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Introduction: Changes in fish phenotypes during aquaculture must be monitored
to improve the quality of fishery resources. Therefore, amethod for segmenting and
measuring phenotypes rapidly and accurately without harming the fish is essential.
This study proposes an intelligent fish phenotype segmentation method based on
the residual network, ResNet50, and atrous spatial pyramid pooling (ASPP).

Methods: A sufficient number of fish phenotypic segmentation datasets rich in
experimental research was constructed, and diverse semantic segmentation datasets
were developed. ResNet50was thenbuilt as the backbone feature extraction network
toprevent the loss offishphenotypic feature information and improve theprecisionof
fish phenotypic segmentation. Finally, an ASPP module was designed to improve the
phenotypic segmentation accuracy of different parts of fish.

Results: The test algorithm based on the collected fish phenotype segmentation
datasets showed that the proposed algorithm (RA-UNet) yielded the best results
among several advanced semantic segmentation models. The mean intersection
over union (mIoU) and mean pixel accuracy (mPA) were 87.8% and 92.3%,
respectively.

Discussion: Compared with the benchmark UNet algorithm, RA-UNet
demonstrated improvements in the mIoU and mPA by 5.0 and 1.8 percentage
points, respectively. Additionally, RA-UNet exhibited superior fish phenotype
segmentation performance, with a low false detection rate and clear and
complete edge segmentation. Conclusively, the RA-UNet proposed in this
study has high accuracy and edge segmentation ability and can, therefore,
directly improve the efficiency of phenotypic monitoring in fish farming.
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1 Introduction

As a vital component of aquaculture (Wang et al., 2022), fish are essential for ensuring
national food security. Phenotypic information represents the primary measurable attribute
and is an important parameter for monitoring fish growth. The phenotypic frequency
distribution interval can represent the number and proportion of individual fish in different
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growth stages (Zhang et al., 2020). This information also helps
aquaculture managers better monitor the growth curve, optimize
water quality regulation, manage the feed quantity (Kong et al.,
2022), and improve the economic benefits of aquaculture (Xu et al.,
2020; Zhao S. et al., 2022).

Previous studies used manual contact measurement methods,
such as reading relevant index data using a measuring ruler, to
measure fish phenotypes (Zhou et al., 1995). However, manual
measurement requires considerable human and material
resources and easily harms the fish (Li X. et al., 2022). Moreover,
the results depend on the experience and subjective awareness of the
surveyors, possibly resulting in errors. Therefore, performing
intelligent fish phenotype monitoring without harming the fish
by establishing a noncontact phenotype segmentation method to
rapidly and accurately segment phenotypes and analyze fish
phenotype proportion relationships in aquaculture is essential for
intelligence-driven development of the aquaculture industry (An
et al., 2021).

2 Noncontact phenotype segmentation
methods

2.1 Phenotype segmentationmethods based
on low-level visual information

Fish segmentation using noncontact phenotypic segmentation
methods was previously studied primarily based on the low-order
visual information of image pixels in fuzzy segmentation algorithms
(Otsu, 1979), such as image information and pixel extraction using
color space conversion, color component extraction, and median
filter processing (Kitschier et al., 2011; Cherkassky and Ma, 2004;
van den Heuvel et al., 2008; Saifullah et al., 2021). Ma et al. (2016)
divided the color image vector-valued pixel points into three single-
channel pixel points (R, G, and B) and used a K-means clustering
algorithm to obtain the fish phenotypes. Chen Y. Y. et al. (2019)
implemented a shape feature extraction method based on Fisher’s
discriminant function to segment fish and backgrounds quickly.
Taheri-Garavand et al. (2019) combined artificial bee colony and
neural network algorithms for fish feature extraction in specific
scenarios and achieved better phenotypic segmentation results. Sun
L. Q. et al. (2019) used a simple and fast-structured forest method to
extract the edge information from fish images. These image
segmentation methods are relatively less computationally
intensive, simple, and convenient. However, the fuzzy image
segmentation algorithm based on lower-level shallow visual
information to distinguish the target from the background lacks
higher-level semantic target feature information. Furthermore, this
method has limitations in matching target-specific information
(Liao et al., 2021), and segmentation is poor. Moreover, the
generalization ability of fuzzy image segmentation algorithms is
weak (Shao et al., 2022), and the parameters need to be continuously
adjusted by humans to adapt to the segmentation scene (Zhou et al.,
2022). Therefore, these methods cannot achieve automatic target
segmentation, affecting the segmentation efficiency and hindering
the application of these methods to actual complex scenes.
Intelligent detection and accurate segmentation methods for fish
phenotype edges must be further established.

