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Introduction: Although soil microbial populations are a good predictor of soil
texture, little is known about how they react to alpine meadow deterioration.

Methods: This study utilized Illumina HiSeq sequencing to investigate the effects
of alpine meadow degradation on soil microbial communities in the Yangtze River
source basin at five different degradation levels [i.e., non–degraded (ND), slightly
degraded (LD), moderately degraded (MD), severely degraded (SD), and very
severely degraded (VD)].

Results: The results indicated that bacterial and fungal α-diversity were not
substantially different (p > 0.05) across the damaged alpine meadows, while β-
diversity significantly differed (p < 0.01), indicating a higher variation in the
microbial community due to alpine meadow degradation. Proteobacteria
reduced considerably (p < 0.05) by 8.75%, 22.99%, and 24.65%, while
Acidobacteria increased significantly (p < 0.05) by 41.67%, 85.20%, and
108.67%, in MD, SD, and VD compared with ND, respectively. Ascomycota
declined significantly (p < 0.05) in the MD, whereas unclassified phyla rose
significantly (p > 0.05) in the VD compared to the ND. The heatmaps of
bacterial and fungal communities revealed two clusters: a ND, LD, and MD
group and a SD and VD group, suggesting significant changes in soil
microorganisms of alpine meadow in the SD and VD. Redundancy analysis
(RDA) revealed that soil moisture, soil bulk density, soil organic carbon, total
nitrogen, and plant biomass could explain 73.8% and 39.4% of the variance in
bacterial and fungal community structure, respectively.

Discussion: These findings imply that degradation of the alpine meadow impacts
both plant and soil qualities, ultimately leading to changes in soil microbial
populations in the Yangtze River’s source region.
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1 Introduction

The Qinghai-Tibet Plateau (QTP) is known as the “Roof of the World” and has an
average altitude of more than 4,000 m (Qiu, 2008). Alpine meadows, accounting for about 1/
3 of all grasslands, are crucial to Tibetans and their livestock as a primary ecosystem and food
source (Xue et al., 2017). These meadows play a significant role in the QTP by storing water
(Zhang et al., 2013), conserving biodiversity (López-Pujol et al., 2011), and sequestering
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carbon (Ding et al., 2016). Unfortunately, climate change,
overgrazing, and rodents have damaged approximately 90% of
the alpine meadow on the Qinghai–Tibet Plateau (Xue et al.,
2009; Harris, 2010; Peng et al., 2018), leading to alterations in
plant communities’ total cover, average height, and above-ground
biomass, as well as accelerated soil erosion (Niu et al., 2021; Liu et al.,
2022a; Liu et al., 2022b). This degradation also endangers herds’
survival and impedes animal husbandry’s sustainable development
(Wu et al., 2014).

Soil microorganisms play an important role in nutrient
effectiveness and soil quality, and their vulnerability to disturbances
has been shown (Allison and Martiny, 2008; Xue et al., 2009; Zhang
et al., 2016). Ecosystem processes such as, litter decomposition, CO2

flux, nitrification, and denitrification are directly impacted by the
composition of microbial decomposers since microbes use soil
organic matter differently (Liu et al., 2021). Soil microbial

community is influenced by soil properties and plant characteristics
(Chen et al., 2012; Kumar et al., 2016), including a plant’s type that
affects the physical environment and nutrient availability (Chu et al.,
2011). Soil substrate availability and heterogeneity also affect microbial
communities (Qi et al., 2017). Degradation of grasslands can alter soil
nutrients, moisture, plant composition, and biomass, leading to changes
in soil microbial communities (Dong et al., 2012; Zhang XF. et al., 2014;
Wu et al., 2014). In previous studies on alpine meadow degradation,
plant and soil characteristics have been mainly examined, while soil
microbial biomass has only been assessed in a few instances (Li et al.,
2016; Che et al., 2019; Yu et al., 2019). Studies on soil bacteria under
different degradation levels in alpine meadows are rare (Zhou et al.,
2019), highlighting the need for a better understanding of howmeadow
degradation affects soil microbial communities and their diversity. It is
essential to understand how alpine meadow declination affects soil
microorganisms in the Yangtze River source region and consider the

FIGURE 1
Sample site location (data provided by West China Environmental and Ecological Science Data Center, National Natural Science Foundation of
China, http://westdc.westgis.ac.cn, based on the vegetation atlas of China 1:1,000,000).
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key influencing factors acting on them. The study of soil microbial
features in different degeneration levels can shed light on the process
and mechanism of alpine meadow degeneration.

