
Groundwater monitoring and
specific yield estimation using
time-lapse electrical resistivity
imaging and machine learning

Jordi Mahardika Puntu1, Ping-Yu Chang1,2*,
Haiyina Hasbia Amania1, Ding-Jiun Lin1, Chia-Yu Sung1†,
M. Syahdan Akbar Suryantara1, Liang-Cheng Chang3 and
Yonatan Garkebo Doyoro1,4,5

1Department of Earth Sciences, National Central University, Taoyuan, Taiwan, 2Earthquake-Disaster, Risk
Evaluation and Management Centre, National Central University, Taoyuan, Taiwan, 3Department of Civil
Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, 4Earth System Science, Taiwan
International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan, 5Department of Applied
Geology, School of Natural Sciences, Adama Science and Technology University, Adama, Ethiopia

This paper presents an alternative method for monitoring groundwater levels and
estimating specific yields of an unconfined aquifer under different seasonal
conditions. The approach employs the Time-Lapse Electrical Resistivity
Imaging (TL-ERI) method and machine learning-based time series clustering. A
TL-ERI survey was conducted at ten sites (WS01-WS10 sites) throughout the dry
and wet seasons, with five-time measurements collected for each site, in the
Taichung-Nantou Basin along the Wu River, Central Taiwan. The obtained
resistivity raw data was inverted and converted into normalized water content
values using Archie’s law, followed by applying the Van Genuchten (VG) model for
the Soil Water Characteristic Curve to estimate the Groundwater Level (GWL), and
estimated the theoretical specific yield (Sy) by computing the difference between
the saturated and residual water contents of the fitted VG model. In addition, the
specific yield capacity (Sc), representing the nature of the storage capacity in the
aquifer, was also calculated. The results showed that this approach was able to
estimate those hydrogeological parameters. The spatial distribution of the GWL
reveals that during the dry-wet seasons from February to July, there was a high
GWL that extended from southeast to northwest. Conversely, during the wet-dry
seasons from July to October, the high GWL shrank, which can be attributed to
recharge variations from rainfall events. The determined spatial distribution of Sy
and Sc fall within the range of 0.03–0.24 and 0.14–0.25, respectively. To
quantitatively establish areas of similar groundwater level changes along with
the VG model parameter variations during the study period, a Time series
Clustering analysis (TSC) was performed by utilizing Hierarchical Agglomerative
Clustering (HAC). The findings suggest that the WS03 site is a promising area for
further investigation due to its highest Sc valuewith a slight change in groundwater
levels during the dry and wet seasons. This study brings an advanced development
of the geoelectrical method to estimate regional hydrogeological parameters in
an area with limited available groundwater observation wells, in different seasonal
conditions for groundwater management purposes.
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1 Introduction

Monitoring and evaluating regional hydrogeological parameters,
including groundwater levels and specific yield over time, is essential
for understanding the impact of climate change on groundwater
systems. Traditionally, these parameters are acquired from
observation wells alongside pumping wells (Ramsahoye and Lang,
1961; Taylor andAlley, 2001; Gopinathan et al., 2020). However, these
approaches can be challenging, especially in regions with few or no
available observation and pumping wells, as it can be expensive to
install and maintain them. To address this issue, this study aims to
develop an alternative method to monitor groundwater levels and
estimate specific yields by applying Time-Lapse Electrical Resistivity
Imaging (TL-ERI). TL-ERI offers numerous benefits that make it a
valuable method for monitoring groundwater. Firstly, it is non-
invasive and non-destructive, minimizing its adverse effects on the
environment. Secondly, it provides high spatial coverage through the
utilization of multi-channel electrodes. Thirdly, TL-ERI enables
continuous monitoring, facilitating the assessment of groundwater
levels and variations over extended periods. Moreover, TL-ERI
presents a cost-effective alternative to traditional observation wells.
Additionally, TL-ERI exhibits versatility in various hydrogeological
settings, making it adaptable to diverse research and monitoring
objectives. Finally, it demonstrates high sensitivity to changes in
water content (Lech et al., 2020; Wahab et al., 2021). Owing to
these advantages, several previous works utilized this method. For
instance, Tesfaldet and Puttiwongrak (2019) used time-lapse electrical
resistivity to characterize the seasonal groundwater recharge through
the vadose zone and stream, and their result showed a significant
decrease in resistivity in the transition of the dry season to the rainy
season and vice versa. Aduojo et al. (2018) investigated the impact of
seasonal variation on groundwater quality around the dumpsite using
the time-dependent electrical resistivity method. Chang et al. (2016)
conducted a time-lapse resistivity method during a pumping test.
Through the study, they found that the variation in the resistivity
changes in the vadose zone correlated to the change in groundwater
level in the stepwise phase, which means that the measured vertical
resistivity changes can indicate the depths of groundwater tables.
Moreover, Bai et al. (2021) integrated time-lapse electrical resistivity
and self-potential data to monitor the groundwater flow in the vadose
zone. In addition, many attempts have been made by researchers to
extract more information about the hydrogeological parameters
derived from the resistivity method, such as hydraulic conductivity,
specific yield, and transmittivity (Chang et al., 2017; Dietrich et al.,
2018; Perdomo et al., 2018; Hasan et al., 2020; Akhter et al., 2022).
Although TL-ERI has shown promising results in groundwater studies,
there are notable challenges associated with its implementation,
including the equipment and logistical prerequisites, such as the
number of electrodes and the involvement of field researchers, as
well as limitations in the depth of penetration and the intricacy
involved in interpreting the acquired data. To address these
challenges, meticulous preparations for data acquisition, processing,
and interpretation were undertaken in this study.