2.2 Species detection method based on
deep learning information

With the recent progress in computer vision technology (Zhang
& Zhang, 2021), object detection methods based on deep learning
have been rapidly developed and widely used for fish detection and
analysis (Yang et al., 2021; Li J. et al., 2022). Sun et al. (2021)
proposed a DRN-Faster R-CNN-based multi-target fish detection
model for complex backgrounds with limited generalization
capability, which reduces missed and false detections. Chen
J. et al. (2019) identified fish based on an
FTVGG16 convolutional neural network with an average
precision of 97.66% and high recognition precision and
robustness. Zhao T. et al. (2022) proposed a lightweight
YOLOv4 algorithm to detect dead fish with an accuracy of
95.47%. Abinaya et al. (2022) used YOLOv4 to segment fish to
assess biomass. The species detection method based on deep
learning information is accurate and efficient (Klapp et al., 2018;
Mei et al., 2022) and can recognize the species and locate the object
(Zhang et al., 2019; Zhang & Zhang, 2019). However, this method
still lacks morphological phenotypic feature recognition of specific
object parts, hindering the complete phenotypic and shape
segmentation. Therefore, developing methods for fish phenotype
refinement segmentation is needed.

2.3 Phenotype segmentation method based
on semantic segmentation

Compared with the traditional image segmentation methods,
semantic segmentation uses higher-order visual information with
higher accuracy and robustness. Therefore, specific object contours
can be quickly and accurately recognized to segment target
morphological features, avoiding problems caused by manual
observation, such as disturbing the fish and poor performance (Li
W. et al., 2022; Raei et al., 2022; Vayssade et al., 2022; Zou et al.,
2022). This study used the semantic segmentation method to
segment fish phenotypes because the specific shape and size of
fish phenotypes can be accurately obtained without interference to
better monitor the fish growth curve and regulate the aquacultural
environment in real time. Deng et al. (2019) proposed segmenting
beef cattle images based on an RGB-D full convolutional network
and improved the precision of this network by optimizing the
segmentation effect on detailed parts of the cattle. Zhu et al.
(2022) optimized and trimmed the UNet network, and the
updated model had an excellent segmentation effect and response
speed for banana bunch edges and stalks in a self-built banana bunch
dataset. Liu et al. (2020) improved this network to address the low
image recognition precision of the target muscle region for
intelligent fine segmentation of lamb, reaching an average
precision of 98.2%.

In terms of fish phenotype segmentation, Lin et al. (2022)
proposed a SUR-Net, which could better segment fish using a
limited dataset. Furthermore, Rafael et al. (2019) used an
example segmentation method to obtain fish body contours and
measured fish size by estimating the contours. Alshdaifat et al.
(2020) proposed a new framework for underwater video fish
instance segmentation with higher performance under the same
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conditions than other state-of-the-art algorithms. Liu et al. (2021)
used a semantic segmentation model to classify fish parts into seven
categories and used video images to analyze fish behavior and
improve aquaculture conservation quantitatively. However,
current studies have focused less on fine-scale segmentation of
local fish phenotypes. Because of the limited number of publicly
available datasets, researchers need to collect large amounts of data
in natural aquaculture environments and annotate them manually,
which is time-consuming and laborious. Semantic segmentation
models enable fine-grained recognition of the target morphology;
however, the direct application of these models to fish phenotype
segmentation in aquaculture faces the following problems: 1)
Segmentation of each fish phenotype requires a sufficient number
of high-resolution fish phenotype datasets as training support for
semantic segmentation models, and limited research on fish
phenotype segmentation is available for existing deep learning
algorithms, directly affecting the quality of the datasets; 2) The
conventional convolution and downsampling operations in the
semantic segmentation model are prone to the loss of fish
phenotypic feature information and blurred boundaries.
Furthermore, some targets are small, such as fins and eyes, easily
causing missed segmentation; thus, segmentation precision must be
improved; 3) Fish fins are similar in shape; dorsal, ventral, pectoral,
and anal fins are easily confused, causing inaccuracy or even
incorrect segmentation of fish edges; thus, the accuracy of
segmentation needs to be improved.

