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Globally, communities and governments face growing challenges from an
increase in natural disasters and worsening weather extremes. Precision in
disaster preparation is crucial in responding to these issues. The revolutionary
influence that machine learning algorithms have in strengthening catastrophe
preparation and response systems is thoroughly explored in this paper. Beyond a
basic summary, the findings of our study are striking and demonstrate the
sophisticated powers of machine learning in forecasting a variety of weather
patterns and anticipating a range of natural catastrophes, including heat waves,
droughts, floods, hurricanes, and more. We get practical insights into the
complexities of machine learning applications, which support the enhanced
effectiveness of predictive models in disaster preparedness. The paper not only
explains the theoretical foundations but also presents practical proof of the
significant benefits that machine learning algorithms provide. As a result, our
results open the door for governments, businesses, and people to make wise
decisions. These accurate predictions of natural catastrophes and emerging
weather patterns may be used to implement pre-emptive actions, eventually
saving lives and reducing the severity of the damage.

KEYWORDS
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1 Introduction

In recent years, natural catastrophes and extreme weather events have increased in
frequency and severity, posing a serious threat to people and governments throughout the
globe (Leng et al., 2023). Such occurrences may result in fatalities, infrastructural damage,
and interruptions of economic activity (Ruidas et al., 2022a; Chen et al., 2022). Therefore,
mitigating the effects of these catastrophes depends on our capacity to properly forecast and
prepare for them. In this context, the use of machine learning algorithms has shown promise
for improving weather forecasting and natural catastrophe predictions, which may help in
disaster preparation and response operations (Linardos et al., 2022, Powers et al., 2023). A
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FIGURE 1

Number of studies on weather prediction using machine learning algorithms in the last 15 years. Source: The data was obtained using Scopus and
Science direct database with exact keywords “Machine Learning” and "Weather Prediction.”

subset of artificial intelligence (AI) known as machine learning
algorithms (MLAs) enables computers to discover patterns in
massive datasets without having to be explicitly programmed.
These algorithms are able to scan large data sets and spot
patterns that human analysts would miss. Machine learning
algorithms may be used to examine a range of data sources,
including satellite data, atmospheric data, and historical weather
and catastrophe data, to provide precise forecasts in weather
prediction and natural disaster forecasting (Aybar-Ruiz et al,
2016; Moosavi et al., 2021).

Weather prediction utilizing MLA’s involves the use of different
types of algorithms, such as neural networks (NN), decision trees
(DT), and random forests (RF) (Fowdur and Nassir-Ud-Diin Ibn
Nazir, 2022; Xu et al., 2023). The number of research on weather
prediction using machine learning algorithms from 2008 to 2022 is
shown in Figure 1. The data shows that the number of studies has
been increasing over time, which has led to the noticeable increase in
studies from 2014 to 2022. This pattern’s conclusion demonstrates
the increased interest in applying machine learning algorithms for
weather forecasting, which might improve forecast accuracy and
catastrophe preparation. These algorithms may look at a variety of
data sources, including satellite photography and atmospheric data,
to find trends and forecast weather. The possibility of a heatwave or a
drought, for instance, may be predicted by MLAs by examining data
on temperature, humidity, and precipitation (Ruidas et al., 2022¢;
Kim et al., 2022).

Various kinds of algorithms, including clustering algorithms,
regression algorithms, and support vector machines, are used in
the prediction of natural disasters (Zhang et al, 2022b). The
number of works on utilising machine learning algorithms to
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predict natural disasters during the last 15 years is summarised
in Figure 2. The figures show a consistent rise in the number of
investigations every year, with the most research occurring in the
most recent year (2022) (57). This shows that there is increased
interest in and awareness of the potential advantages of using
machine learning algorithms to anticipate natural disasters
(Chakrabortty et al., 2023).

These algorithms can analyze various data sources, such as
seismic data, historical disaster data, and weather data, to make
predictions about natural disasters. For example, they can predict
the likelihood of an earthquake or a hurricane by analyzing data
such as seismic activity, wind speed, and sea surface temperature
(Barrera-Animas et al, 2022). The use of these algorithms in
catastrophe preparation and response may have a number of
advantages. For instance, precise weather forecasts and natural
catastrophe predictions may assist governments and organisations
in taking preventive measures to be ready for and react to these
occurrences. People may be informed of imminent natural
catastrophes through early warning systems, allowing them to
flee to safer areas (Karir et al., 2022). By focusing resources on
the regions most likely to be impacted by natural disasters, resource
allocation may be improved. Finding the most effective escape
routes and organising the flow of people may both help with
evacuation planning. The use of MLAs in disaster planning and
response is not without its difficulties and restrictions, however. The
precision with which these algorithms provide predictions is one of
the major difficulties. False alarms brought on by inaccurate
forecasts may erode public confidence in the system (Jia et al,
2022; Saha et al,, 2023). The accuracy of the predictions may also be
impacted by the quality of the data utilised to train these algorithms.
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Number of studies conducted in the last 15 years on natural disaster forecasting using machine learning algorithms. Source: The data was obtained
using Scopus and Science direct database with exact keywords “machine learning algorithms” and “disaster forecasting.”