This study was conducted in the Taichung-Nantou Basin along the
Wu River in Central Taiwan. Despite the annual precipitation exceeds
2.500 mm, which is 2.5 times the global average, only 18% of surface
runoff can be utilized for domestic, agricultural, and industrial purposes.
Geographical features as well as the uneven spatial and temporal
distribution of rainfall, have contributed to this phenomenon (Hsu
et al., 2020; Huang et al., 2012; Hwang, 2003; Lee et al., 2006; Wang
et al., 2021).Moreover, Hsu et al. (2020) have already noted a significant
disparity in the precipitation between the wet and dry seasons.
Approximately 70% of rainfall occurs during the wet season, which
spans fromMay to October and is characterized by seasonal monsoons
and typhoons, whereas limited rainfall is observed in the dry season,
from November to April. Consequently, Taiwan faces a relatively high
risk of experiencing meteorological drought (Huang et al., 2012).
Additionally, a study by Hung and Shih. (2019) indicated that the
majority of drought cases occur during the dry season, particularly in
central to southern Taiwan, which includes the present study area. If the
meteorological drought persists for an extended period and affects the
groundwater system, it can lead to groundwater drought, posing a
significant problem in Taiwan, as groundwater serves as a major water
resource for the country (Bai et al., 2019; Chen et al., 2020; Han et al.,
2019; Yeh and Hsu, 2019). Thus, conducting a comprehensive analysis
and evaluation of groundwater under different seasonal conditions is
highly recommended to facilitate effective management practices in the
study area.

The purpose of the present study is to introduce an innovative
approach to groundwater monitoring and evaluation. This approach
involves integrating in-situ resistivity surveys into soil-water
characteristic models and utilizing the time series clustering
algorithm, specifically Hierarchical Agglomerative Clustering,
along with Principal Component Analysis (PCA) for result
interpretation. The proposed method offers an alternative and
efficient means for researchers to determine regional
hydrogeological parameters, particularly in areas with limited
available observation wells and under varying seasonal
conditions. Moreover, this study demonstrates the application of
machine learning techniques to analyze and interpret the dataset,
highlighting its potential for groundwater management purposes.

2 Materials and methods

2.1 The study area

Taiwan is bisected by The Tropic of Cancer, where its northern
and central regions are subtropical while the southern regions are
tropical. This distinct condition leads the weather to vary
considerably across the island (Chen et al., 2021; Dibaj et al.,
2020; Hung et al., 2017). The accumulated precipitation in the
study area during 2018 is shown in Figure 1. It fluctuated during
the dry and wet seasons with the highest and the lowest accumulated
precipitation in August and December with 449.5 mm (the wet
season) and 2.0 mm (the dry season), respectively.
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The study area is located in the Taichung-Nantou Basin along
the Wu River in Central Taiwan (Figure 2). This basin covers parts
of Taichung city, Nantou County, and Changhua County. The study
area encompasses the Maoluo River in the south, the Touke Hill
lands of Nantou in the east, the southern district of Taichung City in
the north, and the Bagua Plateau in the west. The average ground

elevation ranges from 30 to 65 m above sea level, with the highest
elevation found in the southeastern region and gradually decreasing
towards the northwest of the study area.

Furthermore, the geological setting of the study area is mostly
composite by the alluvial deposits, in which the western side of the
survey area faces Bagua Hill, which includes the Toukoshan

FIGURE 1
The annual precipitation accumulation in the study area during 2018.

FIGURE 2
The geographical map from the Taichung-Nantou Basin. The survey area (red rectangle) is located in between the Hills across the Wu River.
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formation and the terrace deposits, as well as the Pakushan
Anticline. The Tokushan formation is classified into three
divisions: the lower division (up to 900 m thick) consists of
sandstone and shale with a pebbly horizon, the middle division

(50–100 m) consists of an alternating bed of sand, clay, and gravel
that containing fresh-water, the upper-division consists of several
hundred meters of massive conglomerate with a few thin beds of
crudely cross-bedded sandstone. The terrace deposits consist mainly

FIGURE 3
The distribution of resistivity survey lines (red line) along the Wu River. The magenta circle represents the location of the observation wells.

FIGURE 4
The workflow of the present study.
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of unconsolidated gravel with flat-lying sandy or silty lenses. The
west side of the survey area is Touke Hill, where the Chelungpu Fault
is found along the edge of the hill. The area is also traversed by two
rivers, the Maoluo river and the Wu River, whose branches
confluence on the northwest right. The alluvial deposits mainly
consist of thick gravel and sand with good permeability, making the
area highly potential for groundwater recharge (Ho and Chen,
2000).

2.2 The electrical resistivity imaging design
and the resistivity survey

To investigate the groundwater condition, we conducted ten
Electrical Resistivity Imaging (ERI) survey lines (shown in red in
Figure 3) around three observation wells (shown as magenta
circles). In order to analyze the influence of seasonal conditions
on the trends of ERI results, we performed time-lapse surveys at
consistent survey sites during both the dry and wet seasons. A
comprehensive dataset spanning five distinct periods was
collected, encompassing February (dry season), May (transition
from dry to wet seasons), July (wet season), September (wet
season), and October (transition from wet to dry seasons). This
methodological approach enabled us to meticulously examine and
analyze the discernible patterns exhibited by the ERI results across
diverse seasonal contexts.

The fundamental idea of the resistivity method involves injecting
current into the subsurface using a pair of electrodes. This current
generates a potential difference in the subsurface, which is measured
and monitored by another pair of electrodes, resulting in the
measurement of the apparent resistivity. It’s important to note
that the apparent resistivity represents the collective measurements
of the electrical properties of all the subsurface layers within
the corresponding electrode configuration. Therefore, an additional

inversion process is required to determine the true resistivity value,
which can provide valuable information about the subsurface
lithology or materials. Figure 4 summarizes the workflow of the
present study.