Given the above problems, this study built a ResNet network
with 50 layers of depth instead of the original backbone feature
extraction network based on the UNet semantic segmentation
algorithm, designed a multilayer parallel cavity convolution
module (ASPP), and proposed an intelligent RA-UNet fish
phenotype segmentation method based on residual network
(ResNet50) and multilayer parallel cavity convolution, which can
be used in aquaculture. Our method can monitor and measure fish
phenotypes in aquaculture and obtain information on their shape
and size. Compared with the manual observation and traditional
segmentation methods, this method can quickly and accurately
perform fish phenotype segmentation without harming the fish.
Furthermore, this method can be applied to fish phenotype
monitoring and measurement in natural aquaculture scenarios as
an alternative or complementary method for fish phenotype
segmentation. The main contributions of this study are as follows.

(1) To address limited high-quality datasets, a self-constructed fish
phenotype segmentation dataset with a sufficient quantity and
rich background was used for aquaculture fish phenotype
segmentation and detection by collecting data on various fish
species. All dataset images were manually annotated to ensure
the quality of the dataset and promote the expandability and
diversity of the semantic segmentation dataset.

(2) To address model omission, ResNet50 is proposed as the
backbone feature extraction network, thus increasing the
depth of the model, improving the network extraction ability
for target information, improving the fish phenotype
segmentation precision through the feature extraction
method of the residual module, and reducing information
loss of fish phenotype features that occur in conventional
convolution and downsampling operations.

(3) To address model misdetection, an ASPP module expanded the
perceptual field of the model, improved the accuracy of fish
phenotypic edge segmentation, and reduced discontinuous edge
regions after the proposed fish segmentation.

3 Materials and methods

3.1 Fish phenotypic segmentation dataset

Deep learning algorithms require large datasets to support
training. Data quality impacts model training, especially
regarding the richness of the data samples and the data
annotation precision. Therefore, acquiring large amounts of data
as training samples for semantic segmentation models is crucial.
Most domestic and international research on phenotype
segmentation analysis targets human targets. Such investigations
rely on publicly available datasets, such as Look into Person (Liang
et al., 2018) and Crowd Instance-level Human Parsing (Gong et al.,
2018), and a comparable public dataset is not available for fish
phenotype segmentation. Therefore, we created a self-built fish
phenotype segmentation dataset in this study by designing a data
production scheme and customizing the data sources acquisition.

3.1.1 Fish collection sites
The dataset collection sites for fish phenotype segmentation included

a Tibetan aquatic research institute and a fish proliferation and releasing
station at 29°64′N, 91°04′E (Figure 1). The two test sites have various fish
species and imaging contexts, and the fish were easily accessible.

3.1.2 Image data acquisition
Three primary methods were used for image acquisition. 1)

Acquiring images of fish underwater through an underwater camera.
A slide rail was set up so that the camera could shoot at any position
inside the edge of the tank to acquire multi-angle images
(Figure 2A). 2) Acquiring images of fish underwater through
external filming equipment (Figure 2B). 3) Placing the fish on
the experimental bench to manually film still images (Figure 2C).

The fish images obtained had rich background conditions
(different scenes, conditions, light intensities, etc.), effectively
preventing over-fitting training and guaranteeing good semantic
segmentation model robustness. A total of 1,200 data images were
collected. After manually removing images that were redundant,
blurry, or of poor quality and those with a similarity >0.7,
500 dynamic and static fish images were retained to guarantee
the quality of the fish phenotype segmentation dataset.

3.1.3 Dataset expansion and construction
Too little data limit the learning ability of the model. Therefore,

this study further expanded the number and diversity of the datasets
to improve the generalization ability of the model and reduce over-
and under-fitting. The dataset was expanded to 1,200 images using
image enhancement algorithms (Clahe (Reza, 2004), Dark Channel
Prior (He et al., 2010), GBdehazingRCorrection (Li et al., 2016)), and
spatial variations (rotation, flipping) (Figure 3).

The fish phenotypes were segmented into eight parts: body, eye,
dorsal fin, pelvic fin, anal fin, caudal fin, pectoral fin, and head. The
data images were manually annotated at the pixel level using
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Labelme annotation software to generate JSON files to store the
tagging information and segment the information into label files by
scripting. The dataset was randomly divided into a training and
validation set with an 8:2 ratio. The labeled fish phenotype masks are
shown in Figure 4, and the ratio of each phenotypic pixel in the fish
phenotype segmentation dataset is shown in Figure 5.

3.2 Fish phenotype segmentation methods

3.2.1 UNet model
UNet (Ronneberger et al., 2015) is a fully convolutional neural

network with U-shaped symmetry. The first half is a feature
extraction network (encoder) comprising four downsampling

FIGURE 1
Dataset collection site.

