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Assessing andmapping the vulnerability of gully erosion inmountainous and semi-
arid areas is a crucial field of research due to the significant environmental
degradation observed in such regions. In order to tackle this problem, the
present study aims to evaluate the effectiveness of three commonly used
machine learning models: Random Forest, Support Vector Machine, and
Logistic Regression. Several geographic and environmental factors including
topographic, geomorphological, environmental, and hydrologic factors that
can contribute to gully erosion were considered as predictor variables of gully
erosion susceptibility. Based on an existing differential GPS survey inventory of
gully erosion, a total of 191 eroded gullies were spatially randomly split in a 70:
30 ratio for use in model calibration and validation, respectively. The models’
performance was assessed by calculating the area under the ROC curve (AUC).
The findings indicate that the RFmodel exhibited the highest performance (AUC =
89%), followed by the SVM (AUC = 87%) and LR (AUC = 87%) models. Furthermore,
the results highlight those factors such as NDVI, lithology, drainage, and density
were the most influential, as determined by the RF, SVM, and LR methods. This
study provides a valuable tool for enhancing the mapping of soil erosion and
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identifying the most important influencing factors that primarily cause soil
deterioration in mountainous and semi-arid regions.
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watershed, mountainous region, vulnerability mapping, El Hanssali watershed

1 Introduction

Degradation of the soil is amongst of the world’s prevalent
serious natural hazards, mainly in semi-arid regions (Bou-imajjane
et al., 2020). Furthermore, it negatively affects soil quality, wreaking
havoc on ecosystems, agriculture income, water availability and
quality, and carbon reservoirs (Panos et al., 2015). Gully erosion
(GE), which is foremost typical of soil erosion in semi-arid lands, is
described as the eroding and washing away of the soil by a deep
channel eroded by flowing surface water (Poesen et al., 2018). Gully
means a deep and usually permanent channel with vertical walls on
both sides. The generated gullies induce soil degradation, modify
landforms and topography, and eventually lead to an abundance of
river ramification, dam siltation, and land degradation. Over the
past few decades, approximately one-third of the world’s cultivable
land has been impacted by this phenomenon (Gupta et al., 2019).
According to available literature, soil erosion has an annual impact
on over ten million hectares of agricultural land, at a rate of
approximately 43 Pg per year worldwide (Borrelli et al., 2020). As
stated by the Food and Agriculture Organization (FAO), the
economic ramifications of soil erosion are estimated to amount
to a significant $1 billion loss (FAO, 2015). In Morocco,
approximately 40% of the country’s land is impacted by soil
erosion, with average annual loss rates ranging from 23 to
55 tons per hectare per year. In certain locations, the erosion
reaches extreme levels, with values as high as 524 tons per
hectare per year (Acharki et al., 2022). Moreover, agriculture
serves as the primary livelihood for the inhabitants of Morocco’s
mountainous regions. Unfortunately, these areas face significant
challenges due to soil erosion, leading to a reduction in arable land,
compromised water quality and quantity, and substantial economic
and social consequences (Markhi et al., 2019). In relation to this
matter, the Ahmed Elhansali watershed situated in the Moroccan
High Atlas is among the regions profoundly affected by substantial
soil degradation. This degradation can be attributed to the region’s
intricate physical characteristics, including its elevated topography
and steep slopes occupied by rocks exhibiting diverse properties. For
this purpose, the qualitative aspects of gully erosion can be studied to
predict the durability of hydraulic structures and to understand the
geometry of the upper watershed and the downstream area (Castillo
et al., 2007).

In recent decades, the modelling of gully erosion susceptibility
has shown its usefulness in developing accurate maps of vulnerable
areas, based on technological development and computer tools.
Three main approaches were used: Expert knowledge-based
methods, Statistical methods and Machine Learning methods.
Among the most widely used expert-based methods are the
hierarchical analytical process (AHP) and multi-criteria decision
making (MCMD). The particularity of these approaches lies in the
fact that they did not require an inventory of gully erosion locations

(Arabameri et al., 2019), however they showed a general lack of
accuracy in detecting areas susceptible to gully erosion (Eloudi et al.,
2022). Statistical methods ranging from the most basic such as
descriptive statistics (Sadeghi and Saeidi, 2010) bivariate such as
frequency ratio (FR) (Meliho et al., 2018) to multivariate parametric
models (i.e., logistic regression, boosted regression tree, etc.) are
tested (Rahmati et al., 2016). Also, these models are easy to use and
interpret (Magliulo, 2012). Nevertheless, traditional statistical
approaches, exhibit certain limitations in detecting the link
between geographical features and gully erosion rates on account
of the establishment of pre-existing hypotheses (e.g., data
distribution hypotheses). More recently, Machine Learning (ML)
and Deep Learning (DL) methods have made significant
contributions to gully erosion susceptibility modelling, such as
Decision Tree (DT) (Lei et al., 2020), C5.0 (Catani et al., 2013;
Oh and Lee, 2011; Eloudi et al., 2023), Support Vector Machine
(SVM) (Aouragh et al., 2023), Naive Bayes (NB) (Lana et al., 2022)
Logistic Regression (LR) (Were et al., 2023), Random Forest (RF)
(Lei et al., 2020), Maximum Entropy (ME) (Tien Bui et al., 2019),
Artificial Neural Networks (Anns) (Liu et al., 2023), Convolutional
Neural Network (CNN) (Liu et al., 2023), Multilayer Perceptrons
(MLPs) (Roy et al., 2022) and Particle Swarm Optimization (PSO)
(Band et al., 2020). The findings showed thatML andDLmodels had
a superior prediction performance of gully initiation points than
traditional techniques (Conforti et al., 2011; Garosi et al., 2018).