This study utilized the 4-point light 10 W resistivity meter and
the active electrode (ActEle) system (Lippmann Geophysical
Instruments) (Lippman, 2014) in Wenner-Schlumberger
configuration with a 1 m electrode spacing for the field data
measurements. Wenner-Schlumberger configuration is less
susceptible to noise than the other arrays, which means that it
yields a high signal-to-noise ratio with better sensitivity to
horizontal structure (Dahlin and Zhou, 2004). The raw data was
later inverted with the EarthImager2D™ version 2.4.2.627
(Advanced Geosciences, 2006). For a detailed review of the
resistivity method inversion techniques, we forward readers to
Sharma and Verma (2015).

2.3 Estimation of the groundwater level and
the specific yield

After the inverted resistivity section was obtained, we carried out
the groundwater level estimation of the study area. First, we calculated
the water contents in the five vertical profiles in the central part of each
resistivity survey line for the estimation of water content by adopting a
similar process to Dietrich et al. (2018).Wemay deduce fromArchie’s
Law (Archie, 1942) how formation resistivity relates to porosity,
saturation, and pore water resistivity in a clay-free matrix:

ρ � αρwϕ
−nSw−m (1)

where ρ is the formation resistivity, ρw is the pore water resistivity, ϕ is the
porosity, Sw is the saturation, and α, m, and n are empirical parameters.
Parameters m and n are usually termed saturation exponent and
cementation factor, respectively. For general homogeneous rocks and

FIGURE 5
The normalized volumetric water content derived from vertical profiles of the ERI measurements. The dashed curve represents the fitted Van
Genuchten (VG) model, which depicts the relationship between normalized water content and height from a presumed baseline.
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soils, m ranges from 1.8 to 2.2, and n is about 2; so, m = n � 2. On the
other hand, it should be noted that the empirical factor α is not included
in its original form of Archie’s law [Detailed in Glover. (2015)].

As it is known, the volumetric water content (θ) at the saturation
point is equivalent to the total soil pore space, expressed as

θ � ϕ−nSw−m (2)
considering the value of m and n, and substituting Eq. 2 into Eq. 1,
ρf will yield

ρ � ρwθ
−2 (3)

If we assume that the resistivity value varies only with the water
saturation, we can calculate the normalized relative saturation (Sr) at
different depths in the vadose zone as

Sr � θu
θs

�
��
ρs
ρu

√
(4)

where θu, θs, ρu, and ρs are unsaturated layer volume water content,
saturated layer volume water content, unsaturated layer formation
resistivity, and saturated layer formation resistivity, respectively. In this
case, the lowest resistivity value obtained from the ERI of each site was set
as ρs, and the data of the topmost 2m are eliminated because it represents
the properties of the surface soil layer instead of the properties of the
gravel layer. Next, we can obtain the normalized volumetric water content
by multiplying Sr and ϕA (Average Porosity, 0.26), expressed as

θ � SrϕA (5)
Figure 5 depicts how the normalized volumetric water content

varies from the ground surface to the saturated layer in an unconfined
aquifer, as determined from selected resistivity measurements.

We observed in Figure 5 that the vertical change in the water
content shows a similar tendency to the Soil-Water Characteristic
Curve (SWCC) obtained in lab tests, e.g., (Chin et al., 2010; Fredlund

et al., 2011; Habasimbi and Nishimura, 2018; Azmi et al., 2019; Eyo
et al., 2022). Hence, if we assume that the suction head is linearly
proportional to the elevation of the groundwater level in the
unconfined aquifer as discussed in Krahn and Fredlund (1972)
and Stephens (2018), we then can estimate the groundwater level
quantitatively and the relative hydraulic parameters in the vadose
zone with the SWCC model. We applied the Van Genuchten (VG)
model (Genuchten, 1980) that describes the physical relationship
between the water contents and suction in the vadose zone through
the following equation:

θ h( ) � θr + θs − θr( )
1 + αh( )n[ ]m; where; m � 1 − 1/n (6)

Eq. 6 has four independent parameters, such as θs, θr, α, and n that need
to be estimated from observed SWCC. Where θs is the saturated water
content (L3/L3); θr is the residual water content (L3/L3); α is a parameter
related to the air entry pressure (L−1), and n is a dimensionless parameter
related to the pore-size distribution of soil and h is the suction head (L).
Furthermore, with the VGmodel of SWCC, we were able to estimate the
air entry suction head relative to the same base (ha), if we designate a
saturated base with a depth of (Hs) and assume that the section head is
proportional to the height of the presumed saturated base. Thus, it is
possible to calculate the depth of the groundwater table (D):

D � Hs − ha (7)
We could invert the VG parameters and the air entry suction or

heights from the base depth by minimizing the root mean square
differences between the estimated and measured water content. To
optimize the minimum object equation in the inversion, we utilized
the Generalized Reduced Gradient (GRG) nonlinear program. Once
we determined the groundwater depth, we advanced to estimate the
groundwater level (GWL) by subtracting D from the ground level
(GL), expressed as:

GWL � Gl − D (8)

FIGURE 6
The inverted resistivity images of the survey lines in the Taichung-Nantou Basin along the Wu River during 2018.
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In addition, we can obtain the theoretical specific yield, Sy (Eq. 9) by
subtracting the residual water content from the saturated water content
and the specific yield capacity, Sc (Eq. 10) with the VGmodel in Eq. 6, as:

Sy � θs − θr (9)
Sc � 1

D
∫D

0
θs − θ h( )( )dD � 1

D
∑D

0
θs − θ h( )( )ΔD (10)

where θ(h) is the volumetric water content at a different depth, h,
and ΔD is the incremental depth (Chang et al., 2022). We will
discuss the Sy and Sc later in the discussion.

