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There is a growing urgency to discover better materials that capture CO2 from
air and improve battery performance. An important step is to search large
databases of materials properties to find examples that resemble known
carbon capture agents or electrolytes and then test them for effectiveness.
This paper describes novel computational tools for accelerated discovery of
solvents, nano-porous materials, and electrolytes. These tools have produced
interesting results so far, such as the identification of a relatively isolated
location in amine configuration space for the solvents with known carbon
capture use, and the demonstration of an end-to-end simulation and process
model for carbon capture in MOFs.

KEYWORDS

carbon capture, chemical informatics, amines, computational chemistry, nanoporous
materials, electrolytes

1 Introduction

An essential part of climate change mitigation is CO2 capture from ambient air (Lackner
et al., 1999; Keith et al., 2006; Budinis et al., 2020; Shi et al., 2020). Capture from power plants
is important too (Adams, 2010; Songolzadeh et al., 2014; Bhattacharyya and Miller, 2017;
Jiang et al., 2019; Chao et al., 2020) if the global conversion from fossil fuels to renewable
energy is slow (Tong et al., 2019). CO2 capture involves separation from other gases, which
takes energy for the reduction of entropy (Lackner, 2013; Castel and Favre, 2018) regardless
of the mechanism, and it involves material that attracts CO2 more the other gases, or
selectively filters it out, and additional energy in the final stages of compression and long-
term storage, which is presumably underground (Rubin et al., 2015; Bui et al., 2018; Daniel
et al., 2022).

The cost of CO2 separation is a key reason there are so few capture sites today. According
to Steyn et al. (2022), there are only 30 operational sites worldwide, 11 under construction
and 153 planned as of 2022, compared to ~2,700 coal and ~4,000 natural gas power plants in
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the world, as listed in the World Resources Institute Global Power
Plant Database1. There is a far smaller number of sites
experimenting with direct air capture, e.g., by Climeworks2 and
Carbon Engineering3. Cost reduction from better CO2 capture
materials is essential to global scale-out, and this means better
materials with higher CO2/N2 selectivities and higher volumetric
rates for capture and release.

Electrifying transportation systems to reduce our dependence on
fossil fuels is another critical priority to address climate change.
More powerful and affordable batteries are key to accelerate the
adoption of zero-emission electric vehicles. Current battery
technologies need to seek ecofriendly and cost-effective materials
that demonstrate high energy density, power density, and longer
cycle life, which calls for targeted material discovery and innovation.

Electrolytes are one of the most primary aspects of batteries as
they have a strong influence on safety and performance, including
rate kinetics and cycle life. Most battery failures are due to electrolyte
decomposition or unstable interfaces between the electrolyte and the
electrodes. Electrode dissolution and the formation of dendrites on
lithiummetal electrodes are problems for future battery technologies
that could be addressed with adequate selection of electrolytes. As
battery technologies are undergoing continuous innovation, the
primary challenges are associated with the discovery and
selection of electrolytes with overall high-performance, long-term
stability, low-cost, and safety.

The goal of IBM’s MDLab is to accelerate discovery of better
materials for targeted applications. MDLab contains chemical,
topological, and structural informatics and simulation tools that
allow rapid screening of solvents, electrolytes, and nano-porous
solids using large databases. This review summarizes MDLab. More
detailed publications are inMcDonagh et al. (2022, 2023), Neumann
et al. (2022), and Sharma et al. (2023).

2 Materials and methods

2.1 Liquid solvents

The most mature technology for CO2 capture is absorption by
amines, such as monoethanolamine (MEA) in water (Rochelle, 2009;
Luis, 2016; Bernhardsen and Knuutila, 2017; Wu et al., 2020).
Proprietary solvents4, water-lean solvents (Jiang et al., 2023), and
ionic liquids (Wang et al., 2011; Ramdin et al., 2012; Mota-Lima
et al., 2021) are also in use. Chemical Informatics techniques have
been applied to search for better solvents before (Li et al., 2014;
Papadopoulos et al., 2016; Yang et al., 2017; Puxty and Maeder,
2020; Orlov et al., 2022).