Additionally, if the data used to train them was biassed, they can be
prejudiced as well. Their use in predicting weather and natural
disasters has become a potential strategy to enhance disaster
preparation and response operations (Esrafilian-Najafabadi and
Haghighat, 2022). In this study, we adopt a robust methodology
to explore the application of machine learning algorithms in
forecasting weather patterns and predicting natural catastrophes,
with a focus on enhancing global disaster preparedness and response
efforts.

Using precise keywords and phrases linked to meteorological
events, natural catastrophes, and machine learning, our method
comprises a thorough literature analysis as depicted in Figure 3.
From January 2012 to January 2023, we conduct a thorough
search and analysis of peer-reviewed publications from renowned
databases including SCOPUS, Science Direct, and Google
Scholar. Multiple reviewers conduct the screening process,
which guarantees consistency and relevance while upholding
strict academic standards with the inclusion and exclusion
criteria (Ruidas et al., 2022b). To offer a thorough overview of
how machine learning algorithms contribute to effective
catastrophe prediction, material from chosen papers is
extracted and then synthesised (Ruidas et al., 2021; Ruidas
et al, 2022a). This information includes technique specifics,
input data sources, output results, case studies, and important
conclusions (Jaydhar et al, 2022; Ruidas et al,, 2023). This
rigorous and thorough approach strengthens the reliability and
validity of our conclusions, providing a current knowledge of the
critical role that machine learning plays in reducing the effects of
natural catastrophes on communities and nations throughout the
globe.

Frontiers in Environmental Science

2 Weather prediction with MLA's

Agriculture, transportation, and the energy sector are just a few
of the businesses that depend heavily on weather forecasting. To
make wise judgments and avert weather-related problems, accurate
weather forecasts are essential. MLA’s have emerged as a viable
strategy to increase the accuracy of weather forecasts in recent years
(Fischer et al., 2023; Heddam, 2023). MLAs are capable of analysing
enormous volumes of data to find patterns and make predictions.
They come in several varieties, and each has advantages and
disadvantages (Lan et al., 2020; Quan et al., 2022; Shafiei et al,
2022). Some of the most popular methods for predicting the weather
include NN, DT, and RF (Figure 4).

NN are a type of MLA’s inspired by the structure of the human
brain (Yang et al., 2022). Applications for these techniques include
picture recognition and natural language processing. A comparison
of several algorithms for predicting weather and natural disasters is
shown in Table 1. The algorithms fall into three primary categories:
reinforcement learning, unsupervised learning, and supervised
learning. Each algorithm’s advantages and disadvantages are
described, along with examples of how it has been used to
forecast weather and natural disasters. It attempts to provide a
thorough analysis of various machine learning algorithms and assist
researchers and practitioners in choosing the best algorithm for their
particular application.

In weather prediction, NN are used to analyze multiple data
sources, such as satellite imagery, atmospheric data, and historical
weather data, to identify patterns and make predictions (Brester
et al,, 2023). They can handle non-linear relationships between
variables and make predictions with high accuracy (Buyrukoglu
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FIGURE 3

Schematic representation of the literature search process and article selection for the review.

et al, 2021; Seon Park et al, 2022). DT is another type used for
weather prediction (Li et al., 2023a). These algorithms are built on a
set of if-then rules that let the algorithm anticipate outcomes
depending on certain circumstances (Pereira et al., 2022). Due to
their simplicity and readability, they are great for a variety of
applications. They may be used to analyse many data sources,
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including humidity, temperature, and precipitation, to provide
weather predictions (van Blokland et al., 2021). Predictions are
produced by RF, a collection of decision trees (He et al., 2022). This
requires the development of several decision trees, each of which is
trained on a distinct subset of the data. The agreement of each DT’s
projections forms the basis for the final projection. They can manage
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FIGURE 4
Advantages of NN, DT and RF.

complicated variable interactions and are extremely precise
(Ghebleh Goydaragh et al.,, 2021). They may look at a variety of
data sources to make weather forecasts. Satellite data is used to give
information on temperature, cloud cover, and other weather-related
factors. Weather forecasts for large regions may be made using this
data, which includes specifics like temperature, pressure, and
humidity. A further use of atmospheric data is the forecasting of
local weather. Historical weather data offers details on previous
weather conditions and may be used to spot patterns and forecast
the weather in the future. One example of a successful MLA-based
weather prediction model is the Global Ensemble Forecast System of
the National Oceanic and Atmospheric Administration (NOAA)
(GEFS). A collection of global weather models are used by the GEFS
weather prediction model to provide predictions (Haver et al., 2018).
In order to provide predictions, the model examines a variety of data
sources, such as atmospheric data and historical weather data. GEFS
has been used to forecast a variety of meteorological occurrences,
including hurricanes, blizzards, and heatwaves (Jiang et al., 2022). A
wide range of businesses, including agriculture, transportation, and
energy, rely on GEFS projections. IBM’s Deep Thunder is another
reliable weather prediction tool (Afra et al, 2022). It is a very
effective model for forecasting the weather, and it has been used
to predict a variety of meteorological

events, including

thunderstorms, hurricanes, and snowstorms. It uses neural
networks to evaluate a variety of data sources, including satellite
and atmospheric data (Lu et al., 2022). Transportation and energy

industries, among others, utilise Deep Thunder’s forecasts.
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Decision
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Random
Forests