2.4 Time series clustering analysis (TSC)

Time series clustering (TSC) is an unsupervised machine-
learning technique for identifying and grouping similar objects or
data points into structures that are easier to understand. This
technique is useful and capable of enhancing the interpretation
and provides an intuitive explanation of relevant aspects of given
time series datasets. Accordingly, it may lead us to discover
interesting patterns that can be either frequent or rare patterns
(Aghabozorgi et al., 2015; Rodriguez et al., 2019). A primary benefit
associated with a TSC solution is its ability to automatically recover
from failures, thereby eliminating the need for user intervention,
compared to classification, the TSC not required prior information
as label data. However, TSC entails certain drawbacks, namely, its
inherent complexity and the inability to recover from database

corruption. To address this limitation, the PCA (Principal
Component Analysis) technique is utilized to reduce complexity,
and preliminary data preparation steps are applied to prevent
database corruption, such as removing blank data. The outcome
of this method is the generation of a clustered resistivity value, which
is determined based on its similarity to other values. This clustering
allows for the identification and analysis of noteworthy patterns.

In this study, we attempted to use Hierarchical Agglomerative
Clustering (HAC) by using the Orange data mining toolbox in python
(Demsa et al., 2013). The toolbox effectively aids our aim to group
synchronous and linearly correlated series or similarities in time. We
were able to accomplish two tasks by utilizing such a technique: first,
we managed to explain the trend of each site based on the VG model
parameters over time in the area, and second, to describe the variation
of groundwater level changes over time in the area. Nevertheless, TSC
can be challenging due to the enormous complexity or dimensionality
of the time series datasets. For instance, the second task dataset has a
higher dimension (7200 × 4) compared to the first task dataset (50 ×
3), therefore dimensionality reduction is necessary to conduct for the
second task before applying the HAC, i.e., Principal Component
Analysis (PCA).

2.4.1 Principal component analysis (PCA)
Principal Component Analysis (PCA) is a widely used algorithm

prominently for dimensionality reduction. It useful to identify
patterns in the dataset based on the correlation between its
features. This projection-based method transforms the dataset

FIGURE 7
The time-lapse resistivity images collected at site WS05.
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(features) by projecting them onto a new subspace with equal or
lower dimensions while keeping the essence of the original data. This
step has several advantages, including reduced memory
consumption and speed-up the clustering, noise reduction, and
the harmonization of unequal data length or resolution, and the
disadvantages of this method is that data standardization is a
prerequisite before implementing PCA. This requirement
introduces an additional step in the process. Furthermore, in
order to apply PCA, all categorical features need to be converted
into numerical features through standardization (Delforge et al.,
2021). To assign equal weights (contributes equally) to the original
dataset throughout the analysis phase, data standardization is
compulsory prior to PCA, i.e., Z-standardization. Mathematically,
this can be done by subtracting the mean (μ) from the individual
data (X) and dividing by the standard deviation (σ):

Xz � X − μ

σ
(11)

The outcome of PCA is a smaller set of summary indices. We
refer the readers to Salem and Hussein. (2019) for the
comprehensive principles and procedures of the PCA.

2.4.2 Hierarchical agglomerative clustering (HAC)
HAC is a technique that uses bottom-up approaches which

start with single data as a single cluster and merge them until one

big cluster remains. The necessary procedure in order to accomplish
the goal involves data preparation, similarity measures, and linkage
criteria (Dumont et al., 2018; Delforge et al., 2021; Puntu et al.,
2021). HAC exhibits several advantages over other algorithms.
Firstly, its implementation is straightforward. Secondly, it can
generate a meaningful ordering of objects, facilitating visual
representation through dendrograms. Additionally, HAC provides
comprehensive insights into the degree of similarity among
individual observations. Furthermore, it eliminates the need for
pre-specifying the number of clusters or relying on pre-labeled data.
Nevertheless, the algorithms also possess certain disadvantages. For
instance, once a certain step is executed, it cannot be reversed or
undone. In the event of new data being introduced, the entire
process must be initiated again from the beginning. Furthermore,
as HAC is a component of TSC, it inherits inherent complexity and
lacks the capability to recover from database corruption. Certainly,
in this study, we have taken into consideration all these limitations
by thoroughly preparing the data and employing a dimensionality
reduction technique like PCA.

The dataset is prepared in a way where the rows represent the
observations and the columns represent the features or variables.
For the first task (VG model), there are three features that act as
data inputs: a, n, and Sc for all measurements. a and n are the
fitting shape parameters related to the air entry pressure and the
pore-size distribution, respectively. Sc (Specific Yield Capacity)
was included in the algorithm to simplify the relationship

FIGURE 8
The resistivity differences distribution from each month against the dry season (February).
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between the residual and saturated water contents. For the
second task (Groundwater Level Variation), the feature is
the groundwater level difference against the measurement of
the previous month, such as the GWL difference between

May-February, July-May, September-July, and October-
September (4 Features).

The Euclidean distance was chosen for the similarity measures
to determine which clusters should be combined. It is the square root
of the sum of the square differences:

d Qi,Qj( ) �
������������������������
Q1x − Q2x( )2 + Q1y − Q2y( )2√

(12)

where d is the Euclidean distance, x and y are the row index, andQ is
the point data. Note that the distance between two objects is 0 when
they are perfectly correlated.

