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Introduction: Timely and accurately mapping the spatial distribution of rice is of
great significance for estimating crop yield, ensuring food security and freshwater
resources, and studying climate change. Double-season rice is a dominant rice
planting system in China, but it is challenging to map it from remote sensing data
due to its complex temporal profiles that requires high-frequency observations.

Methods: We used an automated rice mapping method based on the Synthetic
Aperture Radar (SAR)-based Rice Mapping Index (SPRI), that requires no samples
to identify double-season rice. We used the Sentinel-1 SAR time series data to
capture the growth of rice from transplanting to maturity in 2018, and calculated
the SPRI of each pixel by adaptive parameters using cloud-free Sentinel-2
imagery. We extensively evaluated the methods performance at pixel and
regional scales.

Results and discussion: The results showed that even without any training
samples, SPRI was able to provide satisfactory classification results, with the
average overall accuracy of early and late rice in the main producing provinces
of 84.38% and 84.43%, respectively. The estimated area of double-season rice
showed a good agreement with county-level agricultural census data. Our results
showed that the SPRImethod can be used to automatically map the distribution of
rice with high accuracy at large scales.
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Introduction

Paddy rice is one of the world’s most important staple food crops, feeding half of the
population (Kuenzer and Knauer, 2013). Globally, the planting area of rice reached 161 ×
106 ha in 2018, accounting for 15% of the planting area of main crops, and 89.8% of paddy
rice was planted in Asia (FAO Statistical Databases, 2018). As the world’s population
continues to increase, the importance of rice as a food supply increases (Qin et al., 2015;
Karthikeyan et al., 2020). Due to its special physiological structure, rice needs to be grown in
flooded soils; therefore, rice cultivation has a crucial impact on the world’s freshwater
resources (Bouman and Tuong, 2001; Bouman et al., 2007; Dong and Xiao, 2016). In
addition, rice fields are one of the main sources of atmospheric methane, which contribute
12%–26% of global anthropogenic CH4 emissions and play an important role in global
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climate change (Sass et al., 1999; Dong and Xiao, 2016; Canadell and
Monteiro, 2021). Therefore, timely and accurate information on rice
planting areas is crucial for maintaining food security and freshwater
resource stability and studying climate change. In addition, China
has a vast rice planting area, and there are significant differences in
temperature during the rice growing season in different regions. The
impact of climate change on China’s rice yield will also have
significant spatiotemporal differences (Saud et al., 2022).
Therefore, understanding the exact growth location of rice is
crucial for assessing the impact of climate change on rice yield.

Satellite-based methods are increasingly becoming the primary
means for identifying and monitoring crop distributions, as they can
provide accurate and timely information on crop phenology and
growth (Atzberger, 2013; Zhang X. et al., 2018; Karthikeyan et al.,
2020; Zhan et al., 2021). Most existing studies uses two types of
remote sensing data: optical data and SAR data (Joshi et al., 2016;
Zhao et al., 2021). Optical remote sensing data has been widely used
to study the spatial distribution of rice at regional and local scales.
For example, Jin et al. (2016) used normalized difference vegetation
index (NDVI), land surface water index (LSWI), and enhanced
vegetation index (EVI) data from multi-temporal Landsat to
produce rice maps of the Sanjiang Plain in northeast China from
2010 to 2012, with a resolution of 30 m and user’s and producer’s
accuracy of 90% and 94% respectively. Liu et al. (2018) established a
paddy rice map of northeast China with high accuracy basing on a
sub-pixel method using LSWI time series of MODIS products.

