excessive leaching of metal ions is avoided. Li.
et al. (Li, et al., 2022a) synthesized CoFe2S4/BC catalyst by a
two−step hydrothermal method and combined it with PMS for
the degradation of sodium sulfadimethacil (SMT). As shown in
Figure 7E, in this system, in addition to the free radical pathway
induced by the metal active site, there is also a non−free radical
pathway. On the one hand, electrons can be transferred directly
from the contaminants to the PMS through the active center of
BC, leading to the direct decomposition of the pollutant. On the
other hand, BC can activate the O−O bond in the PMS and
directly oxidize the target compound.
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4 Hybrid activation systems

4.1 Photoassisted systems

FeS and its derivatives are considered promising candidates for
photocatalytic water treatment due to their ability to absorb visible
and/or ultraviolet light, narrow optical band gap, and charge transport
properties (Ayodhya and Veerabhadram, 2018; Li, et al., 2021a).
Bibhutibhushan et al. (Show, et al., 2017) synthesized FeS nanospheres
by a simple electrochemical route, which act as photocatalysts to
successfully degrade alizarin red S (ARS), methylene blue (MB), rose
red (RB) and phenol, and no degradation of these dyes was observed in
the dark and very slow degradation was observed in the absence of FeS
but the presence of light, which indicates that FeS has a strong synergistic
effect when working together with photoassisted technologies.

During the reaction process, when FeS are exposed to visible
light, illumination causes the excitation of valence band electrons in
the conduction band, and this charge separation leads to the
formation of electron−hole pairs (Suroshe, et al., 2018).
Photogenerated electron (e−)−hole pairs (h+) can react with
adsorbed surface species such as O2, H2O, and OH− to form
ROSs such as O2− and •OH, for pollutants degradation (Eqs.
41−45) (Nair, et al., 2011; Chabri, et al., 2016). In addition, the
Fe2+ and S2− in FeS can react as persulfate activator for pollutants
degradation. Additionally, visible light will accelerate the cyclic
conversion between Fe3+ and Fe2+ (Eq. 46) (Chen, et al., 2021),
further improving the continuous degradation. Hence, possible
light−induced reactions can be proposed as Eqs. 1−3 and Eqs. 41–46:

FeS + hν → FeS h+( ) + e− (41)
h+ +H2Oads →•OH +H+ (42)
h+ +OH−/OHads →•OH (43)

e− +O2ads → O2− (44)

•OH/O2− + contaminants → intermediates→FeS(h+) CO2 +H2O

(45)

Fe Ⅲ( ) OH( )2+ + hν → Fe2+ + •OH (46)

4.2 Electro−assisted systems

Electrochemical advanced oxidation processes (EAOPs) have
attracted increasing attention due to their environmental
compatibility, ease of scaling up and high efficiency in degrading
refractory contaminants compared to conventional advanced
oxidation processes (Luo, et al., 2020). Iron sulfide shows good
electrocatalytic performance due to its excellent electrical
conductivity, hybrid d orbital, and general redox properties (Li,
et al., 2021b), which has great potential in the field of wastewater
treatment when combined with EAOPs.

Ammar. et al. (Ammar, et al., 2015) used pyrite as a heterogeneous
source of Fe2+ catalyst to degrade tyrosol (TY) in an electro−assisted
process, which possesses superior performance due to the
self−regulation of Fe2+ content in the medium. As shown in

FIGURE 7
(A) Proposed catalytic mechanism for PMS activation and BPA degradation by CuFeS2. Adapted with permission from (Nie, et al., 2019). Copyright
2019 Elsevier. (B) Themechanismof SC/NiFe2S4 activating PMS to degradeCBZ, Adaptedwith permission from (Fan, et al., 2022). Copyright 2022 Elsevier.
(C) The proposed oxidation mechanism in the Cu2FeSnS4/PMS process, Adapted with permission from (Kong, et al., 2019). Copyright 2019 Elsevier. (D)
The mechanism of CoFe2S4/BC activating PMS to degrade SMT. Adapted with permission from. Copyright 2020 Elsevier. (E) Proposed mechanism
for the catalytic SMT oxidation over the CoFe2S4/BC/PMS system. Adapted with permission from (Li, et al., 2022c). Copyright 2022 Elsevier.
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Figure 8A, (Labiadh, et al., 2015),used pyrite/EF system to generate
H2O2 in situ and regenerate Fe2+ to completely remove azo dye
(4−amino−3−hydroxy−2−p−toluene −naphthalene−1−sulfonic acid)
(AHPS) from water, the mineralization rate of pyrite/EF system was
superior to that of EF system alone under the same conditions,
specifically, more than 90% TOC was removed in pyrite/EF within
300 min, whereas in the same reaction time only 70% TOC was
removed with the conventional EF process. This is due to the
self−regulation effect of pyrite on pH and soluble Fe2+ without
additional acidification. As shown in Figure 8C, Ye et al. (Ye, et al.,
2020) used FeS2/C nanocomposites as highly active, stable and
recyclable catalysts to treat fluoxetine in polyphase EF system, which
achieved an impressive 90% TOC removal, while conventional EF
processes produce a maximum TOC removal of 60%. The good
performance of pyrite/EF system was attributed to the large amount
of •OH produced by the pyrite induced Fenton reaction, which mainly
attributed to the following aspects: (1) The mass transfer restriction of
FeS2 is very small, and it can act as the transfer intermediate of Fe2+ to
participate in the homogeneous reaction to produce •OH. Meanwhile,
pyrite can provide rich active sites, and ≡Fe (II) can activate H2O2 to
produce •OH by Fe−S bond. (2) the ≡Fe (II) on the surface of FeS2 can
promote the activation of molecule O2, thus accelerating the formation
of O2