For our analysis, MDLab begins with an identification of the
most important and relevant structural characteristics of the known
solvents and uses these to identify other molecules that may show

promise for carbon capture. We identified 167 unique amines with
CO2 capture properties in the literature (McDonagh et al., 2022) and
extracted string representations of these molecules from PubChem
(Kim et al., 2021) and ChemSpider (Pence and Williams, 2010).
From this set of molecules, we carried out a chemical space analysis
(McDonagh et al., 2022). This analysis applied tools from chemical
informatics, such as sub-structure searching with RDKit (Rational
Discovery Kit, Landrum, 2014) and topological data analysis
(Wasserman, 2018; Zhou et al., 2021), to identify similarities and
differences in the molecular graphs of carbon capture amines
compared to a set of 20,938 commercially available amines from
the ZINC database (Irwin et al., 2012). From this analysis we
identified 72 structural features, which we codified as a binary
chemical “CCS” fingerprint related to the capability of a molecule
to act as a carbon capture solvent. The code to generate these
fingerprints can be accessed at github5. Datasets references in this
paper are listed in Table 1.

Noting that information on carbon capture amines was sparse in
the literature, we generated a new dataset from a single experimental
source. We applied computational methods to select molecules that
make up this data set and predict molecular performances for
carbon capture. The data set is 130 molecules in total. We have
provided these data to the community with the molecules
represented by IUPAC (International Union of Pure and Applied
Chemistry) name, InChI (International Chemical Identifier),
InChIKey (a 27 character digital representation of the InChI)
and SMILES (Simplified Molecular-Input Line-Entry System),
making the set amenable to chemical informatics modelling. This
dataset can be found at Zenodo6.

We further utilized our CCS fingerprint as a representation for
Machine Learning (ML) models. To do this, we separated our data
into binary classes and trained models to predict whether the
molecules are promising or not. The concept here is to provide a
high throughput virtual screen that enables prioritization of
molecules for experimental tests. We trialed a range of ML
models that are computationally inexpensive to train and are in
widely available Python packages such as scikit-learn and xgboost.
Promising performance was found with the Extra Trees Classifier
(Geurts et al., 2006), the Ada Boost Classifier (Freund and Schapire,
1997; Hastie et al., 2009), Logistic regression (Yu et al., 2011; Defazio
et al., 2014; Schmidt et al., 2017) and the Gaussian Process Classifier
(Williams and Rasmussen, 2006). We judged the ability of these
classifiers using a range of metrics including overall accuracy and the
accuracy of classification of the positive and negative classes
separately. Our initial work compares the performance of the
CCS fingerprint to other commonly applied fingerprints such as
MACCS keys (Molecular ACCess System; Durant et al., 2002) and
2D chemical descriptors from the Mordred engine (Moriwaki et al.,
2018). Our most recent work outlines a combined computational
and experimental discovery cycle that identifies several new
candidate molecules (McDonagh et al., 2023; private comm). The
development of these methods is shown in McDonagh et al. (2022).

1 https://datasets.wri.org/dataset/globalpowerplantdatabase (accessed Feb.
5, 2023).

2 https://climeworks.com/roadmap/orca

3 https://carbonengineering.com/

4 https://en.wikipedia.org/wiki/Rectisol, https://en.wikipedia.org/wiki/Selexol,
https://chempedia.info/info/fluor_solvent_process/

5 https://github.com/IBM/Carbon-capture-fingerprint-generation

6 https://zenodo.org/record/7828286
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2.2 Solid sorbents