Among these methods, three have been widely used in the
literature, namely, RF, SVM and LR. In the majority of cases,
their performance was excellent, and the susceptibility maps
produced were highly accurate. For example, Lei et al., 2020
using the RF method obtained an (AUC = 0.893) in the Robat
Turk watershed in Iran, Arabameri et al. (2019) obtained an AUC of
0.90 using the SVM method in the Golestan dam basin (Iran), and
Bouramtane et al. (2022) an AUC of 0.86 using the LR method in
southern Mato Grosso, Brazil. Even though these methods have
proved highly effective, the modelling results differ not only between
regions but even between different models, emphasizing that the
outcomes of a model are specific to its particular case study (Azareh
et al., 2019). For this reason, it is so important to test these powerful
models in different case study environments, taking into account the
varying importance of causal factors from one area to another,
especially in the mountainous context.

In spatial prediction mapping, it is crucial to account for the
many variables that may influence the growth and development of
gullies. Numerous researchers have included factors that can
influence the gully formation such as topographic, geologic,
hydrologic and anthropogenic factors (Rahmati et al., 2017;
Azareh et al., 2019). However, a review of the literature found
that assessing the influence of geo-environmental conditioning
factors (GECFs) and their impact on the performance of gully
erosion vulnerability mapping (GEVM) should be examined
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further. This is especially important in areas where gully genesis is
influenced by a variety of factors. Indeed, when the lithology is
widely diversified and the topography is highly rugged, the human
effect may be seen in soil deterioration and soil uses, in this case,
further investigation into the various factors that influence the
formation and development of gullies is required. Therefore, in
order to develop optimized and effective models for the prediction of
gully-vulnerable areas, it is necessary to identify and emphasize the
contribution of each factor category to the effectiveness of the
models. Furthermore, it is indeed acknowledged that the factors
contributing to the formation of gullies have been extensively
examined in certain regions. However, there is a considerable
need for further investigation and exploration in numerous
environmental contexts, especially in the southern Mediterranean
areas overall and specifically in theMoroccan Atlas. In these regions,
the influencing factors have only received limited attention.
Therefore, this research aims to bridge this gap and shed light on
these factors within a crucial area that amalgamates the
mountainous and semi-arid characteristics of Mediterranean
regions.

To serve this objective, this study makes a valuable contribution
by proposing an approach that involves testing various categories of
factors to identify the most pertinent ones for precise prediction
mapping. As a result, the main objective of this research is to gain
insight into the impact of selecting geo-environmental conditioning
factors (GECFs) on the performance of ML models for spatially
predicting Gully Erosion (GE) in an exceptionally intricate region.

To fulfill our study goal, we employed twenty GECFs with a total
of 191 gully inventory sites (191 for gully and 191 for non-gully),
divided into training and testing datasets 70/30%. Then, the
GECFs were categorized into the following 5 groups:
topographic (elevation, aspect, slope, Slope Length (LS),
curvature, profile curvature, plan curvature, convergence index,
Stream power index (SPI), Terrain Roughness Index (TRI),
Topographic Position Index (TPI)and Topographic Wetness
Index (TWI)), hydrologic (drainage density and distance to
rivers), geologic (lithology), anthropogenic (normalized
difference vegetation index (NDVI), LULC and distance to
roads), and climatic (rainfall). Then, three powerful ML
models are used to evaluate the stability of the models with
regard to the change of variables included in each modeling
test. This research can provide important and significant
answers in relation to the factors to be incorporated in soil
erosion studies for specialists, policymakers, cartographers, and
various stakeholders in the management of natural resources.

2 Materials and methods

2.1 Study area

The Ahmed Elhansali watershed is situated in the centre of
Morocco, and is an integral part of the great basin of Oum Er-
Rbiaa river (32°35′-33°N, 5°05′-5°50′W) (Figure 1). The area

FIGURE 1
Study region. (A)Geography situation of the investigated region inMorocco; (B) in theOumRabiaa 696watershed; and (C) digital elevationmodel of
the research region area.
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surrounded by mountainous terrain with structural features such
as closed depressions, ravines, and accumulation forms, indeed,
the relief is quite contrasted, with watersheds reaching extreme
altitudes of 2400 m and medium to steep slopes. The geology of the
region is complex with different lithotypes, such as liasic
limestones and Trias formations that are primarily clayey and
saliferous. The region is semi-arid to arid, with seasonal rainfall
whose maximum is recorded in wintertime. Total precipitation
fluctuates between 160mm and 790 mm and observed average
temperatures vary from 4°C (January) to 35°C (July) (July-
August) (El-Jazouli et al., 2019). The watershed is mostly
covered by bare soil (56%), forest plantations (16%), cultivated
land (12%), and grassland (12%). Physical, biological, and
agronomic soil and water protection strategies and measures
(such as dykes and dams) have been implemented in the
watershed to reduce soil degradation.