2.1 Types of machine learning algorithms for
weather prediction

Three general kinds of MLAs may be distinguished: supervised
learning, unsupervised learning, and reinforcement learning
(Table 2). Different approaches to weather prediction may be
used with each of these sorts of algorithms.

In order to model correlations between input factors (such
temperature, humidity, pressure, and wind speed) and output
variables, supervised learning techniques are often utilised in
the field of weather prediction (such as precipitation, cloud
cover, or temperature at a future time) (Ma et al., 2023). These
techniques train a model using previous weather data so that it can
forecast weather in the future. Regression algorithms (like linear
regression and decision trees) and classification algorithms are
some typical forms (such as support vector machines and random
forests) (Alwindawi et al,, 2022). Algorithms for unsupervised
learning may be used to find patterns in big datasets of
variables linked to the weather (Daneshvar et al, 2023). In
order to identify regions that are expected to encounter similar
weather conditions in the future, clustering algorithms, for
instance, may group similar weather patterns together. The
identification of odd weather patterns that can be a sign of
severe weather occurrences can also be done using anomaly
detection algorithms (Liu et al, 2023). Although less often
utilised in  weather reinforcement

forecasting, learning

techniques may be advantageous for improving weather-related
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TABLE 1 Comparison of different types of MLA's, highlighting their strengths and weaknesses.

Algorithm type

Linear Regression

Strengths

Simple to implement,
computationally efficient

Weaknesses

Only models linear relationships, prone to
overfitting, assumes linear relationship
between input and output
variables (Kim et al., 2020)

Logistic Regression

Good for binary classification
problems, interpretable results

Not suitable for non-linear data, may
underperform on complex problems Wang
et al. (2022a)

Decision Trees

Random Forests

Can capture non-linear
relationships, easy to interpret
and explain

High accuracy, can handle large
datasets with high
dimensionality, less prone to
overfitting than decision trees

Prone to overfitting, may not generalize well to
new data (Li et al., 2023a)

Computationally expensive, difficult to interpret
and explain (He et al,, 2022)

Support Vector Machines (SVM)

Naive Bayes

Neural Networks

High accuracy, can handle non-
linear data with high
dimensionality

Simple to implement,
computationally efficient, can
handle high dimensional data

Can model complex relationships
and non-linear data, high
accuracy

Computationally expensive, sensitive to choice of
kernel function and parameters (Zheng et al.,
2023)

Assumes independence between features, may not
capture complex relationships (Shaheen et al.,
2023)

Computationally expensive, requires large
amounts of data and careful tuning of
parameters (Yang et al., 2022)

TABLE 2 Categorization of machine learning algorithms based on learning type.

Algorithm type Description

Supervised Learning

With this kind of approach, input features and output labels are supplied, and the model is trained using labelled data. By modifying its

internal parameters to reduce the discrepancy between its predictions and the actual labels, the algorithm learns to map the input
characteristics to the output labels. Examples include decision trees, support vector machines, and linear regression (Morales and Escalante,

2022)

Unsupervised Learning

In this kind of technique, just the input features are supplied, and the model is trained using unlabeled data. By grouping together related

data points or by making the data less dimensional, the algorithm learns to spot patterns and correlations in the data. K-means clustering,
principal component analysis, and autoencoders are a few examples (Morales and Escalante, 2022)

Reinforcement Learning

By interacting with its surroundings and getting feedback in the form of rewards or penalties, the model learns in this kind of algorithm. By

doing activities that result in desired results and avoiding actions that result in bad consequences, the algorithm learns to maximise its
rewards. Examples include deep reinforcement learning, policy gradients, and Q-learning (Morales and Escalante, 2022)

decision-making processes (Chen et al., 2023). These algorithms
pick up new skills via interaction with their surroundings and
feedback in the form of rewards or penalties. Reinforcement
learning algorithms might be used to weather prediction to
improve resource allocation, evacuation planning, or other
decision-making  procedures  pertaining to  catastrophe
preparation and response (Duhem et al., 2023). There are other
specific algorithms and approaches that may be utilised for
weather prediction in addition to these general types of
machine learning algorithms. Deep learning methods, for
instance convolutional neural networks, have been used to
analyse satellite pictures and provide very accurate weather
forecasts. Similar to this, ensemble models, which aggregate the
results of numerous models, may be used to increase the precision
of weather forecasts by taking into consideration the advantages

and disadvantages of various models.

