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Introduction: Precipitation in the upstream region of the Heihe River basin (UHRB)
in the northeastern of the Tibetan Plateau, which is the main water source of the
basin, has undergone drastic changes in extreme climate events in recent
decades. In addition to the amount of precipitation, the type of precipitation
has a substantial impact on hydrological processes.

Methods: In this study, we compared the results from three methods aimed at
improving precipitation type estimation based on daily precipitation type records
for 24 discontinuous years. Based on the precipitation type distinction, we
examined the spatial and temporal changes in the total precipitation, rainfall,
snowfall and air temperature at the six stations as well as the spatial average of the
UHRB during the past 62 years. We also analyzed changes in the quantity, duration
magnitude, and frequency of extreme precipitation using the RClimDex model
and statistical analysis.

Results: The probability of detection value of the T3.6_4.5 method was 1.9%,
indicating the estimation was closest to actual records. The analyses based on
precipitation type diving showed that rainfall accounts for an average of 81.9% of
the total precipitation received in a year. In the context of large scale climate
warming, temperatures at all six stations increased significantly, but precipitation
changes were only apparent at about half of the stations which were located in
regions of higher elevation and influenced by both ENSO and the East Asian
monsoon. Analysis of the spatial averages in the UHRB revealed that the annual
drought events (CDD) were significantly alleviated, and that the growing season
length (GSL) was significantly extended. The annual total precipitation, rainfall, and
extreme precipitation indices (P99P, P95P, R95P, and SDII) increased in
magnitude, and the frequency of extreme precipitation events (P10mm) also
significantly increased.

Discussion: The findings of this study indicate that under the background of
climate warming, the changes of precipitation patterns in the UHRB which may
have resulted in bringing better vegetation growth, but also the increasingly
frequent extreme rainfall events may pose challenges to growing extreme
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rainfall events to agriculture and other human activities in local and downstream
areas.
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1 Introduction

The Tibetan Plateau (TP), also known as the “Third Pole” and the
“Asian Water Tower”, plays a crucial role in water resource
management and disaster mitigation. The acceleration of the
hydrological cycle caused by global warming has led to an increase
in extreme weather events including floods, droughts, and icefalls (Piao
et al., 2010; Yao et al., 2019; Bai et al., 2023). Recent studies have
reported an increase in the frequency and magnitude of extreme
weather events on the TP and in other parts of the world in recent
decades (Zhai et al., 2005; Wang et al., 2008; Tabari, 2020). Climate
warming on the TP is occurring at a rate almost triple the global average
(Qiu, 2008), making extreme weather events a topic of great concern
(You et al., 2008; Xiong et al., 2019; He et al., 2021). Not only rainfall
amount, but also rainfall intensity, including rainfall magnitude,
frequency, and rainfall erosivity, are correlated with hazards such as
soil erosion, landslides, and floods (Panagos et al., 2015). Extreme
rainfall events are of particular concern because of their significant
economic and societal impacts.

The RClimDex model is increasingly used to analyze extreme
weather events worldwide (Xiong et al., 2019; Fathian et al., 2020;
Cheng et al., 2022; Wubaye et al., 2023; Yang et al., 2023). This
model calculates climate indices defined by the Expert Team on
Climate Change Detection and Indices (ETCCDI) (Karl and

Easterling, 1999) based on daily precipitation, daily maximum,
minimum, and mean temperatures.

However, the RClimDex model does not distinguish between
different types of precipitation. Rainfall and snowfall are different
hydrological processes that may lead to different runoff processes
(Zhang et al., 2020), soil erosion processes (Zhang et al., 2022), and
different types of disasters. Luo et al. (2020) compared five kinds of
methods used to differentiate precipitation types, namely, the daily
average surface air temperature, wet-bulb temperature, dynamic
threshold temperature, surface ground temperature, and
700–850 hPa thickness at 836 stations in China and found that
the threshold temperature method demonstrated the best
performance. Chen et al. (2014) also concluded that the
threshold air temperature method demonstrated better
performance than the threshold wet bulb temperature method
based on data from 643 stations in China. Therefore, most
conceptual and distribution hydrological models employ
threshold temperature methods to distinguish between rainfall
and snowfall. For example, models such as VIC (Liang et al.,
1996), SWAT (Arnold et al., 1998), and Mike SHE (Refsgaard
et al., 1992), employ the one-threshold temperature method,
whereas models such as DHSVM (Wigmosta et al., 1994) employ
a two-threshold temperature method in which linear regression is
applied between two threshold temperatures to distinguish between

FIGURE 1
(A) Location of the Heihe River Basin (HRB). (B) Land use and land cover of the HRB. (C) Station locations of the data used in and around the upper
Heihe River Basin (UHRB). The digital elevation model (DEM) data were obtained from https://www.gscloud.cn/sources/accessdata/305?pid=302, while
the land use and land cover data source (Wang, 2015) can be accessed at https://data.tpdc.ac.cn/zh-hans/data/320690e1-f8aa-4c51-a189-
4c82f7e64b39.
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rainfall and snowfall. Ding et al. (2014) proposed a new statistical
model to calculate the wet-bulb temperature based on air
temperature, relative wind speed, relative humidity, air pressure,
and weather station elevation. This model achieved better
precipitation-type classification results and was successfully
validated using data from 609 stations in China.

