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Recent urbanization and growing food consumption have had a severely
detrimental effect on the ecological environment of the Jianghan Plain. The
ecological fragility of the Jianghan Plain must be continually monitored for
environmental conservation and sustainable development. This study utilized
principal component analysis (PCA) to quantitatively assess the ecological
vulnerability of the Jianghan Plain based on the remote sensing ecological
index (RSEI) and analyzed the space-time changes and drivers in the Jianghan
Plain from 2000 to 2020 using the Google Earth Engine Platform (GEE). The
findings of this research indicated that the ecological vulnerability of the Jianghan
Plain from 2000 to 2020was predominantly Moderate or Strong level. But still, the
EVI displayed a changing decreasing trend, revealing a small development towards
a healthier ecological environment. The most significant ecological vulnerability
deterioration occurred between 2005 and 2010, accounting for roughly
44.90 percent, whereas the highest improvement occurred between 2000 and
2005, occupying approximately 37.52% of the area. Moran’s I of EVI was greater
than 0 in Jianghan Plain and displayed a growing and subsequently a falling trend,
representing that the spatial distribution of regional ecological vulnerability was
strongly correlated and aggregated and that the degree of aggregation has
declined. The effects of heat, greenness, wetness, and dryness on the
ecological vulnerability of Jianghan Plain were all significant, with greenness
and wetness being the primary determinants of the change in Jianghan Plain’s
ecological vulnerability. The results of this study can offer a theoretical and
scientific foundation for ecological protection and restoration in the Jianghan
Plain. Meanwhile, this study also provides a practical and rapid method for
monitoring regional ecological vulnerability using RSEI, GEE, and PCA, which
can be applied elsewhere for ecological vulnerability evaluation.
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1 Introduction

With the continuous population growth and rapid economic
development, the regional natural environment’s carrying capacity
and buffer capacity are facing a serve test due to unreasonable
resource utilization (Wei and Ye, 2014; Zhang et al., 2022). The
contradiction between humans and the environment has become
increasingly prominent (Zheng et al., 2021). Ecological degradation
has occurred in many regions of the world, and ecological fragility
problems are becoming increasingly severe, for example,
biodiversity reduction, land desertification, and soil pollution.
Therefore, when researching global environmental change and
sustainable development, ecological vulnerability has garnered
much attention from academics and has emerged as one of the
most critical topics to consider (Nguyen et al., 2016; Xu et al., 2018).
Conducting ecological vulnerability research is vital for
environmental protection and has crucial guiding significance for
the efficient management of land resources and long-term growth.
(He et al., 2018; Thiault et al., 2018).

With the strengthening of investigations into the consequences
of global environmental change, especially for the in-depth
exploration of the human-nature relationship, the study of
ecological vulnerability has yielded fruitful results in terms of
theory and empirical evidence (Beroya-Eitner, 2016; Weißhuhn
et al., 2018; Chen et al., 2022). Numerous scholars have used a
variety of assessment approaches to perform numerous
investigations into various regions. For instance, Cao et al. (2022)
constructed the ecological vulnerability index of Shenlongjia
thoroughly and quantitatively using the vulnerability scoring
diagram (VSD) model during a 22-year period. Hou et al. (2020)
combined GIS data with a fuzzy analytic hierarchy method to study
hierarchical variations of regional ecological vulnerability. And
Boori et al. (2022) proposed a driver-pressure-state-impact-
response (DPSIR) framework based on 3S technology and
analytical hierarchy process (AHP) to compute the ecological
vulnerability index (EVI). However, most assessment systems in
previous research are influenced by subjective factors and weighting
decisions. The assessment model incorporates all chosen
indicators, disregarding the indicators’ independence (Zhang
et al., 2017; Guo et al., 2019). It increases calculations or
inaccurate results (Cai et al., 2021). In recent years, some
researchers have increasingly used remote sensing data to
construct ecological vulnerability indicators due to their
accessibility, objectivity, and accuracy (Liou et al., 2017; Xu
et al., 2017). Bai and Ma (2010) established an assessment
method of ecological vulnerability using eight indicators
extracted from remote sensing data in Qinghai Lake. And
Chen et al. (2019) examined ecological vulnerability and
discussed its change pattern from 1990 to 2015 in the Amu
Darya river basin using image elements as the evaluation object
based on multi-source remote sensing data. Therefore, we used a
comprehensive index built from Greenness, Wetness, Dryness,
and Heat based on the remote sensing ecological index (RSEI).
RSEI, as a quantitative measure of regional ecological quality,
can not only effectively avoid the subjective influence of human
beings in ecological vulnerability studies but also improve the
efficiency of evaluation (Hang et al., 2020; Jing et al., 2020; Jiang
et al., 2023). RSEI can also be visualized and compared at

various spatial and temporal dimensions. Additionally, prior
studies have confirmed the validity and credibility of this
indicator used in ecological research (Zhu Z. et al., 2015;
Kasimu et al., 2019).