Frontiers in Environmental Science

2.2 Data sources for weather prediction

Large volumes of high-quality data are needed in order to
correctly anticipate weather patterns using MLAs. There are
several sorts of data sources available for weather forecasting
(Table 3).

Table 3 details the many types of data sources that can be utilised
for weather forecasting with MLAs. Satellite data, radar data,
weather station data, atmospheric soundings, and numerical
weather prediction models are among the sources (Brester et al,
2023). These data sources provide crucial information regarding
temperature, humidity, wind speed and direction, pressure, and
other meteorological characteristics (Payne et al, 2022). As it
contains information about temperature, humidity, wind speed
and direction, precipitation, cloud cover, and other weather-
related variables at specific locations and times in the past,
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TABLE 3 Table displaying numerous data sources for forecasting the weather (Goncalves and Guedes Soares, 2022; Payne et al., 2022; Brester et al., 2023; Zhao

et al., 2023).

Data source Description

Satellites

Radars

Satellites may be used to track weather patterns, gauge atmospheric conditions, and measure temperature and humidity

Radars can identify precipitation, gauge wind direction and speed, and provide a three-dimensional (3D) image of storms

Surface Weather Stations

Weather Balloons

These provide on-the-ground observations of temperature, pressure, humidity, and wind speed and direction

These provide vertical profiles of the atmosphere, including temperature, pressure, and humidity

Aircraft

Ocean Buoy Networks

Aircraft can be used to collect data on atmospheric conditions, such as temperature, pressure, humidity, and wind speed and direction

These can provide information on sea surface temperature, wave heights, and ocean currents

Weather Prediction Models

historical weather data is one of the most crucial data sources for
training machine learning algorithms for weather prediction (Shin
etal,, 2022). Typically, weather stations, satellites, and other weather
monitoring systems collect this information. Data from remote
sensing is particularly valuable for predicting weather patterns
across wide areas or in regions where there are no weather
stations. Numerical Weather Prediction (NWP) models are
that
sophisticated mathematical equations. These physical-principles-

computer models replicate weather patterns  using
based models are used to provide forecasts for future weather
patterns (Voyant et al, 2012). NWP models can be used to
provide input data for machine learning algorithms or to test the
accuracy of weather predictions derived from machine learning.
Social media and other crowdsourced data sources can be used to
supplement conventional sources of meteorological information
(Al-Yahyai et al, 2010). For instance, people may post about
local weather conditions on social media, so contributing useful
knowledge about local weather trends. Other environmental data,
such as land use, vegetation cover, and topography information, can
also be used to improve the precision of weather forecasts. For
instance, vegetation cover can change temperature and humidity
patterns, whereas terrain might affect wind patterns (Mayer and
Yang, 2023b). By merging data from many sources, machine
learning algorithms may produce extremely accurate weather
forecasts that can be utilised to enhance catastrophe preparedness

and response operations (Mayer and Yang, 2023a).

3 Natural disaster forecasting with
MLA's

Accurate prediction and forecasting of natural disasters can aid
in minimising their effects and enhancing disaster response. MLAs
have demonstrated promise in accurately predicting natural
calamities (Jiang et al., 2022; Singh et al., 2023). Random Forest
(RF) builds a number of Decision Trees (DT) and then combines
their outputs to form a final forecast (Figure 5). This algorithm can
handle classification and regression issues. One of the primary
benefits of is that it can handle huge datasets with high
dimensionality and non-linear variable interactions (Bhoi et al,
2022). It can also manage missing data and outliers and is less
susceptible to overfitting than other decision tree-based algorithms,
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These model the environment and forecast weather patterns using mathematical calculations

FIGURE 5
Characteristics of the random forest algorithm (Liu et al., 2020)

making it more accurate at predicting the outcomes of new data (Liu
et al, 2020). In addition, it can provide estimates of variable
which facilitates the
pertinent factors for producing correct forecasts (Wang et al,
2022b).

RF can analyse multiple data sources, such as satellite imagery,
weather data, and historical disaster data, to predict the likelihood of
a natural disaster occurring. For instance, an RF algorithm can

relevance, identification of the most

analyse data on temperature, humidity, wind speed, and
precipitation to predict the likelihood of a wildfire (Rahman
et al,, 2021). Support vector machine (SVM) is another technique
often employed for natural catastrophe prediction. SVM is a
supervised learning algorithm used to evaluate data and detect
patterns. It may examine numerous data sources, such as past
disaster data, weather data, and satellite images, to identify trends
and predict the probability of a natural catastrophe occurring (Singh
et al., 2023). Tt has various characteristics that make it effective for
natural disaster forecasting, it can handle both linear and non-linear
data by utilising different kernel functions, such as polynomial,
Gaussian, and sigmoid (Li et al., 2023b) and can handle high-
dimensional data and escape the curse of dimensionality (Chen
and Li, 2020). Also, it is less affected by overfitting, as it tries to
maximize the margin between classes (Liu et al., 2021a) and can
handle imbalanced datasets, which are common in natural disaster

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1194918

Jain et al.