We propose to investigate the possibility that changes in
bacterial and fungal communities in alpine meadow soils are
induced by both vegetation and soil deterioration. As a result, we
used a “space-for-time” replacement strategy to examine the
characteristics of vegetation biomass, soil physicochemical
parameters, and microorganisms in alpine meadows at various
stages of deterioration. The goal of our study was to analyze
changes in bacterial and fungal communities in degraded
meadows and to find factors that have a substantial influence on
the organization of microbial communities in degraded alpine
meadows to illustrate this.

2 Methods and materials

2.1 Research area

This study area, Beiluhe, is situated at the Yangtze River’s
source (34°49.747′N, 92°56.109′E; 4,628 m) as shown in Figure 1.
The climate is distinct seasons, and the cold season lasts for
8 months (October to May) (Jiang et al., 2018), showing an
annual average temperature of −4.2~ −2.8°C from 2005 to
2014, with an average value of −3.5°C, an annual average
precipitation of 232–467 mm, accounting for over 90% of
annual rainfall (Lin et al., 2020). The vegetation cover is
sparse, and the species diversity is poor. Purple-flowered
needlegrass is the dominant population in the grassland area,
while alpine artemisia and Tibetan artemisia are the dominant
populations in the meadow area (Jiang et al., 2018).

When selecting ND, LD, MD, SD, and VD alpine meadows
(Table 1, see abbreviations Supplementary Table S1), vegetation
cover and pasture quality were taken into consideration. Plant
species in different degradation levels are presented in
Supplementary Table S2.

2.2 Plant measurement and soil sampling
procedures

In July 2019, a random plot (5 m × 5 m) was selected for each
degraded level of alpine meadow near the Beiluhe observation
station with over 50 m intervals. Three replicates were sampled
from each plot. Plant coverage of each plot was determined by
point-intercept sampling, using a 30 cm × 30 cm square frame

TABLE 1 Classification of alpine meadow degradation (Yushou et al., 2002; Liu
et al., 2018).

Degradation gradients Vegetation
cover (%)

Pasture
quality

Non-degraded alpine meadow (ND) 80–90 Excellent

Slightly degraded alpine
meadow (LD)

70–80 Good

Moderately degraded alpine
meadow (MD)

50–70 Bad

Severely degraded alpine
meadow (SD)

30–50 Worse

Very severely degraded alpine
meadow (VD)

<30 Worst

TABLE 2 Summaries of vegetation characteristics and soil properties in the non-degraded (ND), slightly degraded (LD), moderately degraded (MD), severely
degraded (SD), and very severely degraded (VD) alpine meadow (n = 3, soil depth = 0–10 cm).

Variable ND LD MD SD VD

Plant coverage (VC, %) 89.67 ± 1.44a 78.00 ± 1.70b 66.00 ± 1.70c 45.33 ± 1.78d 14 ± 4.50e

Above-ground biomass (AGB, g·m-2) 271.63 ± 0.81a 273.68 ± 6.06a 229.22 ± 9.12b 91.40 ± 10.33c 51.92 ± 10.02d

Blow-ground biomass (BGB, g·m-2) 1918.45 ± 48.36a 1882.14 ± 310.92a 861.30 ± 205.47b 759.05 ± 25.54b 630.79 ± 237.42b

Organic carbon (SOC, g·kg-1) 18.38 ± 2.25a 20.41 ± 2.07a 9.02 ± 2.13b 5.07 ± 1.34b 7.36 ± 2.59b

Total nitrogen (TN, g·kg-1) 1.21 ± 0.06ab 1.35 ± 0.09a 1.09 ± 0.07b 0.52 ± 0.01c 0.47 ± 0.02c

Total phosphorus (TP, g·kg-1) 0.21 ± 0.01a 0.17 ± 0.01b 0.17 ± 0.01b 0.17 ± 0.00b 0.16 ± 0.01b

Total potassium (TK, g·kg-1) 26.88 ± 8.87b 42.22 ± 5.38ab 65.00 ± 15.98 ab 76.01 ± 8.46a 28.05 ± 9.80b

Nitrate-nitrogen (NO3
−–N, mg·kg-1) 14.07 ± 0.23a 16.37 ± 0.55b 7.26 ± 0.55c 5.58 ± 0.12cd 5.96 ± 0.18d