Although it is possible to use optical data for mapping rice in
northeast China, where the longer growing seasons and fewer clouds
allow for sufficient high-quality data availability (Dong et al., 2016),
the frequent clouds and rain of the southeast make it much more
challenging (Zhan et al., 2021). In this case, the use of SAR data is
more effective. SAR signals are able to operate day and night
independently of weather conditions (Rogan and Chen, 2004;
Zhu et al., 2012). Early studies have found that SAR can
accurately capture the flooding of rice, as the radar backscatter
signal of rice fields is low during the transplanting stage (Kurosu
et al., 1995; Shao et al., 2001). Kurosu et al. (1995) first tried to use
ERS-1 C-band SAR data to monitor rice growth and found that SAR
data could suitably capture the signal of the rice growth period.
Later, common-polarization backscatter (e.g., HH) and common-
polarization ratio (e.g., HH/VV) images became more common in
rice mapping due to their high correlation with rice growth cycles
(Bouvet et al., 2009). A recent study used VH backscatter data
provided by Sentinel-1 to map rice in the Mekong Delta in 2015 and
found that the VH backscatter is more sensitive than the VV
backscatter to capture changes in the growth period of rice, with
an overall accuracy of 87.2% (Nguyen, et al., 2016). Sun et al. (2023)
produced a 20 m resolution rice region map of five countries in
Southeast Asia in 2019, with an overall accuracy of 92.2%. Carrasco
et al. (2022) created seven rice field maps of Japan from 1985 to 89,
1990 to 94, 1995 to 99, 2000 to 04, 2005 to 09, 2010 to 14, and 2015 to
19, with an overall accuracy of 83%–95%. Other studies have
combined optical and SAR data for rice identification
(Onojeghuo et al., 2018; Chen et al., 2020; He et al., 2021). For
example, a phenology-based rice mapping study in Peninsular
Malaysia using VH (capturing low backscatter signals in the rice
transplanting stage) and NDVI (reflecting the differential growth
conditions from rice growth to maturity) time series data of

Sentinel-1/2 satellites has achieved good results with an overall
accuracy of 95.95% (Fatchurrachman et al., 2022).

In the past few decades, a plethora of remote sensing-based
crop identification methods, such as threshold-based methods
(Bazzi et al., 2019; Li et al., 2020; Wei et al., 2022), phenology-
based methods (Xiao et al., 2002; 2006; Xiao et al., 2021;
Kobayashi and Ide, 2022), and machine learning-based
methods have been developed (Ndikumana et al., 2018; Zhong
et al., 2019; Chen et al., 2020). For instance, in a rice mapping
study based on SAR data, researchers collected 50,000 ground
sample sites and used a feature-based decision method to map the
distribution of rice in Yunlin and Changhua counties in central
Taiwan in 2017, with an overall accuracy of 91.9% (Chang et al.,
2020). Fiorillo et al. (2020) collected about 400 sample sites per
year from 2017 to 2019 and mapped the spatial distribution of
rice in Senegal using Sentinel-1/2 imagery based on the random
forest method, with a maximum accuracy of 87% and a kappa
coefficient of 0.8. Despite the existence of different methods for
rice mapping, most of them require massive samples and rely
heavily on the selection of training samples. Obtaining large
amounts of real-time samples is time-consuming and labor-
intensive, which limits the application of these methods to
update rice maps in real time over large areas (Mosleh et al.,
2015; Dong et al., 2020).

As the world’s largest rice producer, China had 30 × 106 ha of
rice planted area in 2018, accounting for 18% of the world’s total rice
sown area (FAO Statistical Databases, 2018). Particularly the sown
area of double-season rice in southern China was 10 × 106 ha,
accounting for one-third of China’s total sown area, making it an
important agricultural production area in China (National Bureau of
Statistics of China, 2019). In hilly areas of southern China, the mixed
patterns of cultivation and high fragmentation of cultivated land,
resulting from abundant rainfall and heat, pose challenges for
identifying rice planting areas (Qiu et al., 2003; Pan et al., 2021;
Wei et al., 2022; Zheng et al., 2022). The backscattering coefficient of
rice growth showed a V-shaped growth curve and the number of
flood signals varied across rice cultivation systems (Pan et al., 2021).
The VH time series of single-season rice theoretically shows a
V-shaped valley, while double-season rice shows two. The
accurate identification of flood signals is critical for mapping rice.
However, due to the short growth period of double season rice and
the weak flood signal intensity of late rice, it is challenging to fully
capture the signals of two V-shaped valleys, making it difficult to
identify double season rice using traditional methods (Xu et al.,
2023).