The present study was conducted in the upper Heihe River Basin
(UHRB), a typicalmountainous region situated at the zone of intersection
of the Westerlies and the East Asian summer monsoon in the
northeastern part of the TP (Wang et al., 2004; Qin et al., 2010). This
study aimed to investigate the spatiotemporal patterns and changes in
rainfall, snowfall, and extreme climate events in the area over the past
six decades. Specifically, this study had three objectives: 1) to compare
three methods of precipitation-type discrimination and identify the most
effective approach for distinguishing between rainfall and snowfall; 2) to
describe the spatiotemporal distribution and changes in total
precipitation, rainfall, and snowfall; and 3) to evaluate the magnitude,
frequency, rainfall erosivity, and change trends of extreme climate events
in the UHRB. The results of this study will contribute to a better
understanding of the distribution of water resources and extreme
climate events in the context of global warming and provide essential
information for the estimation and prediction of extreme precipitation on
the TP.

2 Materials and methods

2.1 Study area

The Heihe River is an inland river that originates at the
northeastern margin of the TP and disappears in the deserts of
the downstream region (Figures 1A, B). It is formed by the
confluence of the west tributary (YNG) and the east tributary
(BBH) in the upper stream region (Gao et al., 2015). The part of
the main river located on the TP and monitored by the Yingluoxia
(YLX) hydrological station (Figure 1C) is defined as the upstream
part (i.e., the UHRB) and has an annual mean precipitation of
200–700 mm and potential evapotranspiration of approximately
700 mm (Ma and Frank, 2006). The UHRB (37.72° N—39.09° N,
98.57° E—101.16° E) has a drainage area of 10,005 km2, with
elevations ranging from 1,681 m to 5,015 m.

The middle stream of the Heihe River, which encompasses the
piedmont lower alluvial fan and fluvial plain, is the primary irrigated
region (Song et al., 2020). This region accounts for 97.3% of the total
population and generates 96.5% of the GDP of the entire Heihe
River Basin (Cheng et al., 2015). However, precipitation in this part
is relatively low (100–200 mm) and the potential evapotranspiration
is higher (2000–2,500 mm) than that in the upstream part (Cheng
et al., 2015). Moreover, the UHRB provides almost 70% of the total
river runoff to support the middle and downstream regions (Gao
et al., 2015), making it the most crucial water source region for the
entire basin. Wu et al. (2015) simulated runoff components in the
UHRB and found that glacier melting contributed 8.9% to the
streamflow, highlighting the importance of precipitation runoff
(including rainfall and snowfall runoff) for the entire basin.

2.2 Data sources

Daily meteorological data covering 62 years, including
precipitation amount, maximum air temperature, minimum air
temperature, and average air temperature, were collected from six
meteorological stations located in and around the UHRB
(Figure 1C). These data were obtained from the Resource and
Environment Science and Data Center (Table 1). Additionally, to
validate the methods to discriminate precipitation type,
precipitation-type data covering 24 discontinuous years were
sourced from unpublished hydrologic yearbooks of China
(Table 1). The observation and recording of the precipitation
amount and types by hydrological stations followed the standard
procedure published by the Ministry of Water Resources of the
People’s Republic of China (MOWR, 1975). The recorded
precipitation types included rain, snow, sleet, hail mixed with
snow, and hail mixed with rain.

2.3 Methods for precipitation-type
discrimination and quality control

To differentiate between types of precipitation, this study
applied three distinct methods, namely, the one-threshold air
temperature method (Chen et al., 2014), the two-threshold air

TABLE 1 Data sources.

Station ID Elevation (m) Daily data Period Source

52,633 3460 P amount, Tmax, Tmin, and Tmean 1960–2021 (62 years) https://www.resdc.cn/data.aspx?DATAID=230 (Obtained in 2022.11)

52,643 2,312 P amount, Tmax, Tmin, and Tmean

52,645 3313 P amount, Tmax, Tmin, and Tmean

52,656 2,232 P amount, Tmax, Tmin, and Tmean

52,657 2,787 P amount, Tmax, Tmin, and Tmean

52,765 2,850 P amount, Tmax, Tmin, and Tmean

QL 2,780 P amount and P type 1967 and 1972–1987 Hydrologic yearbooks of China

2006–2012 (24 years)

aP: precipitation; Tmax: maximum air temperature; Tmin: minimum air temperature; Tmean: average temperature; QL: Qilian hydrological station.
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temperature method (Zhang et al., 2015), and Ding’s comprehensive
model (Ding et al., 2014). The one-threshold air temperature
method uses one air temperature to distinguish between rainfall
and snowfall. The two-threshold air temperature method uses two
different air temperatures in different situations, typically in
different seasons. Ding’s comprehensive model considers air
temperature, relative wind speed, relative humidity, air pressure,
weather station elevation, and wet-bulb temperature. Ding’s method
is detailed elsewhere (Ding et al., 2014).

The probability of detection (POD) (Chen et al., 2014; Pan et al.,
2015) was calculated to verify the accuracy of the aforementioned
precipitation-type estimation methods. The POD was calculated
using the following formula:

POD � C

A + C
, (1)

where A represents the number of snowfalls correctly estimated and
C denotes the number of snowfalls missed. Thus, A + C is the
recorded number of snowfalls.