Nano-porous solids are another class ofmaterials that capture CO2,
mostly by physisorption (Oschatz and Antonietti, 2018; Khandaker
et al., 2020) but also by chemisorption if the surfaces are coated with
reactants like amines (Emerson et al., 2018). Nano-porous solids
include zeolites, metal-organic frameworks (MOF), covalent-organic
frameworks (COF), zeolitic imidazolate frameworks (ZIF), and porous
polymer networks (PPN), among other things. There are many
varieties of these materials, both hypothetical and real, amounting
to 105–106 of them in databases (Moghadam et al., 2017; Boyd et al.,
2019) that allow machine learning tools for screening (Wilmer et al.,
2012a). The MDLab results reported here use three materials from the
database CoRE MOF 2014 (Computation-Ready, Experimental
Metal–Organic Frameworks; Chung et al., 2014), and place these
data, the screening workflows, and a Jupyter Lab interface in
containers on a cloud-based computer cluster (Neumann et al.,
2022) to facilitate user interaction and workload management. A
more extensive study than what is reported here is in Oliveira et al.
(2023).

The screening workflow starts by querying the database for a
material or class of materials to get the corresponding
Crystallographic Information File (CIF) files. These files are input
to applications like Zeo++ (Willems et al., 2012) and RASPA
(Dubbeldam et al., 2016), which return geometric and molecular
adsorption figures-of-merit. From the material structure, several
geometric properties are calculated, such as accessible and non-
accessible surface area, volume, and volume fraction, along with

density, and the diameters of the largest free sphere, the largest
included sphere, and the largest included sphere along a free path.
The code used to generate the geometric figures-of-merit can be
accessed at GitHub7. Figure 1 illustrates these diameters.

The CIF file for the unit cell is also used to calculate partial
atomic charges in the method of EQeq (Wilmer et al., 2012b), which
is saved as a new CIF file for input to RASPA to calculate an energy
grid for CO2, N2 and H2O molecules (Luan et al., 2022). With this
energy grid, several Grand Canonical Monte Carlo (GCMC)
simulations are run for 10,000 cycles, one for each temperature
and pressure under consideration. The result, added to the database,
is molecular uptake capacity as a function of pressure at each
temperature, i.e., the standard isotherm for adsorption. The code
used to generate the adsorption figures-of-merit can be accessed at
GitHub8. A schematic of the GCMC method is shown in Figure 2.

Adsorption properties were determined from a time-dependent,
one-dimensional dynamic model (see Eq. 1) in which multi-
component gas enters one end of an adsorption bed and exits
the other end. The bed model was run with solid adsorption

TABLE 1 Datasets for solvents and nanoporous solids used for this study.

Dataset Description Location Reference

CoRE MOF 2014 4764 MOF structures Database freely available: http://dx.doi.org/10.11578/1118280 Chung et al., 2014

ZINC 20 million commercially available molecules Database freely available: https://zinc.docking.org/ Irwin et al., 2012

CCS 130 amines with carbon capture measurements Data freely available: https://doi:10.5281/zenodo.8193073 McDonagh et al., 2022

FIGURE 1
Geometric figures-of-merit overlaid on a sample crystal
structure (from Neumann et al., 2022).

FIGURE 2
Grand Canonical Monte Carlo method showing molecule
insertion (red), deletion (green), translation (blue), rotation (purple) and
swap (yellow) moves, where the acceptance of these moves depends
on the system energy variation (from Neumann et al., 2022).

7 https://github.com/st4sd/nanopore-geometry-experiment

8 https://github.com/st4sd/nanopore-adsorption-experiment
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capacity (qi) and gas concentration (cg,i) for component i as a
function of time (t) and space (x,z) using the molecular-level
adsorption isotherms as input to model the uptake as a function of
temperature. The axial dispersion coefficient is represented by Dax, the
gas interstitial velocity by ug, the density of the solid by ρs and the bed
void fraction by ε. Themodel assumed local equilibriumbetween gas and
solid phases from the GCMC results, and at the end of the absorption
bed recorded the CO2 purity and recovery fraction, the specific energy
consumption in units ofMJ per kgCO2, and the volumetric productivity,
in units of kg CO2 per day per Liter of sorbent. The result was a rank
ordering of nano-porous solids for CO2 separation. Water was assumed
to be an equal contaminant for all the sorbents and to not affect the rank
order. Thus, water was not included in the input stream, whichwas 4.1%
CO2 and the restN2, but is assumed to be adsorbedwith the same affinity
as CO2. Although this simplification neglects the relative water affinity
between materials, it does capture the competitive nature of CO2 and
H2O adsorption, which affects the final CO2 capacity metrics. See
Neumann et al. (2022) for details.