Furthermore, the linkage criteria determined the distance
between sets of observations as a function of the pairwise
distances between them. This study focuses on the ward linkage

FIGURE 9
The fitted VG model for different months along the survey sites in the Taichung-Nantou Basin. The dashed curves indicate the models for the
months in the wet season, and the solid curves are the fitted models for the months in the dry season.

TABLE 1 The estimated parameters of the VG model from the time-lapse
resistivity surveys at site WS05.

Parameter February May July September October

a 8.82 7.33 9.63 8.14 10.46

n 1.71 1.58 3.12 1.91 1.90

θs 0.26 0.26 0.26 0.26 0.26

θr 0.10 0.10 0.05 0.08 0.10
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method (Ward, 1963) that minimizes the total within-cluster
variance, express as:

d u,v( ) � δ2 u, v( ) � u| | v| |
u| | + v| | u − v‖ ‖2 (13)

where u and v are the cluster data. HAC provides a nested structure of
the clustering where all the sequences of merges are recorded into a
tree-like diagram called a dendrogram. The results of HAC yield
clustered data, organized according to their similarity, with the aim of
identifying patterns and characteristics exhibited by each data group.

2.4.3 Time series clustering evaluation
Since the clustering method is an unsupervised method where

the ground-truth labels are usually unavailable, an essential question
that one should consider is how many clusters are suitable to
describe the dataset. To evaluate the optimal number of clusters
(k), we performed the Silhouette Index (SI), a method that measures
how similar the data is to other data in the same cluster (cohesion
and compactness) in comparison with the data of other clusters
(separability) (Dudek, 2020; Delforge et al., 2021; Puntu et al., 2021).
Mathematically, we write it down as:

SI � 1
n
∑n

i�1
b i( ) − a i( )

max a i( ); b i( ){ }, SI ∈ −1, 1[ ] (14)

a(i) stands for the average distance from data i to other data
belongings to its own cluster (Pr); (data i belongs to cluster Pr), and
b(i) stands for the average distance from data i to other data
belongings to neighborhood cluster (Ps); (data i does not belong
to cluster Ps), expressed as:

a i( ) � ∑
k∈ Pr\i{ }dik/ nr − 1( ) (15)

b i( ) � min
s≠r

diPs{ }, diPs � ∑
k∈Ps

dik/ns (16)

where dik and diPs are distance matrix, nr and ns are the number of
data in cluster Pr and Ps, respectively.

3 Results

3.1 The time-lapse ERI surveys

Five period of ERI surveys were carried out at ten sites in the
Taichung-Nantou Basin along the Wu River in 2018. Figure 6 shows
the inverted resistivity images for the ten sites, and Figure 7 shows
the time-lapse resistivity images collected at the WS05 site.

WS01 to WS04 sites are located on the northern part of the Wu
River, while WS05 to WS10 sites are located on the southern part of
theWu River and the northern part of theMaoluo River, as shown in
Figure 3. In general, the resistivity values vary in the range of 40 to
1,400Ωm. The topmost 2 m layer with low resistivity anomaly from
40 to 100Ωm (bluish color) represents the soil layer of the paddy
field. Thus, we excluded this layer in order to estimate the
normalized water content (see Section 2.3). Below this layer, the
resistivity increases to over 400Ωm until a certain depth (yellowish
to reddish colors) that mostly lies around 8 m depth. At some point,
the resistivity decreases from the peak of over 1,000Ωm to a level
between 200 and 300 Ωm. Such trend may reflect the effect of the
increasing water content from the lower vadose zone to the
saturation zone (transition zone). This resistivity trend is
detected in every survey line. This implies that the study area lies
on the same lithological formation, i.e., Sand, Clay and Gravel (see
Section 2.1). Interestingly, the inverted resistivity images located
nearby the confluence of two rivers (WS01 and WS05) are

TABLE 2 The estimated groundwater levels were collected at survey sites and observation wells in 2018.

Survey line Longitude Latitude Ground level (m) Groundwater level (m)

February May July September October

WS01 120.640 24.063 38 22.9 23.3 23.7 24.0 23.8

WS02 120.647 24.051 50 36.4 36.4 37.5 37.4 36.7

WS03 120.655 24.043 55 46.7 47.3 47.5 45.6 46.2

WS04 120.668 24.035 61 44.9 45.8 51.4 51.2 46.2

WS05 120.632 24.052 42 26.7 27.3 27.7 27.7 27.5

WS06 120.630 24.046 42 26.5 27.6 28.3 27.8 27.3

WS07 120.638 24.042 50 35.1 35.9 36.4 36.3 35.3

WS08 120.639 24.037 48 35.0 35.7 36.4 35.8 35.1

WS09 120.644 24.031 52 38.8 38.9 39.1 38.9 37.2

WS10 120.654 24.023 63 48.6 49.0 49.5 50.3 49.8

98GH-09 120.628 24.058 33 26.8 27.4 27.7 27.7 27.5

98GH-11 120.644 24.071 39 34.6 35.2 35.5 35.5 35.2

98GH-06 120.662 24.020 59 48.9 50.3 50.6 49.5
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dominated by blue and green contour colors (low resistivity), while
the WS04 and WS10 located on the upper course are dominated by
yellow and red contour colors (high resistivity).