As an open-access platform, Google Earth Engine (GEE)
significantly simplifies the use of remote sensing data in
various research, particularly in large-scale study areas
(Gorelick et al., 2017). GEE collects many datasets, such as
Landsat, MODIS, ASTER, etc. And GEE allows users to
develop interactively and test algorithms and acquire and
process shared data in an online or offline programmatic
manner, which is advantageous for using remote sensing data
in long-term and large-scale studies and dramatically improves
the effectiveness of processing remote sensing images
(Parastatidis et al., 2017; Ye et al., 2021). Compared to
traditional tools, the GEE platform offers significant
advantages in the efficiency and accuracy of calculations in
research (Kumar and Mutanga, 2018; Xu et al., 2022).

The Jianghan Plain in Hubei Province is a central part of the
Yangtze River Plain’s middle and lower reaches (Li X. et al., 2022).
Due to its unique geographical location and social functions, the
Jianghan Plain is one of the prominent carriers of human production
and life and assumes essential ecosystem service functions (Jiang
et al., 2022). However, as the Jianghan Plain’s population and
economic development have grown, the dual pressures of
increased food production and rapid urbanization have resulted
in increasingly serious ecological problems. How to accomplish a
win-win goal for socioeconomic growth and environmental
protection has come to be a major concern for the region. Thus,
long-term monitoring of changes in the Jianghan Plain’s ecological
vulnerability is required to provide a scientific rationale for future
sustainable development decisions. Considering the above facts, we
first effectively constructed the EVI using Landsat data on the GEE
platform. After that, we visualized the spatial and temporal variation
of ecological vulnerability in Jianghan Plain and analyzed the leading
impact indicators of changes to reveal the evolution patterns of
ecological vulnerability in the region. (Figure 1). The aim is to
provide full theoretical support and a scientific foundation for local
government to make decisions regarding sustainable development
and ecological management in the Jianghan Plain, as well as to offer
a workable and efficient method for assessing the regional ecological
vulnerability using GEE.

2 Materials and methods

2.1 Study area

The Jianghan Plain is situated in Hubei Province’s southernmost
region (29°26′-31°37′N, 111°14′-114°36′E). It forms a significant
portion of the middle and lower reaches of the Yangtze River
Plain, with Jingmen to the north, the Dongting Lake Plain to the
south, Wuhan to the east, and Yichang to the west (Figure 2). The
overall area is around 29,000 square kilometers and is primarily
comprised of 14 counties and cities: Danyang, Zhijiang, Songzi,
Jingzhou, Jiangling, Gongan, Shishou, Qianjiang, Jili, Tianmen,
Xiantao, Honghu, Yunmeng, Yingcheng, and Hanchuan (Huang
et al., 2020). The altitude decreases from the northwest to the

Frontiers in Environmental Science frontiersin.org02

Yi et al. 10.3389/fenvs.2023.1191532

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1191532


southeast. Also, there is predominantly flat, with numerous lakes
and rivers. With average annual temperatures between 14 and 18°C
and yearly precipitation between 1,100 and 1,300 mm, it has a
typical subtropical monsoon climate. Rainfall and high
temperatures coincide, and 240 to 260 frost-free days per year
are optimal for growing food crops. (Wang et al., 2011). The
Jianghan Plain is a critical commodity food base for China
because of its advantageous position and food production. And
China’s food security is also influenced by the state of its ecological
ecosystem, which can have both good and adverse effects on the
quality of its agricultural output.

2.2 Data and processing

In this study, we employed data from Landsat 5 TM (2000,
2005, 2010) and Landsat 8 OLI/TIRS (2015 and 2020) provided

by Google Earth Engine (GEE) to map the spatial and temporal
distribution of EVI changes from 2000 to 2020 (Xiao et al.,
2019). Because these data have been pre-processed with
atmospheric correction, radiometric calibration, and
geometric correction, they are immediately usable on the
GEE platform (Kumar and Mutanga, 2018; Zhao et al., 2021).
To eliminate the effect of clouds, we mean-synthesized the
images of the target year and its preceding and following
years and applied the corresponding de-clouding algorithm
to obtain the required images (Tang et al., 2023). Then, the
Normalized Difference Soil Index (NDBSI), the Land Surface
Temperature (LST), the Normalized Difference Vegetation
Index (NDVI), and Wetness (WET) are calculated based on
the de-clouded images, and the specific formulas are shown in
Table 2. The processes mentioned above are executed on the
GEE platform, and Table 1 displays the image data utilized for
this study.