FIGURE 2
Fish image acquisition (A)Underwater cameras to capture dynamic images of fish, (B) External filming equipment to capture dynamic images of fish,
and (C) still images of fish.
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modules, each going through two 3 × 3 ReLU convolutional layers
and a 2 × 2 maxpooling layer to extract local features and obtain the
target semantic information. The second half is the feature fusion
network (decoder), comprising four upsampling modules. The
feature maps of high-level semantic information generated by
upsampling were stitched and fused with the feature maps of
shallow-level semantic information generated in the
corresponding phase of the first half through skip connection,
thereby fully exploiting context information and enabling good
segmentation results, even with limited image data. Therefore,
the UNet semantic segmentation algorithm was chosen as the
basis of this study and improved for fish phenotype segmentation
for high-precision and fast segmentation of fish phenotypes.

3.2.2 Improved fish phenotypic segmentation
model (RA-UNet)

Due to its advantages, the UNet semantic segmentation model
can achieve higher image segmentation results. However, fish

phenotype segmentation is often more complex than pedestrian
and animal segmentation because different fin types are easily
confused, and the size of each phenotype varies, causing poor
segmentation of fish edges or missed segmentation of small-sized
phenotypes. Therefore, the UNet network needs further
improvement to enhance the ability to extract phenotypic
features and improve detection precision. This improved network
was named RA-UNet (Figure 6). Specific measures to improve the
network were: 1) ResNet50 was adopted as the backbone feature
extraction network, the network depth was increased, the feature
information extraction ability of the model was enhanced, and the
model performed more fine-grained segmentation of fish
phenotypes. Moreover, the output layer of each ResNet module
and the corresponding stage of the latter part of the decoder
extended through the skip connection for feature splicing,
ensuring shallow and deep information fusion of the network
and improving the segmentation precision. 2) After completing
each upsampling stage, the ASPP module was introduced in the

FIGURE 3
Example of dataset expansion. The first row from left to right shows the original image, Clahe enhancement, and Dark Channel Prior enhancement,
whereas the second row from left to right shows the GBdehazingRCorrection enhancement, rotation, and flip.

FIGURE 4
Fish phenotype mask.
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second half of UNet to allow atrous convolution of four different
sampling rates at 1, 6, 12, and 18. The features extracted from each
sampling rate were processed in a separate branch and fused to
maintain the same resolution of the feature map while extracting
different scale perceptual fields to obtain multi-scale fish phenotypic
information, which is conducive to localizing small-size phenotypes
and edge recognition of large-size phenotypes. This process solved
the problems of complex multi-scale target segmentation and
inaccurate boundary prediction of different fin categories and
improved the accuracy of model edge segmentation.

3.2.2.1 Residual network structure module
ResNet has a residual module structure (He et al., 2016) and can

form a deep network model by stacking multiple residual blocks.

Additionally, ResNet can effectively avoid gradient disappearance
and explosion while extracting features in depth. During model
training, the deep network usually extracts high-level semantic
information; therefore, an appropriate backbone network depth is
critical. Two residual block types exist (Figure 7). Type A is when the
number of input feature map channels matches the number of
output channels. Type B is when the number of input channels does
not match the number of output channels, and convolution is
required to adjust the channel number. Each residual block
comprises three convolutional layers of 1 × 1, 3 × 3, and 1 × 1,
which are concatenated together. The residual block introduces the
input data x directly into the output part of the later data layer by
skipping F(x), thus preserving feature information of the previous
layer in the feature map H(x) of the last layer. This process protects

FIGURE 5
Histogram of fish phenotypic pixels.

FIGURE 6
RA-UNet model structure.
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the integrity of the information and reduces the loss of fish
phenotype feature information that arises from the conventional
convolution and downsampling operations of UNet. Therefore,
ResNet was built as the backbone extraction network of the
coding region to improve the precision of fish phenotype
segmentation.

3.2.2.2 Atrous spatial pyramid pooling
Fish phenotypes have different scales, causing unsatisfactory

fish edge segmentation. To improve fish phenotype
segmentation accuracy, we introduced ASPP into the UNet
decoder to prevent information loss after convolution, achieve
multi-scale feature extraction (Zhang and Zhang, 2022a; Zhang
and Zhang, 2022b), and improve the accuracy of model edge
segmentation. ASPP extracts multi-resolution feature responses
in single-resolution branches using expansion convolution with
different expansion rates. This feature extraction based on
multi-resolution analysis enhances the multi-scale description
capability of the network and expands the network field of view
to focus on the contextual information around fish phenotypes,
which is beneficial for discriminating different phenotypes
(Zhang, 2022). ASPP comprises multiple parallel cavity
convolution layers, which perform convolution and pooling
operations on the input feature maps at four sampling rates
of 1, 6, 12, and 18 (Figure 8). The results are then stitched
together to fuse multi-scale semantic information and expand
the number of channels. Subsequently, the number of channels is
changed by 1 × 1 convolution for output, enabling the feature
map to expand the perceptual field while ensuring high
resolution and allowing each convolution output to contain
an extensive range of feature information. This provides a
complement for information missed after fish edge
convolution and increases the accuracy and completeness of
edge segmentation.