Ammonium-nitrogen (NH4
+–N, mg·kg-1) 16.81 ± 0.64a 14.73 ± 0.22a 8.75 ± 0.59b 8.39 ± 0.22b 9.54 ± 0.78b

Available phosphorus (AP, mg·kg-1) 41.35 ± 8.63c 44.93 ± 10.59c 106.77 ± 28.67b 188.59 ± 17.25a 151.54 ± 21.13 ab

Available potassium (AK, mg·kg-1) 149.69 ± 10.86a 120.78 ± 6.32ab 164.44 ± 32.76a 75.00 ± 3.46b 69.70 ± 7.27b

pH 7.89 ± 0.04b 7.72 ± 0.13b 7.97 ± 0.04ab 8.22 ± 0.02a 8.21 ± 0.04a

Soil moisture content (SM, %) 27.61 ± 0.69a 23.46 ± 0.42b 15.57 ± 0.84c 9.48 ± 0.79d 9.19 ± 1.00d

Soil bulk density (BD, g·cm-3) 1.03 ± 0.01c 0.98 ± 0.03c 1.40 ± 0.05ab 1.32 ± 0.06b 1.50 ± 0.02a

Note: The data at the table are showed by average value ±standard error. Data with different letters in the same row are significantly different (p < 0.05). Abbreviations: plant coverage (VC),

above-ground biomass (AGB), blow-ground biomass (BGB), and soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), nitrate-nitrogen (NO3
−–N),

ammonium-nitrogen (NH4
+–N), available phosphorus (AP), available potassium (AK), soil moisture content (SM), and soil bulk density (BD).
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(100 equidistantly spaced sampling points) (Wang et al., 2012).
Aboveground biomass was collected by trimming it at the surface
of the ground and putting it in paper bags, while belowground
plant biomass was taken using soil steel augers to a depth of
10 cm (inner diameter = 50 mm). Soil samples were collected
from each data plots (three replicates), stored in a cooler box,
then transported to the lab. Soil samples were screeened through
a 2 mm mesh (Xiong et al., 2014). Subsamples of these fresh soil
samples were archived at −80°C for total DNA extraction. Fifteen
individual samples were obtained from each plot (three
replicates) and labeled ND1, ND2, ND3, LD1, LD2, LD3,
MD1, MD2, MD3, SD1, SD2, SD3, VD1, VD2, and

VD3 before being sent to Biomarker Bioinformatics
Technology Co., Ltd., Beijing, China (http://www. biomarker.
bioon.com.cn) for analysis. Subsamples of the fresh soil samples
were archived at 4°C to measure soil pH, while other subsamples
were air-dried to measure soil organic carbon (SOC), total
nitrogen (TN), phosphorus (TP), total potassium (TK),
ammonium-nitrogen (NH4

+-N), nitrate-nitrogen (NO3
−-N),

available phosphorus (AP), and available potassium (AK)
(Wang et al., 2007; He et al., 2016). Bulk density (BD)
samples were taken using a 5.0 cm cylindrical sampler, and
soil moisture (SM) samples were collected in aluminum boxes
(v = 100 cm3).

FIGURE 2
The phylum-level abundance of bacteria (A,B) and fungi (C,D) in non-degraded (ND), slightly degraded (LD), moderately degraded (MD), severely
degraded (SD), and very severely degraded (VD) alpine meadow. A 97% similarity cluster of OTUs was used to calculate relative abundances, and each
letter indicates a significant difference between soil samples according to Duncan’s test (p < 0.05). The insert figure in the top right corner shows an
enlargement of Nitrospirae, Patescibacteria, Rokubacteria, Aphelidiomycota, Rotifera, and Olpidiomycota for ND, LD, MD, SD, and VD. Error bars
represent standard errors (n = 3).

Frontiers in Environmental Science frontiersin.org04

Zhang 10.3389/fenvs.2023.1210349

http://www
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1210349


2.3 Plant and soil characterization

Plant biomass was measured after 48 h drying at 65°C. Soil
pHmeasurements were taken with glass electrodes using a soil/water
ratio of 1/2.5 (weight/volume). Soil moisture (SM) was estimated
through drying soil samples, at 105°C, 48 h. Soil organic carbon
(SOC) was determined by the K2Cr2O7-H2SO4 (Zeng et al., 2013),
while soil TN determined by the semimicro Kjeldahl digestion
procedure (You et al., 2014). The NH4

+-N, NO3
−-N, TP, AP, TK

and AK content of typic alpine meadow soil were determined using
fire atomic absorption spectrophotometry (Purkinje General
Instrument Co., Ltd., Beijing, China).