In order to solve the problem of traditional machine learning
relying on samples for identifying rice, we have developed a rice
index that can be used to identify double season rice in a large area
without the need for samples. In this study, we used a phenology-
based sample-free identification method to map rice planting areas
using time series SAR data provided by Sentinel-1. Using the
proposed method, we mapped double-season rice in nine
provinces in southern China (accounting for 99% of the total
area) in 2018 with a spatial resolution of 10 m. To validate the
accuracy of rice identification, we used county level statistics data
obtained from various municipal statistical bureaus for regional
scale verification. In the main producing provinces of double-season
rice, field survey data were used to verify the accuracy at the pixel
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scale. Our results indicate that the proposed method is feasible for
rice identification on a large scale without using samples, which is
very helpful for large-scale crop recognition updates and
backtracking identification.

Data and method

Study area

In China, there are two main modes of rice cultivation,
namely, single-season rice and double-season rice. Due to the
differences in hydrothermal conditions, double-season rice is
mainly distributed in southern China (Yang et al., 2022). We have
identified nine provinces in southern China as planting areas of
double-season rice. They are Hunan (HuN), Jiangxi (JX),
Guangxi (GX), Guangdong (GD), Hainan (HaiN), Hubei
(HB), Anhui (AH), Fujian (FJ), and Zhejiang (ZJ) (Figure 1),
accounting for 99% of the double-season rice planting area in
China.

Methods

SAR-based paddy Rice Mapping Index (SPRI)

The rice growth process can be divided into three main
periods: sowing-transplanting, growing and harvesting (Le
Toan et al., 1997). During the sowing-transplanting period,
the paddy field is a mixed state of rice seedlings and ponded
water. The main contribution to the satellite signal during this

period comes from the surface water, which backscattering
energy is weaker than that of rice seedlings. The surface water
produces a specular reflection of the SAR signal, which weakens
the pulse reflection to the radar and produces a low
backscattering coefficient. Therefore, the VH value of paddy
fields during the sowing-transplanting period is lower than
that of other vegetation, which is critical to distinguish rice
from other crops (Phan et al., 2018; Chang et al., 2020).
During the growth period, rice has a higher backscattering
value, and this value eventually approaches that of other
vegetation. Based on the low backscattering value during the
sowing-transplanting period, high backscattering value during
the growing period and large dynamic range of backscattering
value during the growth period, Xu et al. (2023) developed the
SAR-based Paddy Rice Mapping index (SPRI) to distinguish rice
from other crops.

Mapping rice with the SPRI algorithm includes three steps: 1)
setting boundaries to define vegetation-water zones, with the upper
boundary being the maximum intensity of local vegetation v)
(hereinafter referred to as “V-line”) and the lower boundary
representing the intensity of the local water surface w)
(hereinafter referred to as “W-line”) (Figure 2); 2) using the
formulae f(D), f(W), and f(V) to quantify the above three
characteristics of rice growth, and the product of these formulas
is defined as SPRI. Specifically, f(D) is the dynamic range of
backscattering during the growth period, f(W) reflects the
minimum backscattering and the proximity of the water body,
and f(V) reflects the proximity of the maximum backscattering to
natural vegetation. To amplify the differences between rice and other
crops, f(D) is normalized using a sigmoid function so that its value
ranges from 0 to 1. The equations are as follows:

FIGURE 1
Study area of double season rice planting. The study area covers nine provinces in China (blue area). Solid black lines indicate the boundaries of
provinces. Green dots represent field samples. Yellow triangles indicate field survey sites with UAVmeasurement covering 1 km2 area. The nine provinces
are Hunan (HuN), Jiangxi (JX), Guangxi (GX), Guangdong (GD), Hainan (HaiN), Hubei (HuB), Anhui (AH), Fujian (FJ), and Zhejiang (ZJ), respectively.
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f D( ) � 1

1 + e
v−w
2 −D( ),D � p2 − p1 (1)

f W( ) � 1 −W2,W �
1, p1> v
p1 − w
v − w

,w ≤ p1< v

0, p1<w

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)

f V( ) � 1 − V2,V �
1, p2>w

v − p2
v − w

,w ≤ p2< v

0, p2> v

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

SPRI � f D( ) × f W( ) × f V( ) (4)
and lastly 3) classify unknown pixels based on the SPRI index.