2.4 Precipitation and temperature indices

2.4.1 Rainfall erosivity (REro)
Rainfall erosivity is one index used to represent the potential for

rainfall to cause erosion (Mello et al., 2020). After distinguishing
between precipitation types, daily rainfall data were used to calculate
rainfall erosivity using the daily rainfall erosivity model proposed by
Zhang et al. (2002). This model has been successfully applied in
many studies, including the First NationalWater Census for Soil and
Water Conservation of China (Liu et al., 2013). In this model, 24 h
rainfall amounts >12 mm are regarded as erosive events (Zhang
et al., 2002). The calculation formula for the model is as follows:

Ri � α∑k

j�1 Pj( )
β
, (2)

α � 21.586β−7.1891, (3)
β � 0.8363 + 18.144

Pd12
+ 24.455

Py12
, (4)

where Ri is the rainfall erosivity for the ith half-month, measured in
MJ·mm/(hm2·h); k is the number of erosive rainfall days within the
half-month; Pj is the amount of erosive rainfall on the jth erosive
rainfall day, measured in mm; Pd12 represents the average rainfall of
erosive rainfall days, measured in mm; Py12 is the average annual
erosive rainfall, measured in mm; and a and ß are the parameters of
the model according to the parameterization scheme calibrated by
Zhang et al. (2002).

2.4.2 Climate indices computed using RClimDex
software

The Expert Team on Climate Change Detection and Indices
(ETCCDI) (Karl and Easterling, 1999) has defined climate indices
based on daily precipitation, daily maximum temperature, daily
minimum temperature, and daily mean temperature. RClimDex
software (http://etccdi.pacificclimate.org/software.shtml), which
operates in the R programming environment (https://cran.r-
project.org/mirrors.html), can be used to compute these indices
and is considered a standard tool in the field (Cheng et al., 2015;
Fathian et al., 2020; Cheng et al., 2022). The indices used in this
study are listed in Table 2.

2.5 Spatial interpolation

To investigate the spatial variability in precipitation and air
temperature within the UHRB, the contribution of each weather

TABLE 2 Climate indices employed in this study.

Index type Abbreviation Index name Definition Unit

Precipitation-related
indices

CDD Consecutive dry days Maximum number of consecutive days with RR < 1 mm days

P10 mm Number of heavy
precipitation days

Annual count of days when RR≥10 mm days

P99P Precipitation on extremely
wet days

Annual total precipitation when RR > 99th percentile mm

RX5DAY Max 5-day precipitation
amount

Annual maximum consecutive 5-day precipitation mm

SDII Simple daily intensity index Annual total precipitation divided by the number of wet days in the year mm

Temperature-related
indices

ID0 Ice days Annual count of days when Tmax <0°C days

FD0 Frost days Annual count when Tmin <0°C days

TN10P Cool nights Percentage of days when Tmin <10th percentile %

TX90P Warm days Percentage of days when Tmax >90th percentile %

WSDI Warm spell duration
indicator

Annual count of days with at least 6 consecutive days when Tmax>90th percentile days

GSL Growing season length Annual count between the first span of at least 6 days with Tmean >5°C and the first span
after 1 July of 6 days with Tmean <5°C

days

RR, daily precipitation; Tmax, daily maximum temperature; Tmin, daily minimum temperature; Tmean: daily mean temperature.
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station in the target area was determined using the Thiessen polygon
method in ArcGIS 10.5 and the locations of the six weather stations
(Supplementary Figure S1). The Thiessen polygon method was
proposed for spatial interpolation (Thiessen, 1911), which is
based on proximal mapping; i.e., the nearest-distance neighbor.
Compared to other interpolation methods, such as inverse distance
weighting (IDW), Kriging, and spline interpolation, the Thiessen
polygonmethod is more convenient for interpolatingmasses of daily
data. This method has been successfully applied in many studies
applying precipitation interpolations (Li et al., 2018; Malik and
Kumar, 2020; Yanos, 2022).

The weighted average precipitation for the whole basin was
computed by multiplying the precipitation at each station by its
assigned percentage of area (Yanos, 2022). The formula is as
follows:

Pave � PaCa + PBCB + · · · + PNCN, (5)
where Pave is the weighted average rainfall for the whole basin; PA, PB,
. . . , PN are the observed precipitation values for stations A, B, . . . , N,
respectively; and CA, CB, . . . , CN are weighted factors calculated using
the Thiessen polygon method for stations A, B, . . . , N, respectively.

Note that the simple spatial interpolation based on the
station data was applied in this study, even though it would
potentially not fully capture precipitation gradients in
mountainous areas (Zhang et al., 2015).

2.6 Trend analysis and detection of abrupt
years

The Kendall rank correlation test (Kendall, 1934; Mann, 1945)
was employed to detect trends in the time series to identify general
change trends for all indices. For indices that exhibited significant
change trends, the Pettitt non-parametric approach was applied to
identify the abrupt change points (Pettitt, 1979).

3 Results

3.1 Precipitation-type discrimination

The classification of precipitation into rainfall and snowfall is
important as these types of precipitation have significantly different
effects on runoff processes, soil erosion, and disaster response.
However, it is often difficult to obtain records on precipitation
types from public historical records.