10.3389/fenvs.2023.1194918

Efficient

FIGURE 6
Advantages of the SYM model (Zhou et al., 2022).

High Accuracy

FIGURE 7
Advantages that make CNNs a promising tool for natural disaster
forecasting and response efforts (Jorges et al,, 2023).

forecasting, by adjusting the weights of the classes. Finally, SVM can
be used for both classification and regression tasks, making it
versatile for different types of forecasting problems (Chen et al,
2022) (Figure 6).

Deep learning algorithms, such as convolutional neural
networks (CNNs), have also shown promise in natural disaster
forecasting as it has several advantages when it comes to natural
disaster forecasting like it can handle high-dimensional and complex
data, such as satellite and radar images, which are often used in
natural disaster monitoring (Ullah et al., 2022). They can extract
relevant features from the images, such as cloud cover or
precipitation, and use these features to predict the occurrence
and intensity of natural disasters (Akter et al., 2021). It can learn
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FIGURE 8
Advantages of using machine learning algorithms for natural
disaster forecasting (Jiang et al., 2022).

spatial dependencies between the pixels in an image, allowing them
to identify patterns and anomalies that may be indicative of an
impending natural disaster and can be trained on large datasets,
which can improve their accuracy and ability to generalize to new
data (Guha et al., 2022) (Figure 7).

CNN can analyze satellite imagery to predict the likelihood of a
hurricane occurring. One of the most critical applications of MLA’s
in natural disaster forecasting is predicting the intensity and path of
hurricanes. Hurricane forecasting involves analyzing multiple data
sources, including satellite imagery, atmospheric data, and historical
hurricane data, to generate predictions (Najafi et al., 2022). NN and
RF, for instance, can assess various data sources to generate accurate
predictions of storm intensity and course, as well as the probability
of floods (Najafi et al, 2022; Rani et al, 2022). Flooding is a
significant natural disaster that can cause severe damage to life
and property. SVM and DT can analyse various data sources, such as
weather data and historical flooding data, to predict the likelihood of
flooding occurring in a specific region (Danish, 2022). Similarly,
SVM and DT can analyse various data sources, such as historical
earthquake data, tectonic plate movements, and seismic activity, to
predict the likelihood of an earthquake occurring in a specific region
(Teodoro and Duarte, 2022).

3.1 Advantages of MLA's for natural disaster
forecasting

MLAs have the capacity to enhance the precision and speed of
natural catastrophe predictions (Jiang et al.,, 2022) (Figure 8). By
enabling early warning systems and preemptive actions to alleviate
the effects of these catastrophes, they can assist reduce the impact of
natural disasters (Prodhan et al., 2022; Saravanan et al., 2023; Singh
et al.,, 2023).

Depending on the nature of the data being studied and the
forecasting task at hand, multiple MLAs may be utilised for this
purpose (Singh et al., 2023). NN are a sort of artificial neural network
inspired by the structure and function of the human brain that can
be trained on massive historical datasets of weather and catastrophe
data to detect patterns and correlations between variables. Once
trained, the NN can be used to predict future weather trends and
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TABLE 4 Types of data sources for natural disaster forecasting using machine learning algorithms.

Data source Description

Remote sensing data

Weather station data

Radar data
Social media data
Geospatial data
Historical data

Sensor data

Mobile phone data

Data collected by satellites or other remote sensors that provide information on land, ocean, and atmospheric conditions (Kashtan

Sundararaman et al., 2023)

Data collected from ground-based weather stations that measure temperature, humidity, pressure, wind speed, and other weather variables

(Han et al., 2023)

Data collected by radar systems that can detect precipitation, wind speed, and direction (Wang et al., 2023a)
Data collected from social media platforms that can provide real-time information on natural disasters and their impacts (Platania et al., 2022)
Data that includes information on terrain, land use, population density, and infrastructure (Stokes and Seto, 2019)
Data from past natural disasters that can be used to train machine learning models for forecasting future events (Jiang et al., 2022)

Data collected by sensors deployed in disaster-prone areas that can measure seismic activity, water levels, and other variables (Wang et al.,

2023b)

Data collected from mobile phone networks that can provide information on population movements and density during disasters (Yabe et al.,

2022)

anticipate natural disasters. In natural disaster forecasting, DT can
be used to simulate the likelihood of a disaster occurring depending
on variables such as location, season, and weather conditions. This
can assist emergency responders and disaster management teams
with resource allocation and evacuation planning decisions. Based
on factors like the region’s geology and weather, SVMs may be used
to locate areas that are at a high risk of a certain catastrophe, like
floods or landslides (Zhang et al., 2022a; Prodhan et al., 2022).