∂cg,i
∂t

� Dax
∂2cg,i
∂x2

− ∂ cg,iug( )
∂z

− 1 − ϵ( )ρs
ϵ

∂qi
∂t

(1)

2.3 Electrolytes

Liquid electrolytes in modern energy storage devices typically
contain one or more organic solvents, one or more inorganic salts,
and may also include supplementary additives (Jie et al., 2020).
Discovery of electrolyte constituents for new battery technologies
using advanced computational techniques has been a key research
topic. Accelerated electrolyte discovery workflow by JCESR (Joint
Center for Energy Storage Research; Qu et al., 2015; Cheng et al.,
2015) directs the selection of electrolyte constituents by a high-
throughput screening process that focusses on a set of essential
domain properties such as stability in an electrochemical window,
solubility of salts, and ionic conductivities (Cheng et al., 2015).

However, the subsequent development of optimum electrolyte
compositions usually requires extensive experimental follow-up
because the problem has a large chemical space (Benayad et al.,
2022). Our electrolyte discovery framework extends beyond the
computational funneling of electrolyte molecules and incorporates
advanced deep learning models to optimize the composition of new
electrolytes for improved battery performance. Our simulation-AI
experiment synergistic framework for battery electrolyte discovery
emphasizes the three aspects shown in Figure 3: (a) identification of
component molecules, (b) optimization of electrolyte formulations,
and (c) in silico characterization of the solid electrolyte interface.

The electrolyte discovery toolkit stack consists of AI and simulation
modules that facilitate constituent-to-performance and end-to-end
application of the battery electrolyte discovery framework. IBM’s AI
enriched simulation workflow (Vassiliadis et al., 2022), which enables
high throughput computation of molecular properties, allows screening
of electrolyte constituents with desirable properties for targeted battery
chemistries. In subsequent discovery steps, we utilize a formulation-
based deep learning prediction model to shortlist electrolyte
compositions made of candidates that predictively demonstrate
target performance (Sharma et al., 2023). These models are infused
with domain physical-chemical knowledge and are trained on a small
set of data (representing electrolyte formulations and their battery
performances – about 100 data points). Here we demonstrate the use-
case of the AImodels for discovering new electrolyte solvent candidates
for the oxygen-assisted lithium Iodine (OALI) battery we have recently
developed (Giammona et al., 2023).

3 Results

3.1 Liquid solvents

3.1.1 Molecular similarities
Using the 72 component CCS fingerprint, we compared the

structures of the 167 amines which had been reported in the

FIGURE 3
IBM’s accelerated electrolyte discovery workflow emphasizing constituent-to-performance and end-to-end electrolyte discovery using a stack of
computational tools.
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literature with carbon capture performance information, to the
structures of 20,938 amines in a sub-set of the ZINC database.
The fractional occurrences of each of the 72 sub-structure graphs in
the two datasets are compared in Figure 4.We see from Figure 4 that,
despite the differences in size of the data sets, on normalized axes
there are some chemical functionalities that stand out as over or
under-represented in the carbon capture molecules (shown in blue)
and the background commercially available amines (shown in red).
For example, we see carbonyl and halocarbons are common among
the background group but very uncommon in the carbon capture
group. This figure gives us an indication of the organic molecule
functionalities that have been associated with carbon capture
solvents. It suggests the functionalities common in the
background group and uncommon in the carbon capture group
are either untested or unreported for carbon capture or may lead to
poor carbon capture performance in these solvent molecules. In
either case this helps us determine the chemical space for innovation
in these solvents, either to target the underexplored functionalities
or exploit the known groups which have led to promising carbon
capture performance already.