Ding’s method was developed to distinguish precipitation types
including rain, snow, and sleet based on wet-bulb temperature (Ding
et al., 2014). Deng et al. (2017) applied this method to distinguish
snowfall in the Tibetan Plateau and analyze snowfall changes. Han
et al. (2019) applied the CREST-snow hydrologic model coupled
with Ding’s method to simulate the flow regime in the Lancang River

FIGURE 2
(A) Results of the three methods for precipitation-type discrimination based on records from the QL and No. 52657 stations. (B) Probability of
detection (POD) values for the three precipitation-type discrimination methods.

FIGURE 3
Spatial distribution of the average annual (A) precipitation, (B) rainfall, and (C) snowfall in the UHRB.
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Basin. Su et al. (2022) employed Ding’s method to calculate rainfall
and snowfall to evaluate the glacier changes.

The snowfall threshold-temperature method is typically used in
most hydrological models, and the parameters of this method can be
adjusted within a reasonable range. Han et al. (2010) analyzed
precipitation-type records from 643 weather stations in China from
1961 to 1979 and found that the one-threshold temperature method
showed the most appropriate performance. Additionally, a spatial
distribution pattern has been identified in China, wherein the
threshold temperatures are higher in plateau areas (Han et al., 2010;
Chen et al., 2014). Chen et al. (2014) indicated that the one-threshold
temperature for daily rainfall and snowfall in the UHRB area was in the

range of 3.5°C–5.5°C. Han et al. (2010) also suggested that the two-
threshold temperature method may be suitable in some arid areas.
Zhang et al. (2015) found that the snowfall temperature was negatively
correlated with relative humidity in the northern region of the
Himalayas, indicating that the threshold temperature might be
higher in dry seasons than in wet seasons.

In this study, we first determined the best thresholds for the one-
threshold and the two-threshold temperature methods by traversing
the threshold temperature between 3.0°C and 5.5°C (Supplementary
Figure S2). Except for instances in which there were no differences in
extremely cold months (i.e., January, February, November, and
December), the best threshold temperature for March and April

FIGURE 4
Spatially averaged intra-year (A) rainfall and snowfall, and (B) Tmax, Tmean, and Tmin.

FIGURE 5
(A) Total precipitation, (B) rainfall, (C) snowfall, (D) mean temperature, (E) maximum temperature, and (F) minimum temperature changes in the
UHRB during 1960–2021.
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with the most snowfalls was 4.5°C (i.e., the one-threshold
temperature method T4.5); meanwhile, for May to October, the
best snowfall threshold temperature was 3.6°C. Thus, the best
solutions for the two-threshold-temperature method were 3.6°C
for May to October and 4.5°C for November to April of the next
year (T3.6_4.5). We also classified precipitation type based on Ding’s
method using data covering 24 years. As most hydrological models
require only rainfall and snowfall as inputs, this study focused on
classifying these two precipitation types. Moreover, since the
number of sleet events in the study area was relatively small, the
sleet events were considered rainfall as in other studies (Chen et al.,
2014; Deng et al., 2017; Su et al., 2022). The total number of snow
days per month and over the 24-year period for the three methods
(T3.6_4.5, T4.5, and Ding’s method) and their probability of detection
(POD) values are shown in Figures 2A, B.

Overall, the T3.6_4.5 method performed better than the T4.5

method and Ding’s method, with a POD value as low as 1.9%.
Considerable over- and underestimations were noted when
employing the T4.5 (+10.3%) and Ding’s method (−6.9%) for the
24 years of data. Snowfall events constituted the absolute majority
during January, February, March, April, November, and December,
whereas rainfall events were dominant in June, July, and August.
Thus, all three methods performed evenly in these 9 months.
However, the accuracies of the three methods differed during the
transitional months of May, September, and October. Although the
POD values for the T3.6_4.5 method for these months were
5.0%, −20.0%, and 4.2%, respectively, those for the T4.5 method
(50.0%, 120.0%, and 12.5%) and Ding’s method (−40.0%, −80.0%,
and −10.4%) were not acceptable. In a precipitation-type estimation
study based on data from 643 stations across China, Chen et al.
(2014) also found that 51% of the stations had POD values <2%
when applying the air temperature threshold method. Based on
these findings, the T3.6_4.5 method was considered the most suitable
for precipitation-type differentiation in the UHRB.

3.2 Spatial distributions of rainfall and
snowfall

Using the T3.6_4.5 method for discrimination of precipitation
type, the daily rainfall and snowfall events during 1960–2021 were
distinguished at the six weather stations located in and around the
UHRB. Figure 3 reveals distinct spatial patterns in the average
annual precipitation, rainfall, and snowfall in the UHRB. The
UHRB has an average annual precipitation of 381.6 mm, with
81.9% rainfall (312.6 mm) and 18.1% snowfall (69.0 mm). Both
precipitation and rainfall amounts exhibited a decrease from east
to west across the UHRB, which is consistent with the spatial
distribution patterns of the WRF model outputs based on station
data (Pan et al., 2015) and some precipitation products (e.g.,
DCMAP, ITP-F, and DCMAP-MicroMet) (Pan et al., 2014).
However, the snowfall amount was relatively higher in the west
tributary. Owing to the influences of the East Asian monsoon in
summer and the Westerlies in winter (Yao et al., 2022), which carry
different amounts of moisture, differences were observed in the
distributions of total precipitation, rainfall, and snowfall distribution
from east to west in the UHRB (Cheng et al., 2015). Consequently,
while the climates in the west and east tributary regions of the UHRB

are similar, the precipitation amounts and types in these regions
exhibit differences due to variations in the locations and underlying
surfaces.