All these features combine to make the chosen region a key
area for understanding erosive processes and highlighting the
importance of the factors that cause them. Indeed, the steep
slopes, particularly upstream, combined with the friable Triassic
clays, favor rapid and deep gully formation. Precipitation, which is
generally concentrated in space and time in this semi-arid
mountain climate, plays an additional role. As a result, Gully
erosion has led to increased sediment production in the
reservoir of the Ahmed El Hanssali dam (volume of sediments
that attains the Ahmed El Hanssali dam in 2014 was around
76 MCM), which represents a source of drinking water and
irrigation for the Tadla agricultural plain downstream and the
surrounding cities, and is, therefore, a potential concern for the
region’s water supply.

2.2 Methodology

This research applies an approach founded on combining statistical
and ML models, remote sensing and GIS by using several conditioning
factors; topographic, geological, geomorphological, hydrologic, climatic
and anthropogenic; in order to understand the gully erosion problem
and create prediction maps. The flowchart summarizes the study’s
methodology (Figure 2). The following are the five steps: 1) Mapping of
a gullies inventory and conditioning factors; 2) Identifying the spatial
correlation between inventory data and factors; 4) ML models’
application and validation of the results; and finally 5) Producing of
gully erosion vulnerability maps.

2.2.1 Inventory data
The inventory of the sites of gully erosion was created by combining

field data through field missions conducted in 2020 using a global
positioning system (Figure 3), and an analysis of Google Earth images.
Then, 191 gully erosion locations were identified and located (Figures 1,
3). In addition, according to the literature, partitioning locations into
gullies and non-gullies is essential for a reliable analysis process
(Chaplot et al., 2005; Conoscenti et al., 2014; Rahmati et al., 2016).
ML models frequently require two types of data to estimate gully
vulnerability: the first should be typical of gully formation (positive
occurrences), and the next should be characteristic of stable situations
(negative occurrences) (Debanshi and Pal, 2020). In order to get a
reliable result, it is suggested that the presence-to-absence ratio be equal
to 1 (Süzen and Doyuran, 2004; Nefeslioglu et al., 2008a; Nefeslioglu
et al., 2008b; Schicker and Moon, 2012; Rahmati et al., 2016). Non-
gullied points are chosen at random and are located distant from gully
points.While applyingMLmodels, the data for testingmust be different

FIGURE 2
Flow chart of themethodology of the research. TF: Topographical factors; CF: Climatic factors; HF: Hydrological factors; GF: Geological factors; AF:
Anthropogenic factors.
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from the data for training (Lee et al., 2007). As a result, the data is
typically separated in two groups: training and testing. Based on
information from the literature, we found that around 70% of the
training and validation subsets were randomly picked for training/
calibration, and 30% for validation reasons (Debanshi and Pal, 2020). In
addition.

2.2.2 Analysis of conditioning factors
Various variables participate on gullies formation, including

geological, hydrological, topographical, and anthropogenic factors
(Avand et al., 2019), among which 20 were chosen to be included
during modeling (Table 1; Figure 4). The multicollinearity test was
performed on all 20 GECFs.

2.2.2.1 Collinearity test
Multi-collinearity exists if two or more explanatory variables

have a perfect or nearly perfect linear correlation (Avand et al.,
2019). The Variance Inflation Factor is one of the approaches for
testing multicollinearity (VIF). The VIF is an easy-to-use and
increasingly common measure of multicollinearity (Ghosh and
Dey, 2021), which is based on the principle of assessing the
explanatory ability of a given variable by the other variables in
an equation. Therefore, high values (VIF>5) imply the presence of
multicollinearity (Studenmund, 2000). The VIF is defined in Eq. 1

VIFj � 1
1 − R2

j

(1)

where, is the R2
j determination coefficient of the auxiliary regression,

and j is the independent variable.
In addition to VIF, a correlation matrix is utilized to group the

correlations of multiple variables, with coefficients indicating the
influence that the variables have on one another. The objective is to
analyze and estimate the redundancy between conditioning factors
and measure the degree of linear relationship between each pair of
variables (Table 2) (Tenenhaus, 1998).

2.2.3 Spatial mapping of the gully erosion
vulnerability
2.2.3.1 Spatial correlation

The bivariate statistical technique of frequency ratio (FR) was
employed to investigate the relationships between ravine
locations and various conditioning factors. The following
equation is used to calculate FR (Pregibon, 1981; Carroll and
Pederson, 1993):

FIGURE 3
Field photographs illustrating some location of gullies in the studied area.

TABLE 1 Gully erosion conditioning factors sources.

Factor Factor source

Elevation, Aspect, Slope, Curvature, LS,
TRI, TPI, SPI, TWI, Convergence index,
Plan curvature, Profile curvature,
Distance to rivers, Drainage density

Digital elevation model (DEM)

30 m (SRTM)

Rainfall(mm) The Tropical Rainfall Measuring
Mission (TRMM)

Lithology 1/500,000 Geological Map of Rabat
(1976)

Distance to Faults

Distance to Road m) Topographic maps

LULC Landsat 8 images (19 August 2019)

NDVI
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FR � percentage of gully location PL( ) )
percentage ofpixel of eachfactor PD( ) (2)

The FR values obtained are normalized using the following
formula:

N � FR −Min FR( )
Max FR( ) −Min FR( )( ) p 0.99 − 0.01) + 0.01 (3)

FR = Each factor class frequency ratio value;
Max (FR) = maximum of all FR values;
Min (FR) = minimum of all FR values.