Figure 5 shows the chemical space using Tree Map (TMAP).
TMAP is a computationally efficient method to analyze and
visualize chemical spaces of large datasets. Here we have
represented the molecules using MHFP6 (MinHash fingerprint,
up to six bonds) fingerprints. TMAP uses these fingerprints to
index the molecules and generate an undirected c-approximate
k-nearest neighbor graph. A Minimum Spanning Tree (MST) is
constructed upon this graph. A projection of this MST is plotted in
the figure. The molecules come from a sub-set of the ZINC database,
plus the 167 amines we identified as having been tested for carbon
capture in the literature, and the 130-molecule dataset generated in
McDonagh et al. (2022).

Figure 5 suggests that only a sub-space of the amine chemical
space has published carbon capture metrics despite the wider
chemical space being commercially available. Figure 5B highlights
that the tested molecules broadly exist in one branch of the chemical
space depicted here. That branch is dominated by molecules with
more than one nitrogen atom, such as primary, secondary, tertiary,
or poly-amines. However, there are many other branches dominated
by these functionalities, as shown in Figure 5A, but molecules which
make up these other branches have not been reported in terms of
their carbon capture capabilities to our knowledge. This hints at a
potential for innovation in the wider amine chemical space.
Alternatively, some essential features of the known capture
amines may not be captured by the MHFP6 fingerprints, as
would be the case for any dimensionality reduction. Work in
McDonagh et al. (2022), shows an additional detailed analysis of
these chemical spaces.

3.1.2 Classifying molecules based on CO2

absorption capacity
We also looked for correlations between molecular graphs and

CO2 absorption capacity. 98 molecules with known absorption
capacity were divided into those with high (Class 1) and low
(Class 0) capacities. This ranking took into account that primary
and secondary amines have a theoretical capacity of one-half CO2

per amine group, while tertiary amines have a theoretical capacity of
one CO2 per amine group. Because the sample had an imbalance of
high and low-capacity molecules (27 vs. 71, resp.), additional
sampling points were created for the high-absorption class using
the Synthetic Minority Over-Sampling Technique (Smote, Chawla
et al., 2002). In this method, the neighborhood of each high-capacity
molecule was searched for its five nearest other high-capacity
molecules, and one of these other molecules was selected
randomly. A synthetic molecule to supplement the minority
group was then inserted into the sample, having properties
represented by a point on the inter-connecting line between the
two molecules in the feature graph. After this additional sampling,
the study contained the original 98 molecules and an additional
44 synthetic molecules with theoretically high capacities, making the
high and low-capacity samples equal in size.

Machine Learning models were constructed based on carbon
capture capacity and molecular features from the Mordred
descriptor engine, MACCS fingerprints, and CCS fingerprints.
The ML models generated are based on Ada Boost, logistic
regression, and Gaussian Process classification methods. All
descriptors made relatively good classifications for all models,
with >70% accuracy. The use of the CCS fingerprint extended

FIGURE 4
Fingerprint comparisons over two amine data sets consisting of
20,938 commercially available amines and a combination of 167 with
carbon capture properties in the literature and 130 that have been
tested in our own lab (from McDonagh et al., 2022).
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this accuracy to >80% for all models. This result suggests that
common, shallow-learning algorithms can predict the classes of
both high and low absorption capacities reasonably accurately. The
best predictor used the CCS fingerprint and the logistic regression
classifier, which predicted the high absorber class with 70% accuracy
and the low absorber class with 89% accuracy.