3.3 Intra-year trends in rainfall and snowfall

As the UHRB is influenced by the East Asian monsoon during
summer and the Westerlies during winter, notable seasonal
variations were observed in total precipitation, rainfall, snowfall,
and temperature (Figure 4). Snowfall accounted for an average of
18.1% of the precipitation amount, with significant variations
observed across different months. Snowfall constituted 100% of
the precipitation events fromNovember toMarch. As theWesterlies
and the East Asian monsoon shift, both temperature and
precipitation rose from May, reaching their peaks in July
(94.2 mm of precipitation and a mean temperature of 12.4°C),
and then decreasing until the next cycle. Moreover, as the
average and minimum air temperatures exceed 0°C during
May–September, rainfall events dominate during these months,
accounting for 60.0%, 93.8%, 99.4%, 99.0%, and 84.9% of the
precipitation amounts in May, June, July, August, and September,
respectively. The annual snowfall occurred during April and May
(13.6 mm and 16.6 mm). Owing to the accumulation of snowfall in
the basin from October to March (25.4 mm in total), spring floods
typically occur in April and May (Zhu et al., 2020). Summer floods
typically occur in July and August (Luo et al., 2017) because the
highest rainfall is received during the East Asian summer monsoon.

3.4 Long-term changes in rainfall and
snowfall

The annual total precipitation, rainfall, snowfall, mean temperature
(Tmean), maximum temperature (Tmax), and minimum temperature
(Tmin) were calculated from daily measurements of these parameters.
The change trends of these annual values were assessed using Kendall’s
rank correlation tests with the year, and the change rates were estimated
using linear regression. The spatial distributions of these parameters are
shown in Figure 5. Over the past 62 years, except for station 52,765,
which is located in the southeasternmost station and exhibited a non-
significant increasing trend, all other stations exhibited significant
increases in precipitation and rainfall, with rates ranging from
7.35 to 14.68 mm/10y and 6.42–15.46 mm/10y, respectively. The
spatially averaged precipitation and rainfall amounts also showed
significant increasing trends, with rates of 13.45 mm/10y (p < 0.001)
and 13.02 mm/10y (p < 0.001), respectively. However, we observed no
significant change in annual snowfall across all stations, with a slightly
increasing trend of 0.43 mm/10y (p = 0.697) for the spatial average. It
should be noted the area influenced by both the East Asian monsoon
and the Westerlies may experience more severe changes in total
precipitation, rainfall, and snowfall. Additionally, in the context of
global climate warming, the average, maximum, and minimum
temperatures showed notable increases, with spatially averaged
increase rates of 0.32°C/10y, 0.26°C/10y, and 0.39°C/10y, respectively,
which were three times (Qiu, 2008) the global average warming rate
(0.12°C/10y during 1951–2012) (IPCC, 2014) and slightly lower than
the average for the TP (0.35°C/10y during 1970–2014) (Yao et al., 2019).
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The changes in total precipitation and rainfall in the UHRB
during 1960–2021 displayed an abrupt and significant shift in
2002 (p < 0.05) according to the Pettitt (1979) test (Figure 6, the
year with the highest Sk value). This abrupt year was in good
agreement with the average situation across the entire TP
(Wang et al., 2016). No abrupt year was found for snowfall
as it did not exhibit any significant change trend (p > 0.05). In
addition, the average, maximum, and minimum air
temperatures all exhibited stepwise increases around
1996 and 1997, which was consistent with the average for the
entire TP (Zhang et al., 2022). Furthermore, the periods of
1960–2001 and 2002–2021 were selected as consolidated periods
for comparison before and after the abrupt year (Table 3). The
difference in total precipitation in the UHRB was greater, and
the decrease in the snow/rainfall ratio (S/R) was negligible
compared to those in the entire TP (Wang et al., 2016).
Furthermore, snowfall showed a slight increase in the UHRB,

whereas it exhibited a significant decrease in the TP (Wang
et al., 2016). However, the changes in temperature were
comparable with those in the entire TP (Zhang et al., 2022).

The total precipitation, rainfall, snowfall, and temperatures
exhibited varying monthly change trends (Figure 7). The Tmax
for all months, except for April and May, as well as the Tmean
and Tmin, demonstrated significant increases (p < 0.01). While
all months exhibited an increase in precipitation, the increases
were only significant in January, June, and December, owing to
the significant increases in rainfall in June and December, and
snowfall in January and December. In contrast, significant
decreases in snowfall were observed in June and September,
possibly due to the warmer climate and the shift of snowfall to
rainfall.

Overall, the changes in precipitation and temperature
suggested that despite similar climate warming backgrounds,
the changes in precipitation can be more complex due to the

FIGURE 6
Abrupt change tests for (A) total precipitation, (B) rainfall, (C) snowfall, (D) mean temperature, (E) maximum temperature, and (F) minimum
temperature in the UHRB during 1960-2021.