Employing the SPRImethod for double-season rice
mapping

When calculating SPRI in different regions, it is necessary to
determine the backscatter intensity of the two parameters of the V
line and the W line. First, we used NDVI and the normalized difference
water index (NDWI) synthesized by annual maxima to identify
temporary water bodies and vegetated pixels. In this study, NDVI
above 0.4 is considered to represent a vegetated pixel (Peng et al.,
2019), while NDVI above 0.4 and NDWI greater than 0 are
considered a temporary water body (McFEETERS, 1996). Then, we
calculated the annual synthetic maximum for backscatter intensity for
pixels covered by vegetation and the annual synthetic minimum for
backscatter intensity for pixels covered by water. Finally, the values of the
V and W lines were calculated as a pre-defined percentile for the
maximum backscatter intensity and minimum scattering intensity
respectively, and 10th percentile was selected for all regions in this

study. The SPRI value indicates the probability of growing rice in an
unknownpixel. The larger the value, themore likely the pixel is to be rice.
We used agricultural statistics for early and late rice at the provincial level
to determine the threshold for the SPRI value. Pixels with index values
above the threshold were considered “rice”. Specifically, among the
specified provinces, we selected the top N pixels with the highest
index value, and the total area of all N pixels is equal to the area
recorded in the rice statistics of the surveyed province. However, due to
differences in topography, environment and planting systems, the timing
of the flood transplantation phase of the same rice species varies
throughout the region. Therefore, we obtained different VH time
series in different provinces according to different flood transplanting
and early growth stages of rice and limited the range of obtaining
maximum and minimum values on that time series to reduce the
influence of other crops on classification.

Accuracy assessment
We first evaluated the results of double-season rice identification

using reference samples from UAV imagery and ground survey. We
assessed the pixel-level accuracy by calculating the producer
accuracy (PA), user accuracy (UA), and overall accuracy (OA):

PA � RR
RR + RN

(5)

UA � RR
RR + NR

(6)

OA � RR + NN
RR + RN + NR + NN

(7)

where, RR is the number of pixels in which both the ground survey
and the identified results are rice. RN is the number of pixels where,
although the actual ground object is rice, the result is non-rice. NR is

FIGURE 2
Schematics of SPRI method. f(D), f(W), f(V) characterize three features of rice growth process. p1, p2 are the key points of early rice and p1’, p2’ are the
key points of late rice.
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the number of pixels recognized as rice although the actual ground
object is non-rice, and NN represents the number of pixels where
both the actual ground object and recognition results are non-rice.

Second, compared with county-level agricultural statistics, we
calculated the coefficient of determination (R2), root mean square
error (RMSE), and relative mean absolute error (RMAE) to assess the
identification accuracy at the regional scale. The formulae are as follows:

RMSE �
���������������
1
n
∑n

i�1 IAi − SAi( )2
√

(8)

RMAE � ∑n
i�1 SAi − IAi| |∑n

i�1SAi
(9)

where, IAi and SAi are the identified area and statistical area of the
ith county respectively, and n represents the number of counties in a
given province. The unit of RMSE is thousand hectares (103 ha).

Data

Satellite data
We used Sentinel-1’s Ground Range Detected (GRD, Level 1), a

calibrated and ortho-corrected product accessed through Google
Earth Engine (GEE), to generate a 10 m SAR VH time series with a
12-day temporal resolution. First, we performed thermal noise
cancellation, radiation calibration, and terrain correction on each
acquired image. Then, to correct for speckle noise in SAR images, we
applied a Savitzky-Golay (SG) filter with a window size of 5, order
and polynomial degree of 2 to smooth the time series. In addition,

we used all available Sentinel-2 TOA data from January to December
2018 and constructed a time series of 12-daycomposited 10 mNDVI
and NDWI data using the GEE platform to reflect vegetation and
water body land cover information.