4 Experimental and evaluation index

4.1 Experimental platform

The experimental platformwas based on theWindows 10 operating
system, and the computing equipment included an Intel(R) i7-11800H
processor, GeForce RTX3080GPU computing graphics cardwith 16 GB
of video memory, CUDA version 11.3, and Python 3.7 programming
language to perform a more accurate qualitative analysis of the
experiments. The network was trained using the Pytorch 1.9 deep
learning framework, and the training image size was standardized to
512 × 512. The model parameters are shown in Table 1.

4.2 Evaluation index

The Parameters, Giga Floating Point Operations (GFLOPs),
mean intersection over union (mIoU) and mean pixel accuracy
(mPA) were used as the evaluation indices to evaluate the
segmentation performance of different semantic segmentation
models objectively. The mIoU is the calculated and averaged
intersection ratio (IoU) of actual and predicted values for each
category, whereas the mPA is the sum of the proportion of correctly
classified pixels to all pixels for each category. The mean values are
calculated and averaged to determine the accuracy of the respective
classification for each category,

mIoU � 1
k + 1

∑k

i�0
pii

∑k
j�0pij + ∑k

j�0pji − pii

(1)

mPA � 1
k + 1

∑
k

i�0
pii

∑k
j�0pij

(2)

where k+1 denotes the predicted category plus a background, and pij
denotes the number of pixels in category i that are predicted to be in

FIGURE 7
Structure of the residual block: (A) when the number of input channels matches the number of output channels and (B) when the number of input
channels does not match the number of output channels.
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category j. Therefore, pii is a positive sample, pij is a false negative
sample, and pji is a false positive sample.

5 Results analysis and discussion

5.1 Model comparison experiments

The same fish phenotype segmentation dataset was used for training
and evaluation with current mainstream semantic segmentation models,
namely, FCN (Long et al., 2015), PSPNet (Zhao et al., 2017), HRNet (Sun
K. et al., 2019),Deeplabv3+ (Chen et al., 2018),UNet, Segformer (Xie et al.,
2021), on the same experimental platform to reflect the advancements of
the proposed algorithmand to verify that the performance of the proposed
algorithm for fish phenotype segmentation is better than that of other
semantic segmentation algorithms.

Table 2 shows the results of comparing different models for fish
phenotypic segmentation precision. The FCN model had the lowest
mIoU and mPA of 59.3% and 64.7%, respectively. The PSPNet and
Deeplabv3+ semantic segmentation models did not perform as well as
expected using limited datasets and shallow and deep semantic
information on the segmentation targets. The better segmentation

accuracy of the HRNet, UNet, and Segformer semantic segmentation
models showed that these models had stable segmentation abilities even
with small datasets and complex scenarios. However, the algorithm built
in this study generally achieved the best precision index. The mIoU was
87.8% higher than that of the FCN, PSPNet, HRNet, Deeplabv3 +, UNet,
and Segformer models, with increases of 28.5, 18.7, 7.5, 16.3, 5.0, and
3.5 percentage points, respectively. Moreover, the mAP was 92.3% higher
than the FCN, PSPNet, HRNet, Deeplabv3 +, UNet, and Segformer
models, with increases of 27.6, 17.5, 5.7, 13.5, 1.8, and 2.2 percentage
points, respectively. The above results show that the algorithm model
proposed in this study effectively improves the precision and accuracy of
fish phenotype segmentation and ismore adaptable than the othermodels
to fish phenotype segmentation with limited datasets and complex
scenarios so that each fish phenotype can be measured more accurately.