TABLE 3 Changes in total precipitation, rainfall, snowfall, snowfall/rainfall ratio, and temperatures in the UHRB before and after the year 2002.

Annual average before abrupt change Annual average after abrupt change Difference

Precipitation (mm) 364.6 417.2 52.6

Rainfall (mm) 297.6 343.9 46.3

Snowfall (mm) 67.0 73.2 6.2

S/R (%) 22.5 21.3 −1.2

Tmean −0.4 0.7 1.1

Tmax 8.5 9.4 0.9

Tmin −7.4 −6.0 1.4

S/R: snowfall/rainfall ratio.
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influence of general atmospheric circulation, topography, and
other factors.

4 Discussion

4.1 Precipitation-related indices

Consecutive dry days (CDD), annual maximum consecutive 5-
day precipitation (RX5DAY), annual count of days with
precipitation >10 mm (P10 mm), annual total precipitation above
the 99th percentile (P99P), annual total precipitation above the 95th
percentile (P95P), and simple daily intensity index (SDII) of the
precipitation indices computed by ClimDex software were selected
for analysis in the present study. However, ClimDex software does
not distinguish the precipitation types. Considering that the P99P
values in some years were zero, we manually calculated the annual
total rainfall above the 95th percentile (R95P) and the annual total
snowfall above the 95th percentile (S95P) for analysis of extreme
precipitation in the UHRB. The threshold values of P99P, P95P,
R95P, and S95P at the six stations are listed in Table 4. Some studies
analyzed extreme or erosive precipitation without distinguishing
between rainfall and snowfall, which may lead to uncertainties.
Therefore, based on the rainfall distinguished, rainfall erosivity
(REro) values were also calculated as one of the indices affected

by extreme rainfall. The ranges and changes of the indices for each
station and spatially averaged values are shown in Figure 8 and
Table 5.

4.1.1 Consecutive dry days
During 1960–2021, the CDD values, defined as the maximum

number of consecutive days with precipitation <1 mm, exhibited
decreasing trends at all six stations. This trend was significant at the
west tributary station 52,645 and for the UHRB average (Figure 8).
Over the 62-year period, the average CDD value for the UHRB
ranged from 46.3 to 149.7 days, with a significant decreasing trend of
3.3 days/10y (Table 5). These results suggested that drought events
decreased notably in the context of climate change. Cheng et al.
(2015) found no statistically significant change trend in CDD values
in the UHRB for the period 1960–2011. Moreover, the present study
found that the decrease in CDD values became statistically
significant when the time series was extended to 2021, indicating
a continued easing of drought conditions in the last 10 years.

4.1.2 Extreme precipitation, rainfall, and snowfall
events

The consecutive effects of extreme precipitation, represented by
RX5DAY values, exhibited significant intensified trends at stations
52,657 and 52,645 (p < 0.05), which are located in the UHRB
(Figure 8). The spatially averaged RX5DAY values for the UHRB
ranged from 32.4 to 74.9 mm, with a significant increasing trend (p <
0.01) of 1.7 mm/10y (Table 5).

P10 mm is a signal of heavy rain frequency and varied from
5.1 to 14.3 days/y in the UHRB, with an increasing trend of 0.6 days/
10y (Table 5). P10 mm showed an overall increasing trend; this
trend was significant at the three stations that spatially contributed
most to the UHRB (Figure 8). The threshold values for P95P at the
six stations ranged from 11.8 to 15.1 mm, while those for P99P were
19.0–27.9 mm (Table 4). Owing to the limited number of days with
precipitation above the 99th percentile, other than R95P, the R99P

FIGURE 7
Total precipitation-, rainfall-, snowfall-, and temperature-
changing trends for each month. * Significance at the p < 0.05 level;
**significance at the p < 0.01 level.

TABLE 4 the 99th percentile values of the total precipitation (P99P) and the
95th percentile values of the total precipitation (P95P), rainfall (R95P), and
snowfall (S95P) at the six stations (mm).

52,765 52,657 52,656 52,645 52,643 52,633

P99P 24.1 20.9 27.9 21.5 19.0 20.4

P95P 15.0 13.4 15.1 12.4 11.8 12.9

R95P 16.9 14.6 18.1 14.6 13.5 14.3

S95P 9.0 6.1 7.8 7.6 4.9 8.3

FIGURE 8
Precipitation indices change trends at the six stations and the
UHRB. *Significance at the p < 0.05 level; **significance at the p <
0.01 level. The correlation coefficient is that between each annual
index and the year.
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values only exhibited a significant increasing trend at station 52,633
(p < 0.01) and the spatial average of the UHRB (p < 0.05) (Figure 8).

However, P95P and R95P values showed increasing trends at
all six stations, with significant intensification at stations 52,657,
52,645, and 52,633 for both P95P and R95P, as well as at station
52,656 for R95P (Supplementary Figure S3). Because of the
intensification of extreme precipitation and rainfall events at
all six stations, the UHRB experienced an intensification of
extreme precipitation and rainfall (p < 0.01), with change
rates of 9.8 mm/10y and 7.8 mm/10y, respectively (Table 5).
Meanwhile, extreme snowfall showed non-significant changes,
with change rates ranging from −1.03 mm/10y to 0.85 mm/10y
(p > 0.05). The spatially averaged change rate was −0.1 mm/10y
(p > 0.05).