2.4 Soil microbial sequencing

The PowerSoil DNA Isolation Kit was used to extract DNA from
0.5 g of soil samples (MO BIO Laboratories, Carlsbad, CA,
United States). A Nanodrop spectrophotometer (ND-1000,
NanoDrop Technologies, United States) was used to measure the
quantity and quality of DNA.

The 338F primers (5′-ACTCCTACGGGAGGCAGCAG-3′) and
806R (5′-GGACTACHVGGGTWTCTAAT-3′) (Dennis et al., 2013)
were used to amplify the 16S rRNA gene, while ITS1F primer (5′-GGA
AGTAAAAGTCGTAACAAGG-3′) and ITS2 primer (5′-A-TCCTCC
GCTTATTGATATGC-3′) were employed to amplify the ITS1 region of
fungi (White et al., 1990). Polymerase chain reaction (PCR)
amplification was conducted in a 25 μL reaction system using
TransGen AP221-02, namely, TransStart Fastpfu DNA Polymerase
(TransGen Biotech, Beijing, China) and carried out in an ABI
GeneAmp 9700 (Applied Biosystems, Inc., Carlsbad, United States of
America) under the following conditions: 95°C for 5 min, 28 (bacteria)/
32 (fungi) cycles at 95°C for 45 s, 55°C for 50 s and 72°C for 45 s, and a
final extension at 72°C for 10 min. PCR amplification was carried out in
an ABI GeneAmp 9700 (Applied Biosystems, Inc., Carlsbad, United
States) using TransGen AP221-02, specifically TransStart Fastpfu DNA
Polymerase (TransGen Biotech, Beijing, China). PCR amplification
products were purified and recovered using a 1.8% agarose gel
electrophoresis method. Following PCR product purification and
recovery, the 16S rRNA and ITS1 genes were sequenced using an
Illumina Hiseq 2500 PE 100 (San Diego, CA, United States).

This study’s 16S and ITS1 rRNA gene sequences were deposited
in the NCBI as Accession No. PRJNA563013.

2.5 Bioinformatics analysis

Initially, raw data with sequence lengths less than 200 bp, low quality
scores (≤20), ambiguous bases, or non-matching primer sequences and
barcode tags were excluded. Then, Illumina Analysis Pipeline Version
2.6 was utilized to separate qualified reads based on sample-specific
barcode sequences. Subsequently, the Quantitative Insights into
Microbial Ecology (QIIME) software version 1.8.0 was used to
analyze sequences (Quast et al., 2012). OTUs with up to 97%
similarity were grouped using UCLUST (Edgar, 2013). Diversity
indexes such as ACE, Chao1, Shannon’s diversity, and Simpson’s
diversity were calculated for OTUs at a 97% similarity threshold. The
ß-diversity of microbial communities was evaluated by performing
Principal coordinates analysis (PCoA) and analysis of similarities
(Anosim) (Anderson, 2006; Che et al., 2019). Taxonomical
assignments of OTUs were also conducted at the 97% similarity
level. Additionally, linear discriminant analysis (LDA) effect size
(LEfSe) method was applied to identify groups or species responsible
for significant differences among degradation levels (Segata et al., 2011).

2.6 Data analysis

One-way ANOVA (analysis of variance) was performed to evaluate
significance levels for all factors analyzed. Ordination analysis was
conducted to assess relationships between environmental and soil
bacteria and fungi variables, and Monte Carlo Permutation Tests

FIGURE 3
Heatmaps representation and cluster analysis of bacterial (A) and
fungal (B) communities for the fifteen samples.
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were used to determine the significance of each environmental variable
in the RDA using CANOCO forWindows version 4.5 (Fay et al., 2011).
In order to determine the appropriate model for direct gradient analysis,
detrended correspondence analysis (DCA) was performed, which
indicated that a linear model with gradient lengths less than
3 standard units would be suitable for the data (Jumpponen and
Jones, 2014). Redundancy analysis (RDA) was then conducted using
this model. The significance of each environmental variable in the RDA
was evaluated by using Monte Carlo Permutation Tests (Number of
permutations = 999).