2.2.3.2 Random forests (RF)
RF represent a group of DT in which the values of a random

vector are selected separately and evenly throughout all trees in the
forest to calculate the value of each tree. As the total of trees within a
forest increases, the overfitting approaches a limit. Therefore, the
generalized error of a forest is reliant on the potential importance
and correlation of the trees. Consequently, the error rate is deduced
using a random selection of parameters to segregate each node. In
order to control the inaccuracy, estimates are made of the model’s
response to an rise in the number of considered factors in the
investigation, as well as their relative relevance (Breiman, 1996).

FIGURE 4
Maps of the factors considered in this research: (A) elevation, (B) aspect, (C) slope (°), (D) curvature, (E) plan of curvature, (F) profile of curvature, (G)
convergence index, (H) LS, (I) TRI, (J) TPI, (K) SPI, (L) TWI, (M) precipitation, (N) lithology (A. Ordovician: Metamorphic rocks, B. Devonian: Metamorphic
limestones, C. Upper Visean: Schists, D. Permian: Clays, Sandstones, E. Trias: Clays, Sandstones, F. Jurassic: Limestone, G. Jurassic: Jbel Hadid Rhyolites,
H. Cretaceous: Red detrital facies and Marls, I. Eocene: Continental deposits, J. Miocene:Continental deposits, K. Pliocene: Continental deposits, L.
Quaternany: Alluvium and scree), (O) drainage density, (P) distance to rivers, (Q) distance to roads, (R) distance to faults, (S) land cover, and (T) NDVI.
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Several hyperparameters must be determined before
implementing random forest, including the overall amount of the
forest’s trees (ntree), the number of factors selected at random at
every node (mtry), the sample size (sampsize), in addition to the
total potential number of each tree nodes (maxnodes).

2.2.3.3 Support Vector Machine (SVM)
SVM are ML techniques applicable to classification and regression

problems. Their goal is to separate the data into classes using a separator
called “boundary” that maximizes the distance between these classes,
called “margin”. The optimal separation hyperplane is the Frontier that
maximizes the margin. This “Frontier” assumption, however, assumes
that the data are linearly separable, which is rarely the case. SVMs will
thus move the data into a higher dimensional vector space to allow for
better data separation (Mahesh, 2019).

2.2.3.4 Logistic regression (LR)
LR is among the most used techniques of multivariate statistics.

It is employed to estimate the multivariate regression relationship
between an explanatory variable and a number of independent ones.
Variables may be continuous, categorical, or a composite of both
(Mahesh, 2019). The primary objective of this study’s use of an LR
method is to evaluate the correlations between gullies and causative
factors via the following formulae (Pregibon, 1981; Carroll and
Pederson, 1993):

LR � 1
1 + e−Z

(4)

Where:
LR is the manifestation probability of gullies.
Z is a linear sum of constants (-∞, +∞), calculated by the

equation:

Z � β0 + β1V1 + β2V2 + . . . + βnVn (5)

where:
β0 is a the intercept, βn is the coefficient, andVn are the variables.

2.2.3.5 Validation of results
In this analysis, we compare 3 ML techniques using the

receiver operating curve (ROC) and the area under the curve
(AUC) as a performance metric on two diagnostic testing and
training datasets of water erosion by gullying in the Ahmed El
Hanssali watershed, as well as the validation of results. In
addition, several terms are commonly used to describe the
sensitivity, specificity, and accuracy of performance
measures of ML algorithms (Angileri et al., 2016). These are
true positives values (TP), false positives values (FP), true
negatives values (TN), and false negative values (FN). Then,
performance measures are computed using the following
formulas:

sensitivity � PT

PT + FN
(6)

specificity � NT

NT + FP
(7)

Accuracy � TN + FP

TN + TP + FN + FP
(8)

3 Results

3.1 Conducting multicollinearity analysis to
evaluate the factors of influence

A factor analysis was performed to identify the utmost valuable
conditioning factors and to reject those that had high multi-
collinearity. The multi-collinearity tests revealed that the VIF
values range from 1.115 for the Lithology factor to 8.599 for the
LS factor (Table 1). Additionally, a high value is observed for the TRI
factor (5.705). Nevertheless, the other components have values
below 5, indicating that multicollinearity does not exist between
these variables. The findings suggest that NDVI and Land Use are
greatly correlated, and that slope, TRI, and LS are also highly
correlated. Afterwards, TRI and LS were eliminated from the
analysis based on the correlation matrix and VIF findings
(VIF >5). Furthermore, a correlation matrix between
conditioning factors was performed to test the redundancy of
some factors in order to eliminate redundant ones and improve
the analysis’ performance (Figure 5), and the efficiency of the
methods was evaluated by reducing the used factors and
comparing their linear correlation. After eliminating redundant
factors (LS and TRI), it was found that there was no significant
linear correlation (Figure 5).

TABLE 2 Results if Multi-Collinearity analysis.