Cheng et al. (2015) evaluated several precipitation- and
temperature-related indices, including RX5DAY, P10mm,
SDII, and R95P, in the upper, middle, and downstream areas
of the Heihe River Basin, using daily precipitation data for the
period 1960–2011. They observed significant changing trends in
RX5DAY, P10mm, SDII, and R95P in the upstream region of the
Heihe River Basin, consistent with the findings of the present
study.

4.1.3 Precipitation intensity indices
SDII, defined as the annual total precipitation divided by the

number of wet days in the year, signifies the simple daily intensity
of the precipitation. The SDII values of the UHRB, ranging from 4.7 to
6.6 mm, exhibited a significant (p < 0.01) increasing trend of 0.1 mm/
10y (Figure 8; Table 5). The significant change trends of this index were
also shown at stations 52765, 52,633, 52,657, and 52,645.

To evaluate the intensity of erosive rainfall events (≥12 mm/
day), based on daily rainfall data obtained from precipitation type
discrimination, the rainfall erosivity values and change trends for the
six stations were analyzed according to the rainfall erosivity
estimation of Zhang et al. (2002). The spatial averages are shown
in Figure 9. In general, the annual average rainfall erosivity
decreased from south to north, with the highest value of
565.0 MJ·mm/(hm2·h) at station 52,765, the lowest value of
167.5 MJ·mm/(hm2·h) at station 52,643, and a spatial average of
283 MJ·mm/(hm2·h), consistent with the findings of Liu et al. (2013).
The annual average rainfall erosivity for all six stations increased
with rates ranging from 6.2 MJ·mm/(hm2·h)/10y (station 52,643) to
36.6 MJ·mm/(hm2·h)/10y (station 52,657). Except for stations
52,643 and 52,765, the annual average rainfall erosivity at all
stations increased significantly (Figure 8), contributing to the

TABLE 5 Climate index ranges and change rates in the UHRB.

CDD (days) RX5DAY
(mm)

P10 mm
(days)

P99P
(mm)

P95P
(mm)

R95P
(mm)

S95P
(mm)

SDII
(mm)

Min 46.3 32.4 5.1 0.0 34.9 20.7 5.5 4.7

Max 149.7 74.9 14.3 71.9 176.4 140.6 42.6 6.6

Change
rate/10y

−3.3 1.7 0.6 2.5 9.8 7.8 −0.1 0.1

REro (MJ·mm/
(hm2·h))

ID0 (days) FD0 (days) TN10P (%) TX90P (%) WSDI (days) GSL (days)

Min 94.7 58.8 224.6 0.6 4.7 0 134.1

Max 526.3 101.7 261.1 19.7 22.6 34.5 176.8

Change
rate/10y

27.5 −3.3 −4.2 −1.9 1.4 2.0 3.6

FIGURE 9
Spatial distribution and change trends of rainfall erosivity in the UHRB.
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severe intensification of annual average rainfall erosivity in the
UHRB (+27.5 MJ·mm/(hm2·h)/10y; p < 0.001). It is noteworthy
that the population of the UHRB is concentrated around station
52,657, which recorded the highest annual average rainfall erosivity
of 318.0 MJ·mm/(hm2·h) and the greatest rainfall erosivity
intensification rate of 36.6 MJ·mm/(hm2·h)/10y.

The spatial distribution pattern of REro was similar to that of
P95P and R95R, with the events concentrated around the residential
area near station 52,657 (Figure 9). The intensification of rainfall
events in this region may lead to flood risks for the local community.
Hydrological records show that several severe flood events occurred
in 1959, 1989, 1996, 1998, 2014, 2016, and 2021, causing debris flows
that resulted in significant economic losses, as well as losses to
property and life (Dai, 2010; Cui et al., 2022). These events also
reveal that rainfall erosivity and extreme rainfall events became
increasingly more severe over time.

4.2 Temperature-related indices

Six of the temperature-related indices were also generated
by the ClimDex model. The annual change trends of the six
stations and the UHRB average are shown in Figure 10. Unlike
the precipitation-related indices, the temperature-related
indices changed significantly in almost all six stations. The
cold day-related indices, namely, the annual count of days
with Tmax <0°C (ID0), the annual count of days with
Tmin <0°C” (FD0), and the percentage of days when Tmin
was below the 10th percentile (TN10P), showed compelling
decreasing trends at all sites, indicating significant changes in
minimum air temperatures. In contrast, the high-temperature-
related indices, namely, the percentage of days with Tmax above
the 90th percentile (TX90P) and the annual count of days with
at least six consecutive days with TX above the 90th percentile

(WSDI), all indicated intensive increasing warmth in the
UHRB. The growing season length (GSL) in the UHRB was
much shorter than that in other areas outside the TP, ranging
from 134.1 to 176.8 days/y, but increased noticeably at 3.6 days/
10y, which was almost three times the average rate of change in
the Yangtze River basin (1.3 days/10y) (Cheng et al., 2022).