The inverted time-lapse resistivity images of WS05 collected in
2018 reveal a significant resistivity variation in the vadose zone

between the dry and the wet seasons. The region with a high
resistivity value (>500 Ωm) shrank from February to July
indicating the water content in the vadose zone increased due to
an increase in rainfall recharge. Meanwhile, the region with a low
resistivity value (<150Ωm) expanded from July to October owing to

FIGURE 10
The spatial distributions of the groundwater levels in (A) February (the dry season), (B) May (the transition of dry-wet seasons), (C) July (the wet
season), (D) September (the wet season), (E) October (the transition of wet-dry seasons) in 2018.
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limited rainfall. The inverted resistivity image on July (wet season)
shows the lowest resistivity distribution compared to others since
the accumulated precipitation was the highest at about 334 m·mm/
month (see Section 2.1). To observe the significant difference in the
resistivity distribution, the resistivity values for each month were
subtracted from the resistivity value of the dry season (February),
and the results are shown in Figure 8. These results highlighted that
the resistivity value plummeted from February to July (>50%)
especially in the vadose zone owing to significant accumulated
precipitation. On the other hand, May-February only shows
slight resistivity changes up to 25% in the top-right corner of the
section. The same trend is also observed in September-February and
October-February with resistivity change of up to 30% and 15%,
respectively. The resistivity variations in the dry and wet seasons can
be linked to changes of the water content in the vadose zone, as was
what stated in Archie’s law in Eq. 1. Thus, we were able to estimate
further the variation of water contents and the groundwater table
with the inverted resistivity images collected in different seasons.

3.2 The inverted Van Genuchten model

Figure 9 presents the fitted VGmodel for different months at the
survey sites in the study area. Generally, the fitted curves during the
wet season (blue, green and purple dashed curves) have higher air
entry heights than those in the dry season (red and orange curves).
Table 1 presents an example of the fitted parameters of the VG curve
at the WS05. a varies from 7.33 to 10.46 m, n varies in the range of
1.52–3.12, and θr is about 0.05–0.1. In addition, we assumed that the
saturated water content would be equal to the average porosity, 0.26,
for each measurement.

3.3 The estimation of groundwater levels

Table 2 lists the estimated groundwater levels (GWL)measured at
different survey sites during the observation period in 2018. WS01-
WS10 are the resistivity survey lines, while 98GH-06, 98GH-09, and
98GH-11 are the available observation wells around the survey area.
The GWL covers a depth range of 22.9–51.4 m. The majority of the
GWL are gradually increasing both in the observation wells and
resistivity measurements from February to July due to an increase in
recharge from the rainfall, in contrast to the GWL from July to
October, which decreased owing to a decrease in recharge from the
rainfall. To observe the spatial distribution trend of the GWL, the
GWL were plotted onto the map. Figures 10A–E shows the spatial
distribution of GWL for February,May, July, September, andOctober,
respectively. The blue contour color stands for the high GWL, while
the red contour color represents the low GWL.

3.4 The estimation of specific yield

Aside from seasonal variations in groundwater levels, it is also
vital to understand the water storage capacity of the region for
potential groundwater reservoirs. Using Eqs 9, 10, we were able to
estimate the theoretical specific yield, Sy, and the specific yield
capacity, Sc. The results are listed in Table 3. In this case, theTA
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maximum and average for each estimation from all measurements
time were calculated. The maximum and average of the theoretical
specific yield as well as those of the specific yield capacity are in the
range of 0.16–0.25, 0.14–0.24, 0.06–0.24, and 0.04–0.17, respectively.
Figure 11 shows the spatial distribution of these estimations.

3.5 The time series clustering results

3.5.1 The VG model parameters
In order to present the spatial distribution of TSC with the VG

model parameters, we plotted the result onto the map as shown in
Figure 12. The red dot, the green triangle, and the yellow diamond

symbolize the cluster 1, cluster 2 and cluster 3, respectively. Table 4
lists the value of each cluster. The evaluation of this result with SI
method is shown in Figure 13, in which the orange curve represents
the average silhouette index (ASI) of the time series clustering for the
VG model. In accordance to this curve, the optimal number of
clusters (k) is 3, as it has the highest ASI value.

3.5.2 The variation of groundwater level changes
PCA is applied prior to HAC for the dimensionality reduction of

the datasets. To visualize the proportion of variance accounted for by
each principal component (PC), the Scree plot is utilized (Ledesma et al.,
2015). This is a graphical method that can be used to determine the
number of Principal Components (PCs) to retain. Figure 14 shows the
Scree plot, where the red line represents the component variance by
each PC, and the blue line shows the cumulative variance. From this
plot, we can read off the percentage of the variance in the data explained
as we add PCs, the first PC explains roughly 55% of the variance of the
data set, and the first two PCs explain about 80%, and so forth. Clearly, a
bent point is observed at the first two PCs, which might indicate a good
number of PCs to retain. Thus, the number of features is reduced from
4 to 2, while still retaining over 80% of the “information” contained
within the original dataset. After PCA, the dataset is processed with
HAC analysis. According to the highest ASI of the TSC result for the

FIGURE 11
The distribution of (A) the average specific yield capacity, (B) maximum specific yield capacity, (C) average theoretical specific yield, (D) maximum
theoretical specific yield during the study period.

TABLE 4 The range of the a, n, and, Sc of each cluster for the Van Genuchten
model.

Cluster a n Sc

Min Max Min Max Min Max

1 6.40 8.07 2.41 4.83 0.19 0.24

2 7.19 12.57 1.58 3.22 0.04 0.12

3 10.96 18.92 1.81 4.92 0.03 0.08
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groundwater level variations (blue curve) in Figure 13, the optimal
number of clusters (k) to describe the study data is three clusters
(Table 5). Therefore, the spatial distribution of three clusters is plotted
on the map, as shown in Figure 15. The red, green and blue rectangles
are the cluster 1, cluster 2, and cluster 3, respectively.