•− (Liu, et al., 2015). In addition, the boron−doped diamond
(BDD) anode used in the electro−assisted system also contributes to the
generation of physical adsorption •OH in pyrite/EF system. The
heterogeneous mechanism of the system is dominant because the
concentration of dissolved iron is relatively low. The mechanism of
electro−assisted pyrite/persulfate system for contaminants degradation
can be proposed in Figures 8B, D.

4.3 Ultrasonic−assisted technology

Increasing attention has been paid to the application of
ultrasonic (US) combined with advanced oxidation technology in
water treatment. On the one hand, US has strong mechanical effect,
which can enhance the mass transfer between interfaces, remove the
passivation film on the metal surface and make the surface
regenerate continuously. These properties can overcome the
heterogeneous mass transfer barrier in the process of degrading
organic matter, and achieve good contaminants removal effect
(Xiang, et al., 2022). On the other hand, US lead to form
cavitation effect, and its local high temperature and high pressure
can produce •OH, O2

•− and other ROSs (Chi, et al., 2022;
Savun−Hekimoğlu, 2020; Wei, et al., 2017).

Chi et al. (Chi, et al., 2022) used US to enhance ferrous sulfide (FeS)
to activate persulfate (PDS) for 2’−deoxycoformycin (DCF) degradation.
US/FeS/PDS system with excellent activity presented an optimal DCF
degradation efficiency (98.9%), whichwas 56.7, 5.81, 1.48 times than that
of US, US/PDS and FeS/PDS systems (Figure 9B). Wei. et al. (Xiang,
et al., 2022) demonstrated good degradation effect of carbamazepine
(CBZ) by using ultrasonic−enhanced FeS/PDS system, which can
remove 94.2% CBZ in 60 min, while FeS/PDS system can only
remove 71.2% CBZ under same conditions (Figure 9A), confirming
the synergistic enhancement effect of US and FeS contributed to the
degradation of contaminants.

In ultrasonic enhanced FeS/persulfate system, US can promote
the interfacial sulfur−iron electron transfer and the disintegration of
passivation layer, which avoid the passivation and deactivation of
FeS, and provide redox energy between S2−/Sx

2− and Fe2+/Fe3+ to

FIGURE 8
(A)Comparison between pyrite/EF system and classical EF system for evolution of TOC removal, and (B) Themechanismof FeS2/EF system for AHPS
degradation. Adapted with permission from (Labiadh, et al., 2015). Copyright 2015 Elsevier. (C) Normalized concentration decay of fluoxetine during the
EF process (solutions containing 0.049 mM drug), and (D) the mechanism of FeS2/C−catalyzed heterogeneous EF treatment at mild pH. Adapted with
permission from (Ye, et al., 2020). Copyright 2020 American Chemical Society.
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promote continuous production of Fe2+. Additionally, US can
directly activate PDS, H2O and dissolved oxygen to form SO4

•−

and •OH. In a word, US greatly promotes both heterogeneous and
homogeneous iron cycles in the system. Hence, possible US−assisted
reactions can be summarized as Eqs.1−3, Eqs. 47, 48, and the
mechanism of US−assisted FeS/persulfate system for
contaminants degradation can be proposed in Figure 9C

H2o + ))) US( ) →•OH +H• (47)
S2O

2−
8 + ))) US( ) → SO2−

4 (48)

4.4 Microwave assisted technology

Microwave (MW) activation of persulfate has been widely
studied. It has been proved to be superior to conventional
thermal activation in terms of accelerating reaction rate,
increasing yield and selectively activating or inhibiting reaction
pathways, thus leading to higher degradation rate and significant
savings in energy consumption and treatment time (Qi, et al., 2014).
Wang et al. (Wang, et al., 2020a) used microwave radiation
combined with FeS to activate persulfate to treat
dinitrodiazophenol in explosive production wastewater. The
Chemical Oxygen Demand (COD) removal efficiency of the
MW–FeS/PS process reached 76.16%, which was 2.62, 2.57, and
1.42 times than that of MW/FeS, FeS/PS and MW/PS systems,
indicating the strong synergistic effect between FeS and MW.