3 Results

3.1 In terms of plant and soil characteristics

Plant AGB and BGB decreased considerably (p < 0.05) in the MD,
SD, and VD, but not in the LD, while SOC, TN, and NH4

+-N levels
declined in the MD, SD, and VD by comparison with the ND, with an
opposite pattern observed in AP, BD, and pH. Soil AK did not change in
the LD orMD, but decreased with SD, while soil TK increased only (p <
0.05) in the SD contrasted to theND. The degraded alpinemeadows had
significantly lower soil NO3

−-N, TP, and SM levels (p < 0.05) (Table 2).

3.2 Regarding microbial community
structure

Bacterial OTUs from 19 phyla, 206 families, and 343 genera
were identified. Proteobacteria was the most abundant division,
contributing to over 99% of total reads in all libraries and
significantly decreased by 8.75%, 22.99%, and 24.65% in the
MD, SD, and VD compared with ND, respectively.
Conversely, Acidobacteria significantly increased by 41.67%,
85.20%, and 108.67% in the MD, SD, and VD compared with
ND, respectively. Chloroflexi, Gemmatimonadetes, and
Nitrospirae also showed significant increases with increasing
degradation stage, while Patescibacteria exhibited an opposite
response pattern. Except for Gemmatimonadetes and
Patescibacteria, the top 10 phyla showed no change in the ND
and LD (Figures 2A, B).

The fungal communities were identified to have 9 phyla and
100 families. Ascomycota, Unclassified, Basidiomycota, and
Mortierellomycota were the dominant phyla, accounting for
over 90% of the total reads in all degradation levels.
Ascomycota was the most abundant division and significantly
(p < 0.05) decreased by 51.48% in the MD compared with ND.
Conversely, Unclassified, Glomeromycota, and Aphelidiomycota

FIGURE 4
The analysis of similarities (ANOSIM) (A,C) and Principal coordinates analysis (PCoA) (B,D) of all bacteria (A,B) and fungi (C,D) community for ND, LD,
MD, SD, and VD alpine meadow. PCoA is based on total OTU level information.
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significantly (p < 0.05) increased in the VD compared with ND,
while no significant changes were observed among ND, LD, MD,
and SD (Figures 2C, D).

The heatmap for bacteria was created using the top 50 most
abundant bacterial genera (Figure 3A), using a two-sample
cluster partition. The first cluster had ND, LD, and MD,
whereas the second contained SD and VD. The heatmap for
fungi was based on the top 50 fungal families (Figure 3B),
demonstrating a two-cluster sample division: ND, LD, and
MD in one group, and SD and VD in another.

3.3 Microbial alpha diversity

In terms of microbial diversity, the fungal and bacterial
a-diversity indexes, including ACE, Shannon’s, Chao1, and
Simpson’s, showed no significant (p > 0.05) variation between
alpine meadow deterioration stages (Supplementary Table S5).
The examination of similarities (anosim) indicated, however, that
the samples from distinct damaged alpine meadows differed
considerably (p < 0.01) from one other (Figures 4A, C).

3.4 Differences in microbial community

Bacterial (Figure 4B) and fungal (Figure 4D) communities in
ND, LD, and MD clustered together and were distinct from those in
SD and VD. For bacteria, PCoA analysis revealed that the overall
explanatory powers of measure variables interpreted 49.75% and
9.58% of the total variation on the coordinate axes 1 and 2,
respectively, whereas for fungus, first and second axes interpreted
22.50% and 9.22% of the variation (Figures 4B, D).

3.5 Changes in soil microbial community
compositions

Significance analysis of differences between degradation levels
revealed that 40 bacterial clades and 20 fungal clades exhibited
statistically significant differences with an LDA threshold of 4.0
(Figures 5A, B). Alphaproteobacteria, Actinobacteria, Micrococcales,
Caulobacterales, Micrococcaceae, Arthrobacter, and Brevundimonas
were enriched in the ND, while Proteobacteria, Gammaproteobacteria,
Pseudomonadales, Pseudomonadaceae, Rhizobiaceae, and Pseudomonas
were enriched in the LD. Betaproteobacteriales and Rhizobiales were
enriched in the MD. Gemmatimonadales, Gemmatimonadetes, and
Gemmatimonadaceae were enriched in both SD and VD, whereas
uncultured_bacterium_g_RB41 was enriched only in VD (Figure 5A).
Tremellales, Bulleribasidiaceae, Pyronemataceae, Vishniacozyma,
Acicuseptoria, Acicuseptoria_rumicis, Dioszegia_hungarica, and
Inocybe_substraminipes were enriched in the ND, while
Mycosphaerellaceae was abundant in the LD. Glomeromycota,
Diversisporales, Pleosporales_fam_Incertae_sedis, Sacculosporaceae,
Paraphoma, Sacculospora, Thyrostroma, Sacculospora_baltica, and
Thyrostroma_cornicola were enriched in the VD.
Gemmatimonadales, Gemmatimonadetes, and Gemmatimonadaceae
were enriched in SD, while no significant difference was found for
most differential fungi among ND, LD, and VD (Figure 5B).