5.2 Experiments on the validity of model
segmentation

To further verify the effectiveness and segmentation effect of the
algorithm on fish phenotypes, the test set images were randomly
selected as the prediction dataset to represent the actual

FIGURE 8
Atrous spatial pyramid pooling module.
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segmentation effect of different models on each fish phenotype more
intuitively. The target fish in Figure 9A is in the swinging state. FCN,
PSPnet, and DeepLabv3 + did not recognize the small-scale fish eyes in
the figure, and the anal fin phenotype was missed and misidentified.
HRNet, UNet, and Segformer performed better, but none identified the

small-scale pectoral fin on the other side of the fish. However, the
algorithm built in this study was able to identify its edges. In Figures
9B,C, the FCN, PSPnet, HRNe, DeepLabv3 +, UNet, and Segformer
segmentation algorithms suffered from a loss of fish phenotype feature
information and blurred boundaries, e.g., the giant whiskers of the fish

FIGURE 9
Different model segmentations. The first column in the figure shows the method. Columns (A–C) show the dynamic images, and columns (D–E)
show the static images.
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head in Figure 9C could not be segmented. However, the algorithm
designed in this study could better segment the overall outline of each
fish phenotype. The six semantic segmentation models could not
identify the highly similar dorsal, pelvic, pectoral, and anal fin
phenotypes and omitted small-scale fish eyes during segmentation
(Figure 9D). In contrast, the algorithm built in this study could
accurately identify and segment each fish phenotype. The six
semantic segmentation models in Figure 9E were relatively rough in
handling the details of each phenotype, with the two pectoral fins
sticking together. However, the algorithm built in this study was clearer,
more detailed, and complete in handling the edge details.

In summary, the method developed in this study improved the
encoder and decoder parts of the UNet semantic segmentation algorithm
by constructing the Resnet50 network as an encoder to extract image
information. This resulted in a more pronounced improvement in the
segmentation results and enhanced the segmentation precision of each
phenotypic edge. The ASPP module was added to the decoder to
highlight key features, reduce misclassification and omissions, and
improve accuracy. Thus, the segmentation effect of the proposed
algorithm was substantially better than that of the other methods
regarding the prediction results. The proposed method can identify,
segment fish phenotypes efficiently and accurately, and quickly obtain
phenotype shape and size information, enabling aquaculturemanagers to
monitor fish growth conditions promptly.

5.3 Ablation experiment

Four ablation experiments were performed with the same fish
phenotype segmentation dataset in the same environment, and PA
and IOU were calculated for each dataset category to analyze the

different improvement strategies on each fish phenotype
segmentation and to evaluate the complexity of the model to
verify the algorithm improvement. Tables 3, 4 show the results of
the model accuracy and complexity evaluation for the four groups of
ablation experiments, respectively. Different improvement strategies
had different enhancements to the baseline UNet semantic
segmentation algorithm. After using the ResNet network as the
encoder of the UNet algorithm, the IoU and mPA of each fish
phenotype were improved. Although the mPA improvement was
unnoticeable, compared with the Unet + ASPP algorithm, the IoU
index for each phenotype improved substantially. The FLOPs were
only 184.1G, 64.1 percentage points less than that of UNet, resulting
in a 47.6 percentage point improvement in model inference speed
owing to the reduced model computation, as most of the
ResNet50 convolutional kernels were 1 × 1. Therefore, the
ResNet module can improve fish phenotype segmentation
accuracy and reduce the complexity of the model. Adding the
ASPP module to the UNet decoder improved mIoU by
1.6 percentage points, improving the integrity of the target
segmentation profile. Furthermore, mPA increased considerably
by 1.4 percentage points, demonstrating that the improvement
increases segmentation accuracy and reduces false detections at
the cost of detection time. Overall, the comprehensive ability of
the model in this study reached the optimum, with mIoU and mPA
of 87.8% and 92.3%, respectively, 5.0 and 1.8 percentage points
higher than the UNet model, and the computation required by the
model in this paper is 47.2 percentage points lower. The inference
speed was 15.1 percentage points higher than that of the UNet
model, proving that the model in this study had better fish
phenotype segmentation performance, could reduce noncontact
fish phenotype measurement errors, and could more accurately
analyze the fish phenotype proportion relationship in aquaculture.