We evaluated the feature importance of the logistic regression
model built on the CCS fingerprint features. Figure 6 provides a plot of
the feature importance based on the values of the logistic regression
coefficients. We have highlighted the five features with the largest
coefficients as the most important. It is important not to over-interpret
these values. The model is purely statistical and there is no underlying
theory to justify the reason for these features’ importance. However, we
can see logic in the majority of the most important features. Three of
the features reference aspects of the nitrogen atoms’ environments.
Another references the presence of alcohol functionalities. The
presence of the butyl chain is difficult to justify chemically but may
suggest some size criterion. In McDonagh et al. (2022) we provide
feature importance analysis for all feature sets using the logistic
regression models. We have additionally explored SHAP analyses
(SHapley Additive exPlanations; Lundberg and Lee, 2017) for these
classifiers. We provide this analysis in the Supporting Material of
McDonagh et al. (2022). The SHAP analysis is a finer grained method
to evaluate the impact of different features on the ML models.

These studies from MDLab suggest that liquid amine solvents
which show a high capacity for carbon capture are somewhat
isolated in chemical space, but they do have commercially
available neighbors in this space that may be candidates for new
CO2 capture materials or additives to blends. The molecular
component analyses combined with chemical space also

highlights certain chemical groups that are relatively less
common in carbon capture materials, although they could still be
found important in some untested molecules.

3.2 Solid sorbents

Grand Canonical Monte Carlo simulations were used to
calculate isotherms for adsorption of CO2, N2, and H2O in three
nano-porous materials, HKUST-1, Mg-MOF74, and ZIF-8.

The isotherms were calculated for single component adsorptions
and fit to multi-component Langmuir models, as in Eqs 2, 3. Here,
ΔHi,k and ΔSi,k are enthalpy and entropy of adsorption for species i
on site k, qsat,k is the saturation capacity of site k, independent of
species, pi is the partial pressure of species i, T is the temperature and
R is the gas constant. The fits were used to determine the enthalpy of
adsorption, which was then used in the dynamic adsorption model
to determine optimum process cycle times and the corresponding
purity and recovery fractions of CO2 at the output, along with the
energy requirements and volumetric rates.

qeq,i � ∑3

k�1
qsat,kbi,kpi

1 + bi,kpi
(2)

bi,k � e− ΔHi,k−TΔSi,k( )/RT (3)
The results for Mg-MOF-74 are shown in Figure 7. The

molecular structure is on the left, the GCMC isotherms with
multi-component Langmuir fits are in the middle (the fit is
better for CO2 and N2 than for H2O, not shown). On the right is
the calculated purity versus recovery fraction for CO2.

FIGURE 5
TMAP representation of chemical space. (A) is colored by the type of nitrogen environment present in the molecule. (B) is colored by the dataset,
i.e., whether the molecule is part of the commercially available sub-set of amines from the ZINC database or from the set of molecules with published
carbon capture metrics.
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The process model shows residual H2O at the end of the
desorption cycle for Mg-MOF-74 because of the high affinity for
both CO2 and H2O. Nevertheless, the CO2 adsorbed and desorbed
for Mg-MOF-74 is much higher than for the others, amounting to
about 1.19 kg CO2 per day per liter of sorbent at 95% purity for Mg-
MOF-74 compared to 0.41 and 0.21 kg CO2 per day per liter for
HKUST-1 and ZIF-8, respectively. The specific energy is also much
less for Mg-MOF-74: 11.7 MJ/kg compared to 79.1 MJ/kg and
196.4 MJ/kg for HKUST-1 and ZIF-8, again at 95% purity.
Figure 7 also shows higher recovery fractions for Mg-MOF-74.
These trends are in agreement with literature expectations for
dry CO2/N2 separation (Liu et al., 2012).

3.3 Battery electrolytes

Next-generation batteries based on lithium (Li) metal anodes
typically use ether-based electrolytes due to their outstanding
compatibility with Li metal. Our OALI battery uses an electrolyte
based on 1,3-dioxalane (DOL) and 1,2-dimethoxyethane (DME)
mixed solvent system that contains two or more inorganic lithium
salts such as lithium bis (trifluoromethyl) sulfonylimide (LiTFSI)
and lithium nitrate (LiNO3) (Giammona et al., 2023). While the
OALI battery utilizing this DOL/DME-based electrolyte has shown
excellent rate capability (<50 mA/cm2) and areal capacity
(>12 mAh/cm2), there is room for further enhancing cyclic
stability, especially at higher active cathode loading (>60 w/w%).
To achieve this improvement, a superior electrolyte design is a must.