3.6 The relationship between community
structure and environmental factors

RDA analysis revealed that the first and second principal
components explained 53.9% and 19.9% of soil bacterial community
variation, respectively (Figure 6A). Diverse degradation levels resulted
in diverse bacterial populations in soil, which were substantially related
to soil pH, SM, BD, SOC, TN, NO3

−-N, TP, AP, AK, VC, AGB, and
BGB (Supplementary Table S6), although soil TK and NO4

+-N had no
influence on bacteria (p > 0.05).

FIGURE 5
The Linear Discriminant Analysis (LDA) Effect Size (LEfSe) of
bacterial (A) and fungal (B) abundance in ND, LD, MD, SD, and VD
alpine meadow. The histograms represent LDA scores computed for
differentially abundant microbes among degraded alpine
meadow identified with a threshold value of 4.0. The length of the
histogram represents the effect of different species, and different
colors represent different levels of species.
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The RDA analysis demonstrated that the first and second
principal components explained 26.2% and 13.2% of the
variation, respectively, in the case of fungus (Figure 6B). Soil SM,
BD, SOC, TN, NO3

−-N, AP, AGB, and BGB were all substantially
connected to fungal community structure (p > 0.05), however TK
had no influence on fungus (Supplementary Table S6).

4 Discussion

4.1 The bacterial and fungal community
structure in alpine meadows at various
stages of deterioration

In accordance with earlier studies (Li et al., 2016; Zhou et al.,
2019), this study discovered that alpine meadow degradation
dramatically changed the ß-diversity of soil microbial
communities but had no significant impact on the a-diversity
(Figures 4A–D; Supplementary Table S5). A freshly generated
population of bacteria could be replacing lost ones, which would
explain why there have not been any noticeable changes in
biodiversity (Figures 2A–D). The structure of the soil microbial
community can be altered by changes in the relative abundance of
bacteria, which can have a considerable impact on -diversity. Based
on these observations, it was discovered that alpine meadows’ soil
microbial community structure drastically changed throughout the
deterioration process in the study area. This has ramifications for
biological functions including carbon mineralization, which are
closely linked to the organization of microbial communities (Che
et al., 2019). According to the findings, degraded alpine meadows

may change the organization of microbial communities more than
the number of species.

According to prior research (Ho et al., 2017), SD and VD increased
oligotrophic lineages such as Acidobacteria, Gemmatimonadetes,
Chloroflexi, and Nitrogenaspirae while decreasing copiotrophic
lineages such as Proteobacteria (Figures 2A–D). According to the
LDA analysis, protozoa and Acidobacteria were the most prevalent
biomarker bacteria, and their relative abundance rose or decreased as
degradation severity increased (Figure 5A). Two mechanisms can
explain the increase and reduction in the fraction of oligotrophic
and copiotrophic microorganisms. First, a decline in soil nutrients in
deteriorated alpine meadows (Che et al., 2017; Zhou et al., 2019; Ali
et al., 2021), including SOC, TN, TP, NO3

−-N, and NH4
+-N (Table 2),

may have influenced microbial community composition, as supported
by a significant correlation between soil microbial community
composition and soil nutrient factors (Supplementary Table S6).
Second, pH, a crucial element controlling soil microbial community
structure (Zhang YJ. et al., 2014; Ali et al., 2019; Yu et al., 2019), rose
considerably with alpine meadow degradation intensity (Table 2),
thereby affecting the proportions of Chloroflexi, Gemmatimonadetes,
and Proteobacteria.