In MW–FeS/PS system, in addition to the persulfate activation
performance of FeS, MW radiation can not only activate PS to produce
SO4

•− by its thermal effect, but make some functional groups and
structures on organic pollutants vulnerable. Furthermore, the MW and
FeS have strong synergic effect. Therefore, microwave−assisted FeS
activation of persulfate can show higher treatment efficiency and
higher PS utilization efficiency (Wang, et al., 2020b).

5 Reusability and stability

The reusability and stability of FeS−based catalysts are very
important for their practical application. In general, FeS−based

catalysts can maintain satisfactory catalytic performance in
multiple continuous cycles due to the internal Fe (Ⅲ)/Fe (Ⅱ)
cycle, which is shown in Eqs 49, 50:

S2− + 2Fe3+ → S0 + 2Fe2+ (49)
2S2− + Fe3+ → Fe2+ + S2−n (50)
S2−n + Fe3+ → Fe2+ + S0 (51)
S0 + Fe3+ → Fe2+ + SO2−

4 (52)
As shown in Figure 10, the Cu2FeSnS4/PS system degraded more

than 80% of BPA within 45 min after three reuse cycles (Yangju
et al., 2019). In S−Fe@C/PDS system, no evident decline on Rh B
degradation suggested the catalyst could be at least reused for five
times (Yu, et al., 2022). In FeS2/C−EF system, a slight but progressive
performance decrease was observed after five cycles, with only 61%
fluoxetine removal achieved at 60 min (Ye, et al., 2020). Fortunately,
the activity of FeS−based catalysts can be restored by various
treatments, such as washing with organic solvents (Ye, et al.,
2020), ultrasonic treatment (Zhao, et al., 2020), and pickling
(Peng, et al., 2020).

6 Reactive oxidation species

In the PS based Fenton−like reactions activated by FeS−based
materials, organics were normally degraded through two oxidation
pathways involving free radical (e.g., •OH, SO4

•− and O2
•−) and

non−radical (e.g., 1O2 and Fe (IV) = O) reactive oxidation species
(Li, et al., 2021b).

In general, SO4
•− and •OH are most frequently detected radicals

during PS activation. Fe (II) in the FeS−based catalysts reacts with PS
and split O−O bond to form SO4

•− (Eqs 1, 2). Fan et al. (Fan, et al.,
2018a) proposed that surface−bound radicals (e.g., •OHads and
SO4

•−
ads) produced by the combination of surface Fe (II) and PS

can diffuse from the catalyst surface and convert into free radicals
(e.g., •OHfree and SO4

•−
free) to degrade contaminants. In PS

activation process, •OH may be generated by two main
pathways, one is produced by the reaction of SO4

•− with H2O
(Eq. 25), and the other is formed by radical conversion reaction
of SO4

•− with OH− under neutral or alkaline conditions (Eq. 26)
(Zhao, et al., 2016). It was found that the main ROSs in the activation

FIGURE 9
(A) Comparison of CBZ degradation during five systems. Adapted with permission from (Xiang, et al., 2022). Copyright 2022 Elsevier. (B)The DCF
removal efficiency and kinetic constant, and (C) The reaction mechanism of DCF degradation in the US/FeS/PDS system. Adapted with permission from
(Chi, et al., 2022). Copyright 2022 Elsevier.
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process of PS is severely pH−dependent, with SO4
•− under acidic

and •OH at alkaline conditions, respectively (Feng, et al., 2015).
Usually, •OH always transform into O2

•− under alkaline conditions
through a complex series of radical chain steps (Li, et al., 2016; Ma,
et al., 2019). Additionally, some FeS−based materials can also react
directly with PS to produce O2

•− (Jin, et al., 2022).
Non−radical reactive oxidation species such as 1O2 and Fe (IV) =

O can also be produced in the PS activation process by FeS−based
materials. 1O2 can be formed by the self−decomposition of PMS at
alkaline condition (Eq. 53) (Zhou, et al., 2021a). Carbon modified
FeS materials, such as FeS@GO and FeS@BC, can also form 1O2 in
PS activation, in which carbonaceous materials play a key role in the
generation of 1O2 (Wang, et al., 2023b). Furthermore, 1O2 can result
from the conversion of O2

•− and H2O (Eqs. 54, 55) (Zhou, et al.,
2021b; Cai, et al., 2022b; Li, et al., 2022b). High−valent iron−oxo
species (e.g., ≡Fe (Ⅳ) = O and ≡FeV = O) is a burgeoning ROS
produced in PS activation (Li, et al., 2021a). In the activation of PS by
FeS−based catalysts, the aqueous Fe (II) released from the FeS
surface reacts with the PS and contribute to the formation of Fe
(IV) (Eqs. 56, 57), which then effectively degrades the contaminants
through non− radical pathways (Xu and Sheng, 2021).