FIGURE 1
Workflow.
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2.3 Methodology

2.3.1 Construction of ecological vulnerability
Index (EVI)

Since Xu Qiuhan proposed a comprehensive evaluation of regional
ecological quality, researchers have regularly used the four indicators of
greenness, moisture, heat, and dryness in regional ecological studies (Xu,
2013a; 2013b). For this reason, we chose four indicators to build the
ecological vulnerability index (EVI), and these four indicators are
obtained through the standardization of NDVI, Wet, NDBSI, and
LST. We also used the modified normalized difference water index
(mNDWI) to remove bodies of water from the research region, which
further improved the accuracy of theWet calculation (Xu, 2005). Table 2
lists the relevant calculation equations.

The EVI was constructed using the first, second, and third principal
components (PC1, PC2, and PC3) obtained from the principal
component analysis (PCA) of four indicators. This is because the
combined participation rates of PCs 1, 2, and 3 are higher than 99%.
Before using PCAanalysis, indicators’ valuesmust be normalized because
they have various numerical ranges and units. Positive and negative
indicators can be distinguished among ecological vulnerability indicators.
According to relevant studies (Yao et al., 2016; Wang and Su, 2018),
dryness and heat have a detrimental effect on the ecological environment,
so they are normalized using Eq. 2. In contrast, greenness and wetness
have a beneficial effect, so they are normalized using Eq. 1.

SIi � Ii − I min

I max − I min
(1)

FIGURE 2
The location of the Jianghan Plain.

TABLE 1 Data source.

Data Source and data details resolution/m

Landsat5, Surface reflectance Product Google Earth Engine Platform (product identifier: LANDSAT/L05/C01/T1_SR, used bands:1,2,3,4,5,6) 30

Landsat8, Surface reflectance Product Google Earth Engine Platform (product identifier: LANDSAT/L08/C01/T1_SR, used bands:2,3,4,5,6,7,10) 30

Land cover Resources and Environmental Sciences 30
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SIi � I max − Ii
I max − I min

(2)

Where Ii denotes the standardized value of indicator i, with a value
range of [0, 1]; I min denotes the lowest value of indicator i; I max denotes
the highest value of indicator i. After normalization of all indicators, we
used PCA in Google Earth Engine to calculate PC1, PC2, and PC3. We
obtained the value of EVI using Eq. 3 based on the PCA results.

EVI � r1Y1 + r2Y2 + r3Y3 (3)
Where EVI represents the status and characteristics of the

ecological vulnerability; ri and Yi represent the ith principal
component and the contribution rate of the ith principal
component, respectively. We divided the EVI in Jianghan Plain
into five levels, each with a 0.2 increment, because the closer the
value is to 1, the more fragile the ecosystem is. Among them, Level Ⅰ
(Slight): 0–0.2; Level Ⅱ (Light): 0.2–0.4; LevelⅢ(Moderate): 0.4–0.6;
Level Ⅳ (Strong): 0.6–0.8; Level Ⅴ (Extreme): 0.8–1.0.

2.3.2 Geodetector
Geodetector is a quantitative approach to identifying spatial

heterogeneity and illuminating the main drivers behind the
phenomenon (Zhou X. et al., 2021; Guo et al., 2022). Since
Jinfeng Wang and others proposed geodetector in 2004, it has
been extensively employed in various fields, including land use,
ecology, soil, and regional economy, due to its superiority in being
able to be used for both numerical and typological data and immune
to covariance (Wang and Xu, 2017; Zhou et al., 2020; Zhou et al.,
2021 X.). In this study, using the factor detector, we explored the
influence of four indicators (Wet, LST, NDSBI, and NDVI) on EVI.

q � 1 − ∑l
i�1Niσ2

i

Nσ2
� 1 − SSW

SST
(4)

SSW � ∑
l

i�1
Niσ

2
i (5)

SST � Nσ2 (6)
Where i = 1,2/l represents the classification or strata of the

factor; Ni and σ i are the number of units and variance at class or

strata i; N and σ are the sum of units and variance within the study
area; SST and SSW denote the total sum of squares and the within
sum of squares, respectively. Higher q values indicate more
explanatory power of independent factors on a dependent
variable, and the range for q is [0,1].

2.3.3 Spatial auto-correlation
Spatial auto-correlation reflects the degree of correlation

between a phenomenon in a region and the same phenomenon
in neighboring regional units, including global auto-correlation and
local auto-correlation (Fan and Cowley, 1985; Martin, 1996). It is a
vital index to test whether an element’s ecological vulnerability is
correlated with its adjacent space’s ecological vulnerability (Jing
et al., 2020). For spatial analysis, the main methods applied in
numerous studies are the local indicator of spatial association (Local
Moran’s I) and the global spatial auto-correlation (Global