VIF TOL

Elevation 1.887 0.530

Aspect 1.150 0.870

Slope 3.153 0.317

Curvature 1.814 0.551

Plan_Curvature 1.228 0.814

Profile_Curvature 2.030 0.493

Convergence 1.328 0.753

TPI 1.337 0.748

TRI 5.707 0.175

TWI 1.294 0.773

SPI 4.134 0.242

LS 8.599 0.116

Drainage Density 1.408 0.710

Distance To Rivers 1.147 0.872

Distance To Roads 1.116 0.896

Distance To Faults 1.118 0.894

Lithology 1.115 0.897

Rainfall 1.215 0.823

LULC 2.300 0.435

NDVI 2.472 0.405

Frontiers in Environmental Science frontiersin.org07

Aboutaib et al. 10.3389/fenvs.2023.1207027

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1207027


3.2 Spatial correlation using FR analysis

The frequency ratio (FR) approach was employed in this study
to investigate the spatial correlation amongst each of the categories
of variables and the gully erosion point, and each class of variables
was given an appropriate weight (Lei et al., 2020). According to the
analyses of FR results, GECF classes with FR > 1 are vulnerable to
this type of erosion (Rahmati et al., 2017). The results of this
correlation are presented in Figure 6. The results exposed that the
factor class with the highest correlation is the TWI between
15.75 and 25.43 with the maximum value (FR = 2.97) follow-up
by the lithological unit of Miocene continental deposits with (FR =
2.72), and the Flat Slope aspect (FR = 2.38). Among the greatest
values are also Clays and Sandstones of the Triassic period (FR =
1.83), NDVI class of Bare soil (FR = 1.73), Southwest slope aspect
(FR = 1.68), and located near to rivers (FR = 1.67). The lowest FR
values (Fr = 0) are found on Devonian Metamorphic limestone,
Jurassic Rhyolites, Pliocene Continental deposits (Lithology
factor), Forest land and water (LULC), and areas with high
NDVI values (>0.28). In addition, there is a negative
correlation observed for the TPI, distance to rivers, LS, distance
to roads, SPI, NDVI, and elevation factors. However, the
correlation is positive for TWI and drainage density. These
results show that topographical factors in addition to lithology
appear to have the major controlling effect on the initiation of
gullies in the region.

3.3 Fcators relative importance

The GECF importance was performed by applying the 3 ML
methods (RF, SVM and LR) (Figure 7). According to RF, the

primary factors responsible for gully formation are NDVI,
lithology, drainage density, LULC and SPI. Nonetheless, the least
significant are TPI, TWI, distance to faults and curvature factors.
According to the SVM results, the most significant factors are
rainfall, lithology, NDVI, drainage density, and SPI. Curvature,
distance to faults, and TWI are, however, the least significant.
According to LR findings, NDVI has the greatest influence on
gullies formation, followed by aspect, drainage density, distance
to rivers, lithology, slope, distance to roads, plan curvature,
convergence, rainfall, LULC, and SPI. All three methods
highlighted the fact that several factors types collectively
influence the development of gully erosion, namely,
anthropogenic (NDVI), geology (Lithology), topography (Aspect)
and hydrology (Drainage density).

3.4 Model performace evaluation

In this study, using three well-known ML models, we were able
to determine the effect of each category of causal factors on the
detection of areas susceptible to gully erosion. After analyzing the
input data, in particular the redundancy and multicollinearity of the
factors, the different performances and stabilities of the models were
tested by varying each time the categories of conditioning factors
involved in the modeling. Topographical factors (elevation,
convergence, aspect, slope, curvature, plan curvature, profile
curvature, TWI, TPI, and SPI), hydrological factors (drainage
density, distance to rivers), geological factors (distance to faults,
lithology), and anthropogenic influences (distance to roads, LULC,
and NDVI) are the four most important types of factors considered
in this study. As a result, five tests were conducted, and for each, one
category of factors was omitted to demonstrate its effect on the

FIGURE 5
Correlation matrix of causative factors. (A) Existence of significant correlations (B)Non-existence of significant correlations after removing 2 factors
(LS and TRI).
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model’s performance and stability: test 1 (all factors included), test 2
(excluding topographical factors), test 3 (excluding hydrological
factor), test 4 (excluding geological factor), and test 5 (excluding
geological factor) (excluding anthropogenic factors). The first test is
conducted with the set of variables as a reference to simplify
comparison. Five metrics were utilized to evaluate the
performance of various methods: ROC/AUC curve, Accuracy,
Sensitivity, Specificity, Kappa index, and Specificity (Figures 8, 9).

In general, the evaluated models exhibited above-average
precision (>80%) for success and prediction rate curves in all
assessments. Using training data, the RF results (Figures 8A,B)
reveal that including all factors in the analysis offers the greatest
results (AUC = 85.8%), followed by eliminating hydrological factors
(AUC = 83%). When anthropogenic effects are excluded, the AUC
falls to 81%. Using testing data, the greatest values (>88%) are seen

in the first two tests (1 and 2), but the RF performances are always
drastically reduced when anthropogenic influences are omitted
(81%). The results are nearly identical for the SVM model
(Figures 8C,D), as the best performance is found when all factors
are used in the modelling (85.2% in the training and 87% in the
testing), but in this instance, the lowest value is recorded when
geological (81.3%) and topographical (81.8%) factors are removed
for the training data, and geological (83.4%) and anthropogenic
(83.4%) factors are removed for the testing data. Finally, LR results
(Figures 8E,F) indicate that maximum performance is always
observed when all factors are considered (87.3% and 84.9% for
training and testing data respectively), and that these results decline
significantly when topographical (82.4% for training and 83.2% for
testing) and anthropogenic (83.9% for training and 81.5% for
testing) factors are excluded. In general, the results demonstrate

FIGURE 6
Results of FR statistic method.
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that the RF algorithm achieved efficient results utilizing the
validation data.