HSO−
5 + SO2−

4 → 2SO2−
4 +H+ +O2 (53)

2O•−
2 + 2H+ → H2O + 1O2 (54)

O•−
2 + •OH → OH− + 1O2 (55)

Fe Ⅱ( ) +HSO−
5 → Fe Ⅳ( ) � O + SO2−

4 +H+ (56)
Fe Ⅱ( ) + S2O

2−
8 +H2O → Fe Ⅳ( ) � O + 2SO2−

4 + 2H+ (57)

7 Toxicity assessment

To ensure safe environmental applications of FeS−based
catalysts, it is necessary to conduct toxicity assessments of the
catalysts and their degradation intermediates to understand the
potential environmental risks to ecosystems and human health.
Bare Iron sulfide (FeS) nanoparticles were reported to bind with
DNA, limiting the ability of DNA to interact with other nucleic acids
and amino acids (Hatton and Rickard, 2008). Rickard, D. et al.
(Rickard, et al., 2011) proposed that when the concentration of FeS
nanoparticles is lower than its solubility limit, it will cause incision in
DNA molecules, and pose genotoxicity by reacting with polynucleic
acids when above solubility limit. Furthermore, FeS particles will
inhibit the growth of microorganisms and plants. For instance, in
the presence of FeS nanoparticles of 2 × 10−5 M to 5 × 10−3 M, the
growth rate of E. coli is reduced under anaerobic conditions. FeS
particles may impede nutrients uptake and will decrease seed yield
and viability when deposited on the roots of wild rice plants (Pastor,

FIGURE 10
(A) Degradation of BPA by the PS/CFTS system during different activation cycles and phosphate buffer. Adapted with permission from (Kong, et al.,
2019). Copyright 2019 Elsevier. (B) Evaluation of the stability and recyclability of S−Fe@C. Adapted with permission from (Yu, et al., 2022). Copyright
2022 Elsevier. (C) Catalytic activity of FeS for repeated use. Adapted with permission from (Xu and Sheng, 2021). Copyright 2021 Elsevier. (D) The
fluoxetine concentration during the heterogeneous EF treatment with FeS2/C nano catalyst, Cycle first′ was made once the catalyst regeneration
was performed after the fifth cycle. Adapted with permission from (Ye, et al., 2020). Copyright 2020 Elsevier.
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et al., 2017). Zheng et al. (Zheng, et al., 2018) illustrated that
exposure to CMC−FeS nanoparticles significantly damaged DNA
and proteins due to nanoparticle induced oxidative stress. At
present, although the biotoxicity of FeS−based catalysts in
advanced oxidation processes have been gradually carried out,
the evaluation of catalyst toxicity to water environment and the
targeted regulation of highly toxic intermediates to harmless
transformation are still insufficient.

8 Conclusion and future research
expected

In the past few decades, increasing researchers have focused on
the application of iron sulfides and related modified materials on
water pollution. This paper reviews the synthesis of iron sulfides
materials and the application of them in PS−AOPs for organic
contaminant removal, and the related mechanisms were also
reviewed. Although iron sulfide materials have been widely used
in water pollutant restoration, there are still some knowledge gaps
and challenges in its application as follows.

1) Although the modification of FeS greatly improves the activity
and stability for PS activation, FeS is still easy to be oxidized in
the presence of oxygen. Therefore, the long−term stability and
oxidation resistance of FeS materials should be further studied to
avoid the loss of reactivity of FeS, which will seriously limit its
practical application in water restoration.

2) There is limited information of catalyst toxicity to water
environment and the targeted regulation of highly toxic
intermediates to harmless transformation, therefore, fully
study the potential environmental toxicity of iron sulfide
materials is essential.

3) It is necessary to combine iron sulfide with other auxiliary
technologies to activate persulfate for contaminants
degradation. Only a few literatures have reported the
application of iron sulfide materials/PS with photo irradiation,
ultrasonic, electrocatalysis, and microwave for water
remediation.

4) The influence of iron sulfides on the water should be taken into
account to avoid changing the physical and chemical properties

and functions of the water due to the addition of iron sulfide
materials.

5) A detailed and comprehensive study is needed on the whereabouts of
iron sulfide materials after injection into water, especially large−scale
water treatment, to ensure that there will be no secondary pollution
in the process of water restoration.
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