Field data
We used ground sample data to verify the accuracy of the

identification to test the performance of this method. We
collected field samples in four main producing provinces growing
double-season rice in southern China (Hunan, Jiangxi, Guangdong
and Guangxi) in July and October 2018 to calculate a confusion
matrix for accuracy verification at the pixel scale (Figure 1).

Land cover dataset and agricultural statistical data
We used the Finer Resolution Observation and Monitoring of

Global Land Cover (FROM-GLC) product with 10 m resolution to
extract cropland locations (Gong et al., 2019). The total sown area of
double-season rice in each province in 2018 was acquired from the
official website of the National Bureau of Statistics of China. The
2018 county-level validation data was acquired from the statistical
yearbooks of each province or municipality.

Result

We produced a spatial distribution map of double-season rice at
10 m spatial resolution in nine provinces of China in 2018 using the SPRI
method (Figure 3). To verify the stability and reliability of our method,
we first conducted a verification in the four major producing provinces
(85% of China’s total double-season rice area) using both GPS survey
data and UAV farmland data. We randomly selected sample points in
the UAV survey area and combined all GPS survey samples to assess
pixel-level accuracy. Based on double-season rice and non-double-season
rice survey samples, the overall identification accuracy across the four
provinces ranged from 81.02% to 90.05% for early rice (Table 1) and
between 79.7% and 88.89% for late rice (Table 2). Hunan is one of the
largest double-season rice planting provinces in China, accounting for
more than 28.38% of China’s double-season rice planting areas. The
user’s, producer’s, and overall accuracy of early (late) rice in Hunan were
90.33% (76.91%), 88.28% (86.27%), and 90.05% (85.01%), respectively.
Jiangxi is also one of themain double-season rice planting areas inChina,
with a planting area accounting for 25.28% of double-season rice in
China. The user’s, producer’s, and overall accuracy of early (late) rice in
Jiangxi were 73.84% (73.85%), 80.19% (86.56%), and 82.33% (79.70%),
respectively.

Subsequently, the agricultural statistical data we gathered was
utilized to assess the accuracy at the county level across all examined
provinces (Figure 4). Our method exhibited satisfactory performance
in accurately identifying both early and late rice within regions where
county-level data was available. The statistical metrics, namely, R2,
RMSE, and RMAE, were calculated to quantify the accuracy. For early
rice, the R2, RMSE, and RMAE values were determined as 0.77, 4.52
(103 ha), and 0.35, respectively. Notably, the performance for late rice
was even better, with R2, RMSE, and RMAE values of 0.82, 4.29
(103 ha), and 0.30, respectively.

For each province, the R2 between the identified and agricultural
statistical areas of early rice ranged from 0.63 to 0.82. The RMSE
ranged from 1.21 to 5 .50 (103 ha), and RMAE ranged from 0.27 to

FIGURE 3
Identification map of double-season rice in southern China in
2018. (A–C) are enlarged maps showing local details of Guangdong,
Hubei, and Jiangxi respectively.

Frontiers in Environmental Science frontiersin.org05

Zhang et al. 10.3389/fenvs.2023.1207882

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1207882


0.58 (Figure 5). For late rice in each province, the method performed
better in some areas, with R2 ranging from 0.59 to 0.88, RMSE ranging
from 1.72 to 6.12 (103 ha), and RMAE ranging from 0.20 to 0.55
(Figure 6). The accuracy of late rice identification in Hunan,

Guangdong, Guangxi, Anhui, Hainan, and Hubei provinces was
higher than that of early rice. For example, in Guangxi, the R2,
RMSE, and RMAE of late rice were 0.78, 4.37 (103 ha), and 0.30,
respectively while the R2, RMSE, and RMAE of early rice were 0.63,

TABLE 1 Confusion matrix of early rice identification map in four main producing provinces in 2018.