The comparison of ML models performance based on
Accuracy, AUC, Specificity, Sensitivity, and Kappa is presented
in Figure 9. The results clearly show that for training data, the LR
model is more stable during modeling, in fact after elimination of
anthropogenic and hydrological factors, accuracy and Kappa
remained stable (0.77 and 054 successively). On the other hand,
by eliminating topographical factors, specificity reached its
maximum value (0.80), while maximum sensitivity was achieved
by eliminating anthropogenic factors. More generally, the lowest
performance is observed when topographical factors are
eliminated, a fact that testifies to their importance in the
mountain environment under investigation. However, the
remaining models showed a more significant responsiveness to
the elimination of factors. Indeed, the accuracy for the RF and
SVM models decreased from 0.76 (RF) and 0.77 (SVM), when
considering all factors, to 0.75 (RF) and 0.73 (SVM) after
eliminating topographical, hydrological and geological factors,
and only 0.74 (RF) and 0.72 after eliminating anthropogenic
factors. Similarly, minimum specificity is found when
anthropogenic factors are not taken into account (0.72 for Rf
and 0.70 for SVM). For sensitivity, the SVM model shows a
remarkable decrease from 0.71 when considering all factors to
0.66 after excluding geological or topographical factors, and the
Kappa rises from 0.53 to 0.44 only when eliminating
anthropogenic factors.

Based on the testing data, the RF model performs remarkably
well compared to other models. The accuracy was close to 0.80 even
after eliminating topographical and geological factors, and the
specificity exceeded 0.86. Only anthropogenic factors had a major
impact on this performance, by reducing accuracy to 0.74, specificity
to 0.73 and Kappa to 0.49. However, the accuracy of the SVMmodel
is more sensitive to the elimination of topographical factors, since
the values decreased from 0.80 when considering all factors to

0.76 after eliminating geological, 0.75 hydrological,
0.74 anthropogenic and 0.70 topographical factors. Similarly, the
accuracy values of the LR model fell to 0.72 after excluding
topographical factors. We also note that the incorporation of
topographical factors in the analysis remains to have a significant
effect on modeling performance: for example, Kappa rises from
0.59 to 0.41 for SVM and from 0.53 to 0.44 for LR. In addition,
sensitivity drops from 0.80 to 0.71 for SVM and from 0.76 to 0.69 for
LR. Specificity drops from 0.78 to 0.70 and from 0.77 to 0.75 (for
SVM and LR consecutively).

3.5 Generating susceptibility maps using RF,
SVM, and LR models incorporating diverse
factors

The maps of GEV were produced by the 3 ML methods (RF,
SVM, and LR) in accordance with an approach designed to
illustrate the influence of various types of factors on the
modelling performance. Figures 10,11,12 show the GEV
maps generated using the 3 ML methods (RF, SVM, and LR).
The GEVM values were reclassified by the natural break (NB)
technique into five categories: very low, low, moderate, high and
very high. A higher index indicates that the location is greater
vulnerable to gully erosion. The NB method, is a simple
classification technique that defines the optimal distribution
of values across distinct classes, this method was used in the
classification of several environmental issues (Basofi et al., 2015;
Kamal et al., 2015; Fariza et al., 2017).

The RF model results (Figure 10) reveal that the low class
dominates the watershed area for four tests, including 25.24,
28.77, 24.42, and 22.83 percent of the total area for test 1, test 2,
test 4, and test 5, respectively. Only the third test reveals a
predominance of very low class (27.85%). However, the high
class occupies around 17% of the total area for tests 1, 4, and 5,

FIGURE 7
RF (A), SVM (B) and LR (C) analysis of the relative relevance of conditioning factors.
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16% for test 2, and 18% for test 5. Furthermore, the very high class
occupies 9.94% (test 1), 8.56% (test 2), 11.69% (test 3), 10.88% (test
4) and 11.11% (test 5) of the total area. The SVM results (Figure 11)
indicate that very low class predominates (31,76, 28,99, 30,19,
29,05 and 30,09% for tests 1, 2, 3, 4, and 5, respectively),

followed by low class (23,19, 25,46, 23,95, 20,71, and 20,95% for
tests 1, 2, 3, 4, and 5, respectively), moderate class (17,66% (test 1),
18,06% (test 2), 16,96% (test 3), 19,71% (test 4), and 18,24% (test 5),
high class 14,52% (test 1), 15,28% (test 2), 16,02% (test 3), 16,48%
(test 4), and 15,49% (test 5), and very high class reflect the lowest

FIGURE 8
Comparison of ML models performance based on Accuracy, AUC, Specificity, Sensitivity, and Kappa. ALLF: all factors incorporated; -TF: excluding
topographical factors; -HF: excluding hydrological factors; -GF: excluding geological factors; -AF: excluding anthropogenic factors.
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proportions by 12,87% (test 1), 12.21% (test 2), 12.88% (test 3),
14.04% (test 4), and 15.22% (test 5). Finally, the findings of the LR
method (Figure 12) indicate that the extremely low classes

predominate, accounting for more than 30 percent of the total
area for all tests, except for test 2 (28%). Moreover, only 13 to
14 percent of the overall watershed area is occupied by very high

FIGURE 9
Success and Prediction Rates of Different Models; (A) shows the success rate using the RF model, (C) shows the success rate using SVM, and (E)
shows the success rate using LR. Similarly, (B) depicts the prediction rate using the RF model, (D) shows the prediction rate using SVM, and (F) shows the
prediction rate using LR. Where ALLF: All factors incorporated; -TF: excluding topographical factors; -HF: Excluding hydrological factors; -GF: Excluding
geological factors; -AF: Excluding anthropogenic factors.
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class. Regarding the spatial distribution of vulnerability, all models
and exploration of various tests of factor categories indicate that the
most susceptible sites are situated in the watershed’s center and in
the western regions, whereas the upstream portions, particularly
those dominated by forests and dense vegetation, demonstrate the
least vulnerability.