5.4 Discussion

5.4.1 Index analysis
As the mainstream target semantic segmentation algorithms, the

FCN, PSPNet, and Deeplabv3 + methods were unsatisfactory
regarding the mIoU and mPA evaluation indices and had poor
segmentation results for fish phenotypes. In contrast, HRNet, UNet,
Segformer, and the proposed algorithm obtained a relatively
satisfactory segmentation effect; therefore, we profiled the seven
semantic segmentation algorithms on each phenotype metric.
Figure 10A shows the IoU and PA indexes for each phenotype of
the FCN algorithm. The FCN algorithm was better trained for the
body, dorsal fin, caudal fin, and head phenotypes, presenting a high
segmentation accuracy. However, the index values for the eye, pelvic
fin, anal fin, and pectoral fin were relatively low, indicating that the
FCN algorithm cannot segment these small targets, leading to
incorrect and incomplete segmentation. Figures 10B,D show the
IoU and PA indexes for each phenotype of the PSPNet and
DeepLabv3 + algorithms, respectively. The two algorithms had
better segmentation ability for the body, dorsal fin, pelvic fin,
anal fin, caudal fin, pectoral fin, and head. However, the fish eye
index had an extremely low value, with IoU values of 6.4% and
10.2% and IoU values of 6.5% and 10.5%, respectively. The FCN,
PSPNet, and Deeplabv3 + algorithms are better at recognizing

TABLE 1 Training model parameters.

Parameters Configuration

epoch 300

batch_size 8

initial learning rate 0.0001

optimizer adam

momentum 0.9

TABLE 2 Comparing the results of the different semantic segmentationmodels.

Model mIoU (%) mPA (%)

FCN 59.3 64.7

PSPNet 69.1 74.8

HRNet 80.3 86.6

Deeplabv3+ 71.5 78.8

UNet 82.8 90.5

Segformer 84.3 90.1

Our 87.8 92.3
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larger-sized phenotypic structures; however, slight variations in
detail were observed within the pixel blocks between the fins
when segmenting the pelvic fin, anal fin, pectoral fin, and eye.
Moreover, the limited available information resulted in poor
segmentation. Thus, the lower mIoU and mPA values were due
to the weak segmentation recognition of small-scale phenotypes.
This resulted in poor phenotypic evaluations for the fish eye, which
decreased the mean values. From the pixel histogram of each
phenotype, the fish eye had the lowest proportion of pixel points
in the dataset, likely because of the uneven proportion of data across
phenotypes. This likely led to the imbalance in the segmentation
target recognition ability of the FCN, PSPNet, and Deeplabv3 +
algorithms, illustrating the importance of a balanced sample size of
different kinds of data. Image imbalance has also been studied
(Zhang et al., 2021), and this aspect can be explored in the
future to ensure the effectiveness of algorithm training.

Figure 10C, E, F show that the HRNet, UNet, and Segformer
segmentation algorithms performed well overall. However, these
algorithms were still problematic regarding missing edge
information, especially a lack of useful semantic information in
the graph. Because of the conventional convolution and
downsampling processes used to reduce the feature map, the
extracted semantic information was lost, fish eye and small-sized
phenotypic data segmentation were more rounded, and the fins were
connected. Thus, the angular shape of each fish phenotype could not
be captured well, and a considerable amount of edge information on
the phenotype was missing. Figure 10G shows that the algorithm
presents an equilibrium state for each phenotype indicator,

indicating that the algorithm has excellent segmentation ability
for small- and large-scale phenotypes and can better handle fish
phenotype segmentation with a limited dataset.

5.4.2 Generalization ability of the proposed model
Table 5 shows the experiments related to UNet and the

algorithms using the PASCAL VOC 2012 benchmark dataset, a
public dataset for world-class computer vision challenge image
classification, detection, or semantic segmentation. This dataset
included 1,464 images in the training set and 1,449 images in the
validation set and contained 20 categories and 1 background. The
algorithm proposed in this study had good generalization capability,
with increased mIoU and mPA of 5.7 and 5.4 percentage points,
respectively, compared to those of UNet. The proposed model also
improved segmentation precision and accuracy in all categories and
could obtain high-precision results for large-scale categories, such as
aircraft, buses, and cars, indicating that the improved model can
handle contour details better. The most significant improvement
was achieved for small-scale targets, such as bicycles, bottles, dining
tables, and horses. The mIoU and mPA improved by 6.2 and
6.5 percentage points for small-scale targets, respectively,
compared with the UNet algorithm, indicating that the improved
strategy of the algorithm built in this study can improve the accuracy
and precision of small-scale category segmentation and increase the
integrity of edges.

The RA-UNet model had better segmentation ability and
robustness and achieved high accuracy and precision due to
optimizing the backbone feature extraction network and

TABLE 3 Assessment table for model segmentation accuracy.