In fungi, changes in biogeochemical properties induced by
degradation may alter the behavior of specific species if their
preferences for substrate utilization processes differ (Allison and
Treseder, 2008; McGuire et al., 2010). In the VD compared to ND,
Glomeromycota and unclassified phyla were significantly more
abundant (Figure 2C). Glomeromycota and unclassified phyla were
much more common in the VD than in the ND (Figure 2C).
Furthermore, significantly deteriorated alpine meadow soils
contained more plant pathogenic fungus than non-degraded alpine

FIGURE 6
Relationships between soil samples (circles) and soil and plant properties (arrows) for bacterial (A) and fungal (B) community structure based on the
redundancy analysis. Abbreviations: plant coverage (VC), above-ground biomass (AGB), blow-ground biomass (BGB), and soil organic carbon (SOC), total
nitrogen (TN), total phosphorus (TP), total potassium (TK), nitrate-nitrogen (NO3

−–N), ammonium-nitrogen (NH4
+–N), available phosphorus (AP),

available potassium (AK), soil moisture content (SM), and soil bulk density (BD).
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meadow soils (Li et al., 2016). The LDA analysis indicated that
Ascomycota, Basidiomycota, and Glomeromycota were the most
abundant biomarker fungi, leading to significant differences in
fungal community structure among degradation levels (Figure 3A).
Therefore, this study demonstrates that soil fungal communities are
extremely vulnerable to alpine meadow deterioration (Hawkes et al.,
2008; Dooley and Treseder, 2012), with interactions between plants,
soil, and microorganisms potentially influencing fungal community
sensitivity to degradation severity (Miki et al., 2010; Cao et al., 2017).

4.2 Relationship between soil microbial
community and biotic or abiotic variables

RDA analysis revealed substantial (p < 0.01) variations in the
architectures of soil bacterial and fungal communities with
degradation (Figures 6A, B), which is consistent with earlier research
on the Qinghai-Tibetan Plateau (Li et al., 2016; Zhou et al., 2019). Plant
and soil properties changes in alpine meadows may explain observed
differences in microbial community structure (Wang et al., 2009; Wu
et al., 2014), including a significant decrease (p < 0.05) in soil nutrient
levels as meadow degradation increased (Table 2) (Dong et al., 2012;
Wu et al., 2014). This might be related to decreases in plant covering
and biomass, soil SM, and increases in soil BD and pH as degradation
severity rises (Table 2), potentially resulting in nutrient leaching and loss
(Mchunu and Chaplot, 2012).

According to the study, soil nutrients (N, P, K), soil moisture
level, plant cover, and biomass may be key factors defining changes
in microbial communities during meadow degradation, accounting
for approximately 73.8% and 39.4% of variations in bacterial and
fungal communities, respectively (Figures 6A, B). Previous research
has shown that these parameters have an influence on soil bacteria
(He et al., 2012; Jumpponen and Jones, 2014; Ali et al., 2020).
Changes in soil moisture availability have been linked to decreased C
use efficiency and altered biomass or ratios of bacteria and fungi in
the soil (Fay et al., 2011; Cregger et al., 2012; Zeglin et al., 2013),
whereas nitrogen gradients have been linked to changes in the
composition of the entire bacterial community (Ramirez et al.,
2012; Paungfoo-Lonhienne et al., 2015). Limitations in TP may
hamper the growth of microbial (Liu et al., 2012; He et al., 2016) and
affect bacterial community significantly (Supplementary Table S6).
Plants regulate microbial communities through substrate supplies
and changes to the physical environment in the active soil layer,
which may impact soil microbial community diversity and structure
(Miki et al., 2010). This study discovered a substantial relationship
between plant cover, AGB, and/or BGB and bacterial and fungal
communities (Supplementary Table S6), implying that evolution of
the composition and biomass of plant species caused by degradation
have a significant impact on microbial communities.

5 Conclusion

The purpose of this study was to examine the variations in
microbial communities in alpine meadows with various degrees of
deterioration.We used the high-throughput IlluminaHiSeq sequencing
method to do this. Our research found a significant variation in the
microbial communities as well as the degradation of alpine meadows.

Instead of factors that are only biological or abiotic in nature, we found
that the most likely cause of this difference was a combination of both
soil and plant properties. These properties were most closely associated
with soil organic carbon, total nitrogen, soil moisture, soil bulk density,
nitrate-nitrogen, aboveground biomass, and belowground biomass.
This study underscores the need for more investigation into the
mechanisms of degradation even if it offers insightful information
about themodifications to soil bacterial and fungal communities during
alpine meadow degradation. We will be able to better manage and
protect these significant biological systems if we understand the causes
underlying alpine meadow decline.
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