4 Discussion

The fundamental purpose of this research is to evaluate the
efficiency of well-known ML methods (RF, SVM, and LR) in the
predicting GE vulnerability under various types of conditioning
factors in a semi-arid mountain environment. To accomplish
this, we used 191 inventories location of GE and several
categories of variables (20 factors) representing topographical,
hydrological, geological, and anthropogenic influences on the
formation and development of gullies have been examined. These
factors’ collinearity was confirmed using statistical measures,
specifically the VIF and the correlation matrix. As a result, in
order to avoid redundancy issues and improve the performance
of our models, we used the 18 factors in the final modeling phase.

In addition, it is necessary to evaluate the relevance of factors to
identify the most influential ones in gully formation. This enables
the consideration of only the most relevant variables and the
optimization of data processing effort. In this study, we used RF,
SVM, and LR models to identify the factors importance. The
results indicate that GE is primarily influenced by all kinds of
factors, particularly anthropogenic influences (NDVI), geological
factors (lithology), hydrological factors (drainage density and
distance to rivers), topographical factors (Aspect, Slope,
Elevation and SPI), and rainfall.

4.1 Geo-environmental factors
consideration

The most of previous research identified topography as the
fundamental determinant in the initiation and development of soil
erosion, especially in mountainous environments. Elevation, Slope,
Aspect, and SPI are identified as the four most influential
topographical variables on gully development in the region.
Indeed, altitudes below 1,000 m seem to be more subject to gully
erosion due to a preference for liquid precipitation over solid

FIGURE 10
RF model-generated maps of gully erosion vulnerability (GEVM). (A) test 1: all factors incorporated; (B) test 2: excluding topographical factors (-TF);
(C) excluding hydrological factors (-HF); (D) excluding geological factors (-GF); (E) excluding anthropogenic factors (-AF); and (F) Proportion of different
GEVM classes.
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precipitation at these low mountain altitudes. Comparable
conclusions were made by Amiri et al. (2019) (Arabameri et al.,
2019), who concluded that altitudes below 829 m were very
susceptible to GE in the Mazandran Province of Iran. The FR
results revealed that slopes inferior than 12° (as well as flates)
have been the most probable gully locations. In general, greater
soil depths characterize low slope locations (Zabihi et al., 2018),
ensuring the development of deeper gullies, which further grow due
to the increasing convergence of gullies downslope. Regarding slope
aspect categories, southwest and northwest-facing slopes are the
most susceptible to slope instability. This result is most likely
explained by the effect of raindrops coming from the West and
North-West most of the time (disturbance of Atlantic origin).
Regarding the SPI, its spatial correlation with the inventory of
gullies is really noticeable. This can be explained by the effect of
this factor on runoff, as regions with high SPI values have a high
concentration of runoff. The TWI index identifies regions where
rainwater is expected to accumulate due to drainage depressions,
then, TWI values are greater, the possibility of gullying increase
(Arunbose et al., 2021). This confirms that the formation of channels
and the development of gully tunnels is caused by a positive
correlation using FR method between TWI values and the
infiltration rate.

From a hydrological viewpoint, areas closer to a river are more
susceptible to gully formation. This research found that sites just
under 200 m from rivers were more prone to gully creation and
development. Numerous investigations have demonstrated similar
findings (Zabihi et al., 2018). Furthermore, Ollobarren Del Barrio
et al. (2018) established that moisture-related factors have a direct
impact on gully formation(Ollobarren Del Barrio et al., 2018). In this
regard, our research has highlighted the significance of drainage
density as a moisture-related factor by promoting the appearance of
gullies using the three methods of RF, SVM, and LR calculations. In
addition, using the potential erosion method (EPM), Oguchi, 1997
show that there is a high correlation between drainage density and
water erosion (Oguchi, 1997). In this case, and according to the
analysis of the five drainage density classes, there is a critical
minimum value (=0.82) above which the effect of gullies becomes
noticeable.

The vulnerability of gullies to erosion is controlled by the
lithological features of the subsoil, particularly in less developed
soil areas). Among the lithotypes most affected by gully formation
are clays and sandstones and continental deposits. These findings
could be interpreted by the erodibility of soil particles generated on
clays. This outcome is in line with previous results of (Ollobarren
Del Barrio et al., 2018) and Rahmati et al. (2017). In fact, when these

FIGURE 11
SVMmodel-generated maps of gully erosion vulnerability (GEVM). (A) test 1: all factors 721 incorporated; (B) test 2: excluding topographical factors
(-TF); (C) excluding hydrological factors (-HF); (D) 722 excluding geological factors (-GF); (E) excluding anthropogenic factors (-AF); and (F) Proportion of
different 723 GEVM classes.
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formations are exposed to heavy rains, which degrade their
structural stability, they become less compact and their cohesion
rapidly weakens. However, the extremely dense magmatic and
metamorphic formations mitigate the impact of surface processes
by delaying gully excavation.