For discovering a high-performance electrolyte, we begin by
screening solvent candidates based on key properties such as low
molecular weight (molecules containing <20 non-H atoms),
commercial availability, toxicity, thermal properties, salt
solubilities and electrochemical stability toward Li metal. Low
molecular weight solvents would form a favorable solvation
structure with Li ions, facilitating efficient ionic transport. Special
emphasis is given to hazard labels and thermal properties of solvents
to avoid any “regrettable” substitution in terms of sustainability. For
thermal properties such as boiling point (b.p.), flash point (f.p.), and
melting point (m.p.), a three tier criteria is defined as described in
Figure 8A to make an informed decision for solvent selection.

United States Environmental Protection Agency (EPA) has
established a Program for Assisting the Replacement of Industrial
Solvent (PARIS-III) tool and a database which contains
approximately 4,000 commercially available solvents that have
low environmental impact (Harten et al., 2014). PARIS-III
database solvents were extracted, followed by screening using
data mining and simulation toolkits. It is important to highlight
here that criteria priority in the down selecting process can impact
the resulting outcomes. Here, we demonstrate the advantage of
using simulation and AI synergistic workflows to discover new
mixed materials such as electrolytes for batteries by following
two screening Routes (Figure 9): Route-1 demonstrates
application of simulation toolkits for quick screening of
molecular candidates with target properties; and Route-2 shows
that machine learning models trained with battery electrolyte
datasets can better assist in selecting molecules for formulation
by considering complex interactions between all its constituent
components rather than their individual behavior.

In Route-1 screening, we first screened 2,871 solvents based on
their molecular weight (<20 non-H atoms) from the PARIS-III
dataset. Extracting thermal properties like boiling point (b.p.), flash
point (f.p.), and melting point (m.p.) from PUBCHEM using API,
we further down selected solvents to 107 count in Tier-3 criteria
(b.p. > 50°C; f.p. > 30°C; m.p. < 0°C). Next, we deployed virtual
experiments based on Density Functional Theory (DFT) to calculate
energy levels (HOMO-LUMO levels) of shortlisted solvents and
their solvation free energy for primary salts in electrolyte (LiNO3,
LiI and LiBOB) using GAMESS software with functional B3LYP and
basis set 6–311 G (d,p). For electrochemical stability toward Li
metal, solvent LUMO level should be higher than Li/Li +
potential. LUMO of DOL and DME are only slightly above Li/
Li + potential and are therefore used as comparative standard for
current simulation dataset. Solubility trends from the solvation
simulations were validated experimentally using a high

FIGURE 6
Feature importance values for each element of the CCS
fingerprint from logistic regression classifier (from McDonagh et al.,
2022).
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throughput solubility assessment setup as shown in Figure 8B.
Passing through these screening steps, the potential electrolyte
solvent candidates were further narrowed down to 4 solvents:
tetraglyme, diglyme, 1,4-dioxane and tetrahydrofuran.
LiNO3 solubility was the major limiting factor in the down
selection process. For experimental validation, all 4 solvents were
tested as solvents and co-solvents for OALI electrolytes in coin cells.

Among them, tetraglyme (TG) mixed with DOL demonstrated the
best cycling stability at 60 wt% active cathode loading, however, the
specific capacity decreased by 10% in comparison with the
previously reported value (Giammona et al., 2023).