Province Class Rice Non-rice User’s accuracy (%) Producer’s accuracy (%) Overall accuracy (%)

JX rice 745 264 73.84 80.19 82.33

non-rice 184 1342 83.56 87.94

GD rice 280 51 84.59 85.11 84.13

non-rice 49 250 83.06 83.61

HuN rice 467 50 90.33 88.28 90.05

non-rice 62 547 91.62 89.82

GX rice 417 196 68.03 88.72 81.02

non-rice 53 646 76.72 92.42

TABLE 2 Confusion matrix of late rice identification map in four main producing provinces in 2018.

Province Class Rice Non-rice User’s accuracy (%) Producer’s accuracy (%) Overall accuracy (%)

JX rice 960 340 73.85 86.56 79.70

non-rice 149 960 73.85 86.56

GD rice 300 31 90.63 88.49 88.89

non-rice 39 260 89.35 86.96

HuN rice 553 166 76.91 86.27 85.01

non-rice 88 887 84.24 90.97

GX rice 432 181 70.47 94.12 84.15

non-rice 27 672 78.78 96.14

FIGURE 4
Comparison between the county-level identified area and statistical planting area in 2018. (A) early rice (B) late rice.
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5.14 (103 ha), and 0.43, respectively. For the two largest double-season
rice cultivation areas (Hunan and Jiangxi) in China, the method
showed good performance between identified and agricultural
statistical areas for both early and late rice, where the R2, RMSE,
and RMAE of early rice were 0.76, 5.50 (103 ha) and 0.28 in Hunan,
and 0.82, 4.94 (103 ha), and 0.36 in Jiangxi, respectively. For late rice,
the R2, RMSE, and RMAEwere 0.88, 3.96 (103 ha), and 0.20 inHunan,
and 0.80, 6.12 (103 ha), and 0.37 in Jiangxi, respectively. Although
there was a high R2 (0.64) between identified and agricultural
statistical areas in Zhejiang, the identified area noticeably
underestimated agricultural statistical areas. Zhejiang had the
worst verification performance at the county level where the
RMAE was 0.57 for early rice and 0.54 for late rice, with severe
omission errors in areas where statistics were available.

Discussion

In this study, we produced double-season rice maps with a
spatial resolution of 10 m in southern China in 2018 based on the

SPRI method. Validation using field sample data and agricultural
statistics showed that the produced double-season rice maps have
high accuracy at both the pixel and regional scales.

High spatial resolution ricemaps can capture the distribution of rice
fields more precisely and reduce the impact of mixed pixels on
recognition accuracy (Xiao, 2003; Zhang et al., 2009). Compared to
the 500 m resolutionmaps of Xiao et al. (2005) and Sun et al. (2009), the
10 m spatial resolution rice map produced in this studymore accurately
reflects the distribution of rice fields in southern China, especially in
hilly areas with high fragmentation of planting. In addition, ourmethod
can automatically identify rice planting areas without sampling points,
and has achieved good accuracy in major producing provinces.
Compared with traditional machine learning algorithms (Zhang M.
et al., 2018; Bazzi et al., 2019; Cai, et al., 2019; Zhang et al., 2020), our
method also saves a lot of time and labor (Dong et al., 2020). Therefore,
our method is more flexible in both large-scale applications and long-
term retrospective mapping research. Recently, Pan et al. (2021) used
the time-weighted dynamic time warping (TWDTW) method to
produce the first large-scale maps of double-season rice in China,
with a spatial resolution of 10 m. The overall accuracy of the map for

FIGURE 5
Comparison between the county-level identification area and statistical planting area of early rice in nine provinces in 2018. The abbreviation of
province is same as Figure 1. The yellow dashed lines indicate the 1:1 line, and the blue solid lines indicate the regression lines.
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four major producing provinces (HuN, JX, GD, GX) were 90.5%,
91.88%, 88.07%, and 88.17% for early rice, and 90.36%, 89.18%,
88.25%, and 88.40% for late rice, respectively. While our accuracy is
slightly lower than that reported by Pan et al. (2021), we achieved
satisfactory results without the need for any samples. Other studies have
also used machine learning to classify double-season rice in smaller
areas of Hunan Province and Jiangxi Province. He et al. (2021) achieved
an overall accuracy of 85% and 96% for early and late rice, respectively,
while Tian et al. (2018) achieved user’s accuracy of 97.9% and 96.3% for
early and late rice, respectively. However, these studies were limited to
regional-scale applications, and their results were uncertain when
applied on a large scale due to the limitations of sample size.