The NDVI, LULC, and distance to roads factors demonstrate
that vegetation and human activities play a crucial impact in
preventing or promoting GE. In general, Bare land and thinly
vegetated places seem to be more likely to erode than woodlands,
where foliage cover considerably reduces surface erosive action
(Rahmati et al., 2017). The significance given here to the NDVI
factor, which emphasizes the density of vegetation, clearly
explains the high vulnerability obtained by the three models in
areas without vegetation (class of bare soil) and the lower
vulnerability limited to areas with more developed vegetation
(forest area) upstream of the basin. This is due to the protective
effect that the forest in particular and plants in general have on
the soil. These results corroborate to those of Bennett and Wells,
2019 and Garosi and al. (2018) (Garosi et al., 2018; Bennett and
Wells, 2019). Gully location was positively correlated with
distances less than 266 m from roads, indicating that road
construction operations and human activity in general have
a significant impact on GE (Rahmati et al., 2017). It should be

noted, however, that roads construction is often based on
topographical considerations in mountainous regions, as it
follows the valleys sculpted by rivers, which may result in a
positive correlation that is connected to the distance to rivers
rather than roads.

According to the literature review, extreme rainfall events
provide energy for gully development and result in increased
annual soil loss (Hamed et al., 2002). The annual rainfall
analysis in our case shows that there is no significant positive
correlation between rainfall and GE (FR method), which is due
probably to a lack of instantaneous rainfall data of which
extreme events are a major trigger, however, the effect is
more pronounced when calculating the importance,
indicating the significance of this factor in gully initiation,
particularly when using the LR method. The classes with
annual amounts between 323 and 413 mm were the most
likely to cause gullying, according to the correlation with the
spatial distribution of rainfall. This suggests that, while
precipitation is important in ravine development, might not
be the most key component. Similar findings have been
discovered in locations with very similar climates, with lower
precipitation values being positively correlated with gully
development (Rahmati et al., 2017).

FIGURE 12
LR model-generated maps of gully erosion vulnerability (GEVM). (A) test 1: all factors incorporated; (B) test 2: excluding topographical factors (-TF);
(C) excluding hydrological factors (-HF); (D) excluding geological factors (-GF); (E) excluding anthropogenic factors (-AF); and (F) Proportion of different
classes.
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4.2 Modelling performance

The performance ofmodelling was evaluated using variousmetrics
included ROC/AUC, Accuracy, Specificity, Sensitivity and Kappa
index (Figure 9). The finding indicate that the RF model performed
excellently in both training and testing dataset. In addition to this, the
models exhibit a significant degree of sensitivity to the categorization of
the factors. When training the model, the RF accuracy, AUC, and
Kappa index all decrease when geological components are eliminated
from the dataset; however, the specificity of the method is highly
sensitive to the presence of anthropogenic factors (from 0.75 to 0.72).
However, when tested, anthropogenic influences are found to have the
greatest effect. In addition to anthropogenic and topographic
influences, the performance of the SVM model is very sensitive to
hydrological parameters. During testing, the exclusion of these
variables significantly reduces the kappa index values from 0.59 to
0.50 and the sensitivity from 0.81 to 0.67. Despite the fact that it is least
efficient model, the LR model exhibits greater stability than the other
models, with the exception of topographical features that have a
modest influence on the performance. In general, the model RF
outperformed the other two models, the SVM and LR, in detecting
prone areas to GE. These findings are in line with previous GE
vulnerability assessment (Lee et al., 2007; Nicodemus, 2011), which
has shown the RF model to be a strong and successful model.
Additionally, RF’s predictive power in applications to some
environmental problems has been confirmed by numerous
scientists (Gomez and Kavzoglu, 2005; Pham et al., 2017; Shahab et
al., 2020; Segoni et al., 2020).

5 Conclusion

Considering the disastrous character of GE, scientists and
planners have concentrated on spatial vulnerability mapping and
risk analysis of this phenomenon. In this study, we used RF, SVM,
and LR methods for assessing the effect of geo-environmental
factors on GE and identifying vulnerable locations. Twenty gully
conditioning factors were used: elevation, slope, aspect, plan of
curvature, profile of curvature, convergence index, TWI, TPI,
precipitation, drainage density, distance to rivers, roads and
faults, lithology, land use, NDVI, curvature, SPI, TRI, and LS.
However, the prediction of GE using these models revealed that
utilizing all eighteen non-collinear variables provided the
maximum level of precision and performance. In terms of
model performance, it was found that RF and SVM have the
best performance compared to LR. In addition, approximately
10 percent of the study area, according to RF, and over
12 percent, according to SVM and LR, are extremely
vulnerable to GE and require immediate intervention.

In our case, the topographical, geological, and anthropogenic
factors have the most influence on the detection precision of
vulnerable areas. Thus, this complex phenomenon is more
frequently influenced by topographical factors like SPI, Aspect, and
slope. However, when anthropogenic variables are considered, NDVI
takes priority over the other factors. Additionally, lithology has a

significant impact on where vulnerable areas are located. These
findings add significantly to our understanding of soil erosion in
mountainous regions generally and in the Mediterranean context
specifically. Finally, the results show that it is preferable to incorporate
the maximum of factors and to take into account each type when
modelling gully erosion, especially in the mountainous region.
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