Index Model Backg
round

Body Fish
eye

Dorsal
fin

Pelvic
fin

Anal
fin

Caudal
fin

Pectoral
fin

Head Average

IoU/% UNet 99.1 93.1 50.7 79.8 80.3 78 86.6 88.6 88.9 82.8

UNet +
ResNet

99.3 94.7 58.7 83.1 81.7 80.6 87.1 90.6 91.2 85.2

UNet + ASPP 99.1 93.4 55.8 81.6 81.2 80.8 87.2 89.8 90.4 84.4

Our 99.4 95.6 68.5 84.3 84.7 83.7 88.9 91.8 93.3 87.8

PA/% UNet 99.4 97.5 72.8 88 89.1 89.7 92 91.2 94.8 90.5

UNet +
ResNet

99.7 97.5 75.5 90.1 89.9 88.9 92.2 91.4 94.6 91.1

UNet + ASPP 99.4 97.8 76.2 92.7 91.2 90.4 92.1 91.8 95.5 91.9

Our 99.6 98.5 78.5 91.1 90.6 90.2 92.5 92.6 96.7 92.3

TABLE 4 Assessment table for model complexity.

Model Parameters/M FLOPs/G FPS Model Size/(MB)

Unet 34.5 512.6 21.2 135

Unet + resnet50 43.9 184.1 31.3 172

Unet + ASPP 90.2 865.9 16.8 334

Our 57.8 270.5 24.4 226
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enhancing the decoder. Moreover, RA-UNet had a high
generalization ability. Therefore, this can be applied to different
scenes and datasets.

6 Conclusion

Existing segmentation methods cannot segment fish phenotypes
quickly and accurately. Furthermore, manual observation causes
problems such as consuming human and material resources, easy
damage to fish, and high subjective influence. We propose an
intelligent RA-UNet fish phenotype segmentation method based
on residual network and multilayer parallel cavity convolution to

improve the efficiency and accuracy of fish phenotype segmentation
and reduce the perturbation to fish.

The RA-UNet feature extraction network comprises ResNet50,
which reduces the loss of fish phenotypic feature information and
boundary-blurring caused by conventional convolution and other
operations and greatly reduces the network parameters, improving
the detection speed. In addition, the ASPP module is integrated to
expand the perceptual model field and improve the segmentation
accuracy of fish phenotypic edges. We validated the feasibility and
effectiveness of this method on a self-constructed fish phenotype
segmentation dataset. The proposed method has higher accuracy
than other semantic segmentation methods. With mIoU and mPA
reaching 87.8% and 92.3%, respectively. We conducted fish
phenotype segmentation experiments to verify the effectiveness of
the proposed model in practice. The algorithm used in this study has
the highest segmentation completeness, clear and complete
phenotypic edges, and can quickly obtain phenotypic shape and
size information. We also conducted an extensive ablation study to

FIGURE 10
Phenotype indices for the different semantic segmentation
models. The IoU for each fish phenotype is shown on the left, and the
mPA for each is on the right.

TABLE 5 PASCAL VOC 2012 comparison results.

Scale Cases IoU/% mPA/%

UNet Our model UNet Our model

Large Background 93.2 94.3 97.4 97.5

Airplane 82.6 87.2 91.1 93.4

Bus 85.6 90.7 89.3 97.3

Car 81.2 85.9 88.6 90.2

Boat 63.7 70.6 80.7 79.9

Train 77.2 82.3 86.2 90.4

Average 80.6 85.2 88.9 91.5

Small Bicycle 45.6 55.8 68.9 83.4

Bottle 61.3 67.2 66.9 74.1

Dining table 46.9 61.9 51.1 70.2

Horse 66.7 78.3 82.4 92.0

Chair 31.8 34.2 40.6 51.7

Cow 68.0 78.9 75.8 84.6

Dog 77.5 84.1 87.2 94.7

Bird 84.9 86.7 89.4 93.9

Motorbike 75.5 82.9 86.1 89.7

Person 82.8 84.7 89.8 91.6

Potted plant 49.0 52.2 55.3 59.5

Sheep 73.8 77.7 84.4 88.4

Sofa 47.0 48.9 61.0 62.2

Cat 83.8 89.5 94.8 94.7

Tv monitor 70.9 75.4 77.9 78.9

Average 64.4 70.6 74.1 80.6

Average 69.5 75.2 78.8 84.1
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confirm the effectiveness of each technique. Finally, we discuss the
generalization ability of the proposed model using the PASCAL
VOC 2012 dataset for researchers in other directions. In the future,
the model can be lightly processed and deployed in intelligent robots
for directly measuring the phenotypic parts in an underwater
environment, estimating weights, and assessing the distribution
of fish growth stages in farms to promote the transformation of
aquaculture to intelligence.
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