4.3 Factors influencing the climate extreme
indices

The elevation, latitude, and longitude correlations with
precipitation-related indices changes used for the spatial pattern
and geographical factor analysis are listed in Supplementary Table
S1. Due to the limited number of stations, most of the correlations
were not significant. However, P, Rain, Snow, RX5DAY, P10mm,
P99P, P95P, R95P, SDII, and REro changes were more pronounced
in stations in the UHRB at higher altitudes, indicating that higher
elevations were more strongly affected by climate change than lower
elevations. Furthermore, all the precipitation-related indices were
negatively correlated with latitude and were significantly correlated
with total precipitation and rainfall values, which indicated more
severe changes in the southern part of the UHRB.

El Niño-Southern Oscillation (ENSO), as an indicator of
global climate change, has been shown to modulate the
precipitation in the TP (Yao et al., 2022) and to remotely
drive extreme precipitation across the TP (Bothe et al., 2010).
Xiong et al. (2019) found that the ENSO had a significant positive
correlation with P20 mm (annual count of days with
precipitation >20 mm) and SDII during 1995–2001 in the TP.
A significant positive correlation between the ENSO and P10 mm
was also confirmed in the Qilian Mountains (2015). Qin et al.
(2010) found that the intensification of the hydrological cycle in
the 20th century could be attributable to regional to largescale
temperature increases.

The correlation analysis results between Niño 4 SST index
and climate indices of this study are listed in Supplementary
Table S2. The air temperature-related indices, including Tmean,
Tmax, Tmin, ID0, TX90P, WSDI, and GSL, were significantly
correlated with the ENSO, indicating that temperature increases
and extreme temperatures were largely influenced by the ENSO.
Regarding the precipitation-related indices, P, Rain, RX5DAY,
P10 mm, R99P, P95P, R95P, SDII, and REro were positively
correlated with the ENSO, but the difference was only
significant for P10 mm (p = 0.015), which is consistent with
the results reported by Cheng et al. (2015).

In addition to global warming, large-scale atmospheric
circulation, including the Indian monsoon, westerlies, and
the East Asian monsoon, is a main driver of precipitation
changes in the TP (Yao et al., 2022). Cheng et al. (2015)
proved that rainfall extremes (P10 mm and total
precipitation) in the UHRB had a strong negative correlation
with the East Asian summer monsoon index and a significant
positive correlation with the western Pacific subtropical high-
intensity index.

This result indicated that the extreme rainfall events in the
UHRB were influenced by both global climate warming and
large-scale atmospheric circulation.

FIGURE 10
Temperature index-changing trends for the six stations and the
UHRB * Significance at the p < 0.05 level; **significance at the p <
0.01 level. The correlation coefficient is that between each annual
index and the year.
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5 Conclusion

To investigate the impact of climate change on the most
important water source region of the second-largest inland river
in China, data on daily precipitation, daily mean temperature, daily
maximum temperature, and daily minimum temperature were
obtained from six meteorological stations located in and around
the UHRB in the northeastern part of the TP. This study aimed to
examine changes in precipitation type and related climate indices
changes over a 62-year period. To this end, various methods for
distinguishing daily precipitation type were first evaluated, and an
optimal method (T3.6_4.5) was chosen based on a two-threshold
temperature for different months (3.6°C for May to October and
4.5°C for November to the following April). This method exhibited
the best performance for the UHRB and was also consistent with the
theory that snowfall temperature is negatively correlated with
relative humidity in the northern Himalayan region (Zhang et al.,
2015).

After determining the precipitation types, this study examined
the spatial and temporal changes in total precipitation, rainfall,
snowfall, and related climate indices from 1960 to 2021 using the
RClimDex model and statistical analysis.

The spatial average of the UHRB indicated that rainfall occurred
mainly between June and September, while snowfall was predominant
from November to the following March. The annual rainfall amount
accounted for 81.9% of the total precipitation. On average, the Tmin
values were >0°C from June to September, while the Tmean values
were >0°C from April to October.

All six stations experienced distinct temperature increases, with the
spatially averaged temperature increase trend almost three times the
global average. However, unlike the significant large-scale changes in
climate warming, changes in precipitation were observed primarily in
about half of the six stations, particularly in regions of higher elevation
and under the influence of both the East Asian monsoon and the
Westerlies. In addition, the changes in extreme precipitation are highly
affected by the ENSO and the East Asian monsoon.

In the UHRB, the occurrence of annual drought events,
measured by consecutive dry days (CDD), decreased
markedly, while the growing season length (GSL) was
significantly extended by 3.6 days/10y. These changes are
beneficial for local vegetation growth, agriculture, and animal
husbandry. However, the magnitude of the intensity of extreme
rainfall events (P99P, P95P, and R95P) and rainfall erosivity have
increased, which would result in increased risks of soil erosion,
floods, and landslides. Additionally, the frequency of spatially
averaged extreme precipitation events (P10mm) also has
significantly increased for the spatial average of the UHRB.
These changes in extreme rainfall patterns could pose a
considerable risk to local life and property security, as
evidenced by recent flood events. The flood risks could also
pose a challenge to the water diversion scheme of the Heihe
River Basin, which has been implemented since 2000 (Song et al.,
2020; Gou et al., 2022).

This study has positive implications for our understanding of the
spatiotemporal variations in rainfall, snowfall, and extreme events in the
UHRB in the context of climate change. The findings provide scientific
evidence to strengthen water resource management at the basin scale;
help prevent andmitigate the impacts on regional life, property security,
and the environment; and facilitate sustainable social development.
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