4 Discussion

We observed from Figure 10 that the GWL in the northwest of
the study area is lower than in the southeast. This is reasonable since
the ground level in the northwest is relatively lower than in the

FIGURE 12
The distribution of the TSC result in (A) February (the dry season), (B)May (the transition of dry-wet seasons), (C) July (thewet season), (D) September
(the wet season), (E) October (the transition of wet-dry seasons) in 2018.
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southeast. Correspondingly, the high GWL expanded from the
southeast to the northwest during the period from February to
July and reduced from July to October due to variations in recharge
from rainfall events, which means the GWL will fluctuate mainly
depending on the amount of rainfall. There is a good agreement
between this trend and the inverted resistivity differences sections
from each month against the dry season measurement (February) in
Figure 8, where a significant decrease in resistivity is observed from
the July-February period owing to the water content changes in the
vadose zone, where GWL increased to higher levels.

To quantitatively establish areas of similar groundwater level
changes during the study period, we applied multivariate analysis

(HAC) to the groundwater level variation. Based on the SI method, the
result suggests three clusters as the optimal number of groups. As
shown in Figure 15, cluster 3 (blue rectangles) covers the majority of
the study area, followed by cluster 2 (green rectangles), and cluster 1
(red rectangles). The variation of groundwater changes indicates that
cluster 1 experienced a more significant change than its neighboring
clusters. Table 5 demonstrates that the GWL of cluster 1 increased by
about 5.69 m from the dry season to the wet season and dropped by
about −5 m from the wet season to the dry season. The GWL of cluster
2 and 3 increased by about 3.25 and 1.84 m and dropped by
about −2.52 and −1.72 m, respectively. In terms of spatial patterns,
initially, we assumed that the area between the Wu River and the
Maoluo River was divided in such a way that cluster 1 lies in the
southeast, cluster 2 in the middle, and cluster 3 in the northwest, based
on the GWL distribution that moved from the southeast to the
northwest and vice versa each month (see Figure 10). However,
further analysis of the GWL change with HAC revealed that cluster
1 covers this area, with only a few areas covered by cluster 2 in the
southeast. Cluster 3 covers the rest of the area. This finding suggests a
considerable change in GWL in the northern part of the Wu River
channel compared to the southern area that parallels theMaoluo River.

Aside frommonitoring the seasonal variations of GWL, we were
also able to estimate the specific yield of the region, which is one of
the essential hydrogeology parameters for qualitative and
quantitative studies of groundwater resources, especially for
locating potential groundwater reservoirs. Specific yield (Sy)
denotes the maximum groundwater volume ratio that can be
yielded or stored in an unconfined aquifer in a condition where
it is completely dried. However, groundwater volume ratios that may
be pumped from or stored in a sediment cannot exceed specific yield
owing to capillary fringes in the vadose zone. Hence, in this study,
we utilized Eq. 10 to calculate the specific yield capacity (Sc), which is
a natural specific yield corresponding to the capillary fringes in the

FIGURE 13
The Average Silhouette Index (ASI) of the TSC for groundwater levels variation (blue curve) and the Van Genuchten (VG) model (orange curve). Both
curves show that the optimal number of clusters (k) for this data is 3.

FIGURE 14
The Scree plot to visualize the proportion of the variance
accounted for by each principal component (PC), the first two PCs
explained about 80% of the original dataset.
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vadose zone. Figures 11A, B present the distribution of the average
andmaximum of Sc, whereas Figures 11C, D present the distribution
of the average and maximum of Sy. Both Sc and Sy exhibit similar
patterns where the maximum value is located in WS03, and the
minimum value is located in WS04, and WS06-WS10. Nevertheless,
the estimated value of Sc is lower for both average and maximum
compared to Sy. These results are in line with Chang et al. (2022),
who noted that the majority of the estimated specific yield capacity
(Sc) value agreed with the value estimated from the in-situ pumping
test, which is only three-quarters to two-thirds of the estimated
theoretical specific yield (Sy). Furthermore, the estimated Sc range
correlates favorably with previous studies by Huang et al. (2014) and
Liu et al. (2018), in which the estimated specific yield in this area
ranges from 0.01 to 0.1.

We applied the HAC algorithm to the VG model parameters as
well, and the result can be seen in Figure 12. Since the Sc was one of
the features of this algorithm, there was a positive correlation with
the Sc distribution maps in Figure 11. The transition from the dry
season to the wet season (Figures 12A–C) shows the aforementioned
WS03 site with the highest Sc included in cluster 1 (a: 6.40–8.07, n:

TABLE 5 The result from the HAC analysis for Groundwater Levels variations with three clusters.

Cluster February to May May to July July to September September to October PCA 1 PCA 2

1
Max 0.84 5.69 0.14 −1.64 6.90 1.03

Min 0.64 2.54 −1.04 −5.00 2.42 −2.47

2
Max 0.71 3.25 0.56 0.50 2.80 4.11

Min 0.32 0.21 −1.84 −2.52 −0.90 −1.75

3
Max 1.07 1.84 0.76 0.43 1.40 1.44

Min −0.32 0.15 −0.87 −1.72 −3.10 −2.01

FIGURE 15
The spatial distribution of the three clusters obtained from the
HAC analysis for the groundwater levels variation.

FIGURE 16
A comparison of the estimated and observed GWL at site
WS05 and WS06 with observation well 098GH-09 (A), and site
WS10 with observation well 098GH-06 (B). The correlation between
the estimated and observed GWL with R2 of about 0.85 (C).
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2.41–4.83, and Sc: 0.19–0.24), and is included in cluster 2 (a:
7.19–12.57, n: 1.58–3.22, and Sc: 0.04–0.12) from the wet season
to the dry season (Figures 12C–E). In contrast with the sites with low
Sc (the WS04, WS06, WS07, WS08, WS09, and WS10 sites), the
majority of them are included in cluster 2 and cluster 3 (a:
10.96–18.92, n: 1.81–4.92, and Sc: 0.03–0.08), where the
WS08 and WS10 sites are constantly in cluster 3 during the
study period. Interestingly, the WS05 site that is located closest
to the confluence of the branches between the Wu and Maoluo
Rivers is constantly in cluster 1 during the study period. In
summary, the implementation of the HAC to the groundwater
change variation and the VG model parameters suggests that the
WS03 site is a promising area for further groundwater investigation
since it has the highest Sc value with a slight change in groundwater
levels during the study period under different seasonal conditions.