Although our method can effectively and accurately identify large-
scale rice areas, there are still some uncertainties in the identification
process. Data quality affects the accuracy of classification. First, while SAR
data is not affected by cloud or lighting conditions, its inherent noise
makes classification results uncertain, and SAR backscattered signals are
damaged by topographic effects, even when they are radiometric terrain
corrected (Steele-Dunne et al., 2017; Fatchurrachman et al., 2022). Pan

et al. (2021) found that rice paddies in mountainous areas are small and
scattered, especially in Fujian province, where 64% of rice fields are in
mountainous areas. Affected by topography, our classification results in
Fujian province were relatively unsatisfactory, in which the RMAE of
early and late rice was 0.45 and 0.46 respectively. Secondly, we used two
optical indices, NDVI and NDWI, to determine the area of vegetation
coverage and temporarywater bodies. TheW-line value is the value at the
bottom 10% of the minimum backscattering value in all temporary water
bodies, while the V-line value is the value in the top 10%of themaximum
backscattering value in the vegetation-covered area. In southern China,
due to the influence of the cloudy and rainy weather, the number of
effective optical images is insufficient, which affects the determination of
the final value of W and V lines, and ultimately the recognition accuracy
(Wu et al., 2011). Finally, we calculated the quantity and proportion of
data used for county-level validation (Figure 7). Our results performed
poorly in Zhejiang Province, possibly due to the limited data available for
county-level validation and the low rice planting area in the validation
area, which cannot represent the identification of the main
production area.

FIGURE 6
Comparison between the county-level identification area and statistical planting area of late rice in nine provinces in 2018. The abbreviation of
province is same as Figure 1. The yellow dashed lines indicate the 1:1 line, and the blue solid lines indicate the regression lines.
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In this study, a map of double season rice in southern China for
the year 2018 was generated using a sample-free automatic method
at a large scale. The study further validated the feasibility and
adaptability of this method for large-scale applications,
establishing its reliability and effectiveness. Our proposed method
mainly distinguished rice from other crops by capturing and
amplifying characteristics during growth. In future work, our
method can be applied to the identification of other crops.

Conclusion

China is the world’s largest rice producer, accounting for 18% of the
world’s rice-sown area in 2018. In this study, we used SAR data from the
Sentinel-1 satellite to map double-season rice in southern China in
2018 based on SPRI, a sample-free identification method. In the main
producing provinces, we use randomly generated samples based onUAV
survey images and all samples from handheld GPS field expeditions for
verification. The highest recognition accuracy of early ricewas recorded in
Hunan Province, where the producer’s accuracy, user’s accuracy, and
overall accuracy of early rice were 88.28%, 90.33%, and 90.05%,
respectively. By comparison, Guangdong Province had the highest
recognition accuracy of late rice, in which the producer’s accuracy,
user’s accuracy, and overall accuracy were 88.49%, 90.63%, and
88.89%, respectively. In addition, the sown area of early and late rice
determined in this study showed a high correlation with the county-level
agricultural statistics from the statistical bureaus of each city. The early
and late rice areas of all surveyed provinces were compared with the
existing county-level agricultural statistics, where the R2 of early and late
rice were 0.77 and 0.82 respectively. More importantly, using the SPRI
method for rice identification does not require ground samples, and
larger-scale rice mapping can be performed by adjusting the W and V
lines of rice in different regions. The results of this study provide support
for subsequent research on rice yield estimation, and the method used in
this study enables years of rice retrospective mapping.
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