3.2 Data sources for natural disaster
forecasting

There are various types of data sources that can be used for
natural disaster forecasting using MLA’s (Table 4). One of the most
crucial data sources for predicting natural disasters is satellite
imaging, which can provide real-time information on weather
patterns including the passage of storms and the amount of
cloud cover (Han et al, 2023). Table 4 lists remote sensing,
weather station, geospatial, historical, sensor, radar, social media
and mobile phone data that may help anticipate natural catastrophes
by providing information on atmospheric conditions, land use,
population movements, and other characteristics (Jiang et al,
2022). These data may be used in the development of models
that have the capability of predicting the likelihood of natural
catastrophes such as droughts, heatwaves, and wildfires (Kashtan
Sundararaman et al., 2023). And also it might include past disasters’
frequency, intensity, location, and environmental causes (Zhang
et al, 2022a). Combining data from numerous sources allows
researchers to construct more complete models that can
anticipate a variety of natural catastrophes (Prodhan et al., 2022).

3.3 Case studies of successful
implementation of machine learning

There have been several successful implementations of MLA’s in

natural disaster forecasting and response efforts (Table 5). The
National Oceanic and Atmospheric Administration (NOAA) uses
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machine learning algorithms to improve hurricane forecasting. They
utilize deep neural networks to analyze satellite data and develop
more accurate predictions of a hurricane’s track, intensity, and
timing. This technique was put to the test in 2018 during
Hurricane Florence, when it precisely anticipated the storm’s
path and enabled more effective planning and reaction (Kaur
et al,, 2022). The Earthquake Research Institute at the University
of Tokyo in Japan has created a machine learning algorithm that can
anticipate earthquakes up to 10 s in advance (Liu et al., 2021b). The
algorithm analyses seismic data and has an accuracy rate of
90 percent for predicting earthquakes of magnitude 3 or greater.
This early warning system can provide individuals with precious
seconds to evacuate or seek refuge. The Dartmouth Flood
Observatory maps and forecasts floods using machine learning
algorithms. They use satellite imagery to generate comprehensive
flood maps that can be used to detect flood-prone locations and aid
in evacuation preparations. During the 2015 floods in Chennai,
India, this technology was utilised to prioritise rescue and relief
efforts using flood maps (Laso Bayas et al., 2011). The US Forest
Service uses machine learning algorithms to forecast the risk of
wildfires. They provide predictions about potential wildfire locations
by examining meteorological data, satellite imagery, and other
environmental factors. This technology has made it possible to
take more focused wildfire prevention actions, such as identifying
areas where controlled burns might reduce the danger of wildfires.
These case studies demonstrate how machine learning algorithms
may be used for activities related to predicting and responding to
natural disasters. By using these technologies, we may create early
warning systems, develop more accurate forecasts of natural
catastrophes, and improve our efforts to save lives and reduce
damage. It gives several instances of how machine learning
algorithms are successfully used for natural disaster prediction
and response (Zhengru, 2015). The kind of natural catastrophe,
the machine learning approach used, the application or use case, and
the advantages of its usage are all listed in a row for each row. The
examples highlight the potential of machine learning algorithms to
improve damage assessment, early warning, proactive resource
allocation, and evacuation planning in the event of a natural
catastrophe (Kanbara and Shaw, 2022).
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TABLE 5 Examples of successful implementations of machine learning algorithms in natural disaster forecasting and response efforts.

Natural disaster Machine learning Application/Use case Benefits
algorithm
Qin et al. (2020) Convolutional Neural Networks Flood inundation mapping Provided near real-time information to emergency responders
(CNNs) and forecasting and decision makers, allowing for more targeted rescue efforts

and resource allocation (Nemni et al., 2020)

Moriguchi et al. (2021) Random Forest Algorithm Flood and landslide Successfully predicted areas at high risk of flooding and
prediction landslides, allowing for proactive evacuation planning and
resource allocation (Kanbara and Shaw, 2022)

Goda et al. (2015) Artificial Neural Networks Earthquake damage Enabled rapid damage assessment of buildings and
(ANNs) assessment infrastructure, helping aid organizations prioritize rescue and
relief efforts (Zhengru, 2015)

Wang et al. (2021) Support Vector Machines (SVMs) Wildfire detection and Provided early detection of wildfires, allowing for prompt
prediction response and evacuation planning (Pourghasemi et al., 2020)
Rubin et al. (2017) Decision Trees Tsunami detection and Successfully detected the tsunami and provided timely warnings
warning to people in affected areas, saving lives and minimizing damage

(Laso Bayas et al., 2011)