We next developed a deep learning model to map molecular
structures, compositions of constituent molecules, to battery
performance such as specific capacity and Coulombic efficiency
(Sharma et al., 2023). As mentioned in the experimental section, the
model was trained with the dataset of OALI battery’s electrolyte
formulations and their corresponding battery performance, which
was generated in our lab. The trained model was used to screen
solvent candidates in Route-2 based on the specific capacity
prediction of electrolyte formulations. As a result, 32 solvents
emerged as potential high performing electrolyte solvents from
PARIS-III dataset. The solvents were now further shortlisted based
on electrochemical stability over Li metal and thermal properties.
Upon further testing in the lab, the results showed that adding 3-
Methoxybutyraldehyde dimethyl acetal (MBDA) as a co-solvent to the
DOL:TG system enhances the specific capacity to the highest value (ca.
148 mAh/g) that was observed by DOE:DME system, while
demonstrating even longer cycling stability (>250 cycles). Meanwhile,
this new electrolyte system (DOL:TG:MBDA) exhibits better safely
quotient than DOL:DME system since both TG and MBDA have
higher flash points thanDME (f.p. = 136°C, 46°C and 21°C, respectively).

4 Discussion

MDLab is a toolkit for screening and simulating liquid solvents,
solid adsorbents, and electrolytes. This paper summarizes some the
methods and preliminary results from our initial use of these tools.

The chemical space of carbon capture amines was compared
with that of commercially available amines using several molecular
descriptors or fingerprints. The capture amines were found to
inhabit the periphery of the chemical space with few neighbors,
although there are some neighbors that are close enough to warrant
lab analyses. Conversely, there are chemical functional groups in
amines that are relatively less common in CO2 absorbers, suggesting
possible inhibition or incomplete testing in the larger sample.

FIGURE 7
Sample results for Mg-MOF-74, with the molecular structure on the left, the CO2 isotherms from multi-component Langmuir fits to the GCGC
calculations in the middle (points are the GCMC results) and the Pareto-optimal purity versus recovery fraction of CO2 from a one-dimensional process
model on the right, compared to other adsorbers (from Neumann et al., 2022).

FIGURE 8
(A) Thermal properties extracted from PUBCHEM database for
solvents as per three Tiers based on boiling point, flash point and
melting point. (B) Solubility trends from solvation simulations for
LiNO3 salt validated using high throughput solubility assessment
tool experimentally (shown in figure inset).
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MDLab also contains an end-to-end computational screening
framework for solid sorbents that capture CO2, as tested on three
well-known porous materials, Mg-MOF-74, HKUST-1, and ZIF-8.
Monte Carlo Molecular Dynamics simulations were used to
determine single-component isotherms, which were then
combined into multi-component Langmuir models. These
models were then used in a one-dimensional process simulator
that calculates the adsorption of CO2 and N2 as functions of time
and position. The results allowed a ranking of the material in terms
of CO2 purity, recovery fraction, and average adsorption rate per
liter of sorbent under optimal conditions. Mg-MOF-74 was found
to be better than the other two in these important figures of merit,
in agreement with expectations from the literature.

Screening and simulation workflows were used to downselect
new solvents to achieve long cycling stability in next-generation
OALI battery with high active cathode loading. This was followed
by AI-assisted screening of formulation constituents using
formulation models pre-trained with OALI battery data. The
resulting new electrolyte solvent system (DOL:TG:MBDA)
demonstrated longer cycling stability (>250 cycles) while
maintaining high capacity (150 mAh/g) for high active cathode
material loading. Additionally, new solvents have higher flash
points and therefore have better safely and sustainability
quotient than conventional electrolytes system. These results are
excellent examples of how simulation and AI synergistic workflows
can be used to discover new materials for complex systems like
batteries. While simulation toolkits allow quick screening of
molecular candidates with target properties, machine learning
models can better assist in selecting molecules for mixed
materials like formulation. With the right approach,
formulation models trained with electrolyte data consider
complex interactions between all its constituent components
rather than their individual behaviors.

We encourage the carbon capture community to make more
laboratory data available in machine readable form, even the null
results. Combining computational and experimental work with
machine learning tools can lead to significant insight. The
computation can screen and rank materials for further lab
studies, and the lab results can fine-tune the screening for better
predictions in the next step. This is a proven model for “Accelerated
Discovery” that requires as a first step the availability of data and a
suite of material descriptors that can be combined with machine
learning tools.
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