The Time-lapse ERI measurements provide reliable results for
spatial groundwater monitoring in the survey region. These
findings are confirmed by comparing the estimated GWL
obtained from the ERI survey with the observed GWL from the
nearest available observation wells along the river channel
(Figure 16). There are three accessible observation wells in the
study area, namely, 98GH-09, 98GH-06, and 98GH-11 (see
Figure 3). The 98GH-09 well is in the northwest, the 98GH-06
well is in the southeast, and the 98GH-11 well is farther away from
the river channel. Thus, the 98GH-09 and 98GH-06 wells were
selected for comparison and validation.

Figure 16A compares the 098GH-09 and the ERI WS05 and
WS06 sites, whereas Figure 16B compares the 098GH-06 wells and
the ERI WS10 site. Interestingly, on closer inspection of Figure 16A,
the values of the observed GWL from WS05 (triangles) are more
akin to the estimated GWL from the 098GH-09 well compared to
the observed GWL from WS06 (diamonds). This difference is
understandable since site WS05 location is only about 0.7 km
away from observation well 098GH-09, while site WS06 is over
1 km away. Apart from this slight discordance, the result shows that
the values do not highly diverge since the location of these sites is still
in the same formation deposits, which are the alluvial deposits. Both
figures also show that the estimated GWL is consistent with the
measured GWL, where GWL increases from February to early
September (the dry season to the wet season) and decreases
afterward (the wet season to the dry season). On the other hand,
Figure 16C demonstrates the correlation between estimated and
observed GWL in WS05, WS06, and WS10 sites, where the
coefficient of determination R2 is about 0.85. This result shows
good agreement between the estimated and observed GWL. Taken
together, these results have further strengthened our confidence in
using the ERI measurement as an alternative and effective method
for monitoring seasonal groundwater level changes when
observation wells are scarce or unavailable in the target area.
Although the present study has yielded insights into applying the
ERI method for groundwater monitoring, it is crucial to
acknowledge certain limitations that can be addressed in future
research. For instance, the technique employed in this study relies on
surface electrodes, which may pose challenges in densely vegetated
or urban areas, thereby limiting accessibility to specific regions.
Consequently, conducting an initial survey of suitable locations
becomes necessary. Additionally, the method is sensitive to near-
surface conditions, such as vegetation, building foundations, or

pathways through rice fields, which can introduce noise and
artifacts into the data and affect the interpretation of subsurface
groundwater properties. To cope with this issue, it is recommended
to avoid such areas whenever possible. In cases where avoidance is
not feasible, conducting pre-analysis with obtained raw data prior to
the inversion process is suggested. Despite these limitations, our
recent findings demonstrate the potential of the proposed method in
monitoring groundwater conditions and estimating groundwater
parameters under varying seasonal conditions.

5 Conclusion

We have applied Time-lapse Electrical Resistivity Imaging (TL-
ERI) and Hierarchical Agglomerative Clustering (HAC) in machine
learning for monitoring groundwater levels (GWL) and estimating
specific yields in the Taichung-Nantou Basin along the Wu
River, Central Taiwan. The findings of our study reveal that the
GWL ranged from 22.9 to 51.4 m. During the dry-wet seasons
(February to July), the GWL expanded from southeast to
northwest and contracted from July to October (wet-dry
seasons), primarily influenced by variations in recharge from
rainfall events. Notably, the WS03 site exhibited the highest
estimated specific yield capacity (Sc), with maximum and average
values of approximately 0.24 and 0.17, respectively. Other sites
had maximum and average values ranging from 0.06 to
0.09 and 0.04 to 0.07, respectively. Furthermore, the results from
HAC indicate that the study area can be divided into three clusters.
In cluster 1, the GWL increased by around 5.69 m from the dry
season to the wet season and decreased by approximately −5 m from
the wet season to the dry season. Clusters 2 and 3 experienced
GWL increases of about 3.25 and 1.84 m, respectively, and GWL
decreases of approximately −2.52 and −1.72 m, respectively.
Additionally, a similar clustering algorithm was applied to the
VG model parameters (a, n, and Sc) during the study period,
revealing that the measurement sites can be grouped into three
clusters. Cluster 1 exhibited parameter ranges of a: 6.40–8.07, n:
2.41–4.83, and Sc: 0.19–0.24. Cluster 2 had parameter ranges of a:
7.19–12.57, n: 1.58–3.22, and Sc: 0.04–0.12. Cluster 3 showed
parameter ranges of a: 10.96–18.92, n: 1.81–4.92, and Sc:
0.03–0.08. Notably, WS03, the site with the highest Sc value, was
the only site included in cluster 1. Overall, these findings suggest
that WS03 is a promising area for further investigation of
groundwater reservoirs, as it exhibits the highest Sc value with
minimal fluctuations in groundwater levels during the dry and
wet seasons. In summary, the TL-ERI method combined with
time series clustering in machine learning offers a viable and
efficient approach to monitor groundwater levels and estimate
specific yields, particularly in situations where limited or no
observation wells are available for specific or regional areas under
varying seasonal conditions.
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