4 Benefits of usi ng MLA’s in disaster are an essential tool for emergency management organisations and
prepa redness and response first responders because their ability to increase forecast accuracy
may significantly strengthen efforts to reduce the impact of
These algorithms analyse vast amounts of data from numerous  catastrophes, react to them, and aid in recovery (Yu et al., 2021).
sources to predict natural catastrophe frequency and severity. MLAs may help authorities allocate resources more effectively
Therefore, emergency responders may be notified in advance and  and efficiently by doing so. Machine learning algorithms can
resources can be deployed properly, improving disaster response.  discover and distribute resources to areas with the largest
Additionally, they may be used to keep track on natural catastrophes  resource needs by analysing data on previous catastrophes,
in real time, enabling quick and efficient response. Organizations  available resources, and potential crisis scenarios. By doing this,
involved in catastrophe planning and response may also achieve  waste may be decreased and resources will be distributed where they
improved cooperation and communication by using these are most needed. Planning evacuations is another area where
algorithms (Islam et al., 2020). machine learning algorithms may be quite useful (Ganguly et al.,
For effective emergency planning and response, accurate  2019). These algorithms may help in the planning and execution of
weather and catastrophe predictions are crucial. Accurate efficient evacuation procedures by analysing data on population
forecasts are essential for reducing the consequences of natural  density, infrastructure, and potential crisis circumstances. With the
disasters since inaccurate or delayed predictions may cause  use of these algorithms, disaster response efforts, resource allocation,
significant losses in life and property. Planning your evacuation  evacuation planning, and catastrophe forecast accuracy may all be
is an essential part of being prepared for and responding to a  improved. They should thus be promoted and used more often since
catastrophe. The planning of an evacuation may prevent fatalities  they are an essential resource for disaster management organisations
and speed up the relocation of individuals from dangerous places.  and first responders (Chamola et al., 2021).
For instance, accurate forecasting may help emergency responders One instance is the use of machine learning algorithms to
and authorities prepare shelter locations, evacuation routes, and  predict floods in Vietnam. The Vietnamese government and the
other logistical issues in the event of storms or floods. Another way ~ World Bank worked together to create a flood warning system that
that accurate forecasting might help with disaster planning and  uses machine learning algorithms to analyse data from
response is via resource allocation (Johnson et al., 2022). Authorities ~ meteorological stations, river gauges, and satellite images. The
may organise the distribution of resources like food, water, medical = technology sends out early warnings of impending floods,
supplies, and rescue equipment by using accurate forecasting to  enabling authorities to evacuate citizens and more effectively
make sure that they are delivered in a timely and efficient way to the ~ allocate resources. Since its beginnings, the system has
areas that need them the most. As a result, there will be less waste  successfully lessened the impacts of floods on the local
and resources will be accessible when and where they are most ~ community. Using predictive analytics to find California wildfires
needed. Exact predictions may help in disaster response in addition  is another useful use of machine learning techniques. The state’s fire
to organising evacuations and allocating resources. For example,  service uses machine learning algorithms to analyse data on weather
accurate forecasting may help emergency responders plan and carry ~ patterns, vegetation, and other factors that affect the likelihood of
out suitable response strategies, including the deployment of fire-  wildfires. The algorithms provide early warnings of potential
fighting gear or flood barriers to mitigate the consequences of the  wildfires, enabling emergency responders to mobilise assets and
catastrophe. The ability to identify and locate people who may be  create response strategies before the fire spreads (Linardos et al.,
trapped or stranded as a consequence of the catastrophe is another ~ 2022). The approach has been successful in protecting property and
benefit of accurate forecasts for search and rescue operations. MLAs  reducing the impact of wildfires on the neighborhood’s residents.
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The effective use of machine learning algorithms in earthquake
prediction has also been noted. A system developed by the Japan
Meteorological Agency analyses seismic data from hundreds of
sensors spread around the country using machine learning
techniques. The technology gives early warnings of potential
earthquakes, enabling officials to deploy resources and carry out
evacuation preparations more successfully. The technique has
successfully lessened the impact of earthquakes on nearby
populations and cut down on the likelihood of fatalities. Machine
learning algorithms have been used in a range of disaster preparation
and response projects, including hurricane forecasting, disease
outbreak forecasting, and emergency response planning, in
addition to these cases. Overall, the effective use of machine
learning algorithms in planning and responding to disasters
shows the potential advantages of these algorithms in reducing
the consequences of natural disasters, saving lives, and protecting

property.

5 Challenges and limitations of using
MLA's in disaster preparedness and
response

Massive amounts of data are needed for MLAs to analyse and
provide accurate predictions, and the accuracy of the algorithm’s
predictions may be greatly influenced by the quality and
completeness of the data. This may be particularly challenging in
remote or rural places with poor data access. Another challenge is
finding qualified personnel to design, operate, and maintain the
systems (Algiriyage et al.,, 2021). This may be challenging in areas
with little resources or skilled labour. Furthermore, machine
learning algorithms are not foolproof and may still produce false
positives or inaccurate predictions. For example, using algorithms to
decide how to distribute resources or how to evacuate might cause
issues with justice and equality, particularly if the system has biases
against certain communities. In addition to these challenges, there
are limitations to the use of machine learning algorithms in disaster
planning and response (Johnson et al., 2022). It is difficult to predict
the path of a hurricane since doing so requires the examination of a
number of different factors, such as wind speed, temperature, and
atmospheric pressure. If the criteria are too complex or the data is
inadequate, MLAs may have trouble correctly forecasting the course
of a cyclone. Despite these challenges and limitations, using machine
learning algorithms to disaster prevention and response has
significant advantages.

An algorithm created to predict the effects of flooding might be
biassed towards low-income areas if it was trained on data that did
not accurately represent their specific vulnerabilities and needs
(Ganguly et al., 2019). Machine learning algorithms may be a
useful tool for boosting disaster preparedness and response
efforts, saving lives, and protecting property with careful
planning and execution (Yu et al., 2021). Utilizing current, high-
quality data that correctly represents current weather patterns and
natural disaster occurrences is crucial to lowering the chance of
inaccurate predictions. To counteract prejudice, it may be important
to establish standards for data collection and analysis and to
continuously evaluate the algorithm to find and remove any
biases (Algiriyage et al, 2021). Additionally, to make sure that
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the algorithm truly represents the needs and priorities of the
communities being served, it may be beneficial to engage
community stakeholders in its design and implementation. In the
event of natural disasters, we can better protect communities and
save lives by using the potential of machine learning algorithms to
enhance disaster planning and response (Islam et al., 2020).

6 Discussion

The use of MLAs emerges as a key element in enhancing our
capacity to forecast and manage natural catastrophes as we look to
the future of disaster planning and response. It is impossible to
emphasise the importance of MLAs in this context; nonetheless,
there are a number of critical areas that need more study and
development in order to fully realise the potential advantages of
this technology. For machine learning systems to be useful in
predicting disasters, their accuracy must be improved. Future
efforts should concentrate on creating algorithms that are more
resistant to unforeseen circumstances, combining current data
together with past data to improve accuracy. Additionally, in
order to guarantee dependability in disaster prevention and
response, efforts to improve the quality and completeness of
training data are crucial (Jaydhar et al., 2022; Chakrabortty
et al., 2023).

The possible bias that might be present in their algorithms is a
serious issue when using MLAs. In order to lessen the effects of
current biases, future research should adopt detailed criteria for data
gathering and analysis. To make sure that algorithms are reflective of
the particular needs and vulnerabilities of the communities they
serve, engagement with community stakeholders is essential. It is
crucial to ensure that the advantages of this technology are
available to all communities, regardless of their financial or
technical capacity, in order to maximise the social effect of
MLAs. To promote the long-term use of these algorithms on
a worldwide scale, creative finance methods and collaborations
with the commercial sector might be investigated (Ruidas et al,,
2022a; Ruidas et al., 2023).

MLAs may be equipped to provide up-to-date information on
changing catastrophe situations by integrating real-time data from
many sources, such as weather sensors, social media, and satellite
imaging. Harmed communities are less affected as a result of the
quick detection and reaction to potential dangers made possible by
this real-time analysis. Emphasizing data fusion, the synthesis of
several data sources, may result in a more thorough and precise
knowledge of certain occurrences. MLAs may provide more accurate
forecasts of upcoming catastrophic occurrences by merging
information from meteorological forecasts, historical records, and
real-time sensor data. There are fresh opportunities when MLAs are
compared to other upcoming technology like drones and driverless
cars. For instance, drones with sensors may gather information on
catastrophe circumstances, which MLAs can then examine to
provide insightful information that will guide response activities.
It is essential to make sure that MLAs are useable and accessible to
communities with little access to resources or technical know-how.
These technologies may be made more accessible and effective at the
community level by creating user-friendly interfaces and partnering
with regional groups.

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1194918

Jain et al.

7 Conclusion

The need of precise weather and natural catastrophe forecasting
in efficient disaster preparation and response operations is stressed
in this article. Its worldwide repercussions highlight the need of
using cutting-edge technology on a global basis. Machine learning
algorithms have a revolutionary influence on disaster management
because they allow efficient resource allocation and early warnings,
thereby saving lives and reducing socio-economic effects. The
ubiquitous application of machine learning techniques is what
gives our research its worldwide significance. These algorithms,
capable of assessing a variety of data sources, provide insights
essential for well-informed response activities across various
geographies and climatic conditions. They act as a cornerstone in
dealing with natural catastrophes all over the globe, highlighting the
need for a coordinated, technology driven strategy to global
concerns. Our study emphasises the dynamic character of this
subject, despite ongoing issues like accuracy and data quality.
Continuous innovation and research serve as catalysts for
addressing these issues, assuring ongoing advancement and
resistance to unanticipated setbacks. By recognising the limits of
the present, we open the door to a future in which technology adapts
and develops to satisfy the needs of a constantly changing
environment. Looking forward, there is a large and fascinating
range of possible uses for machine learning algorithms in disaster
planning and response. Critical components include prioritising

innovation, encouraging cooperation, and interacting with
communities. By doing this, we are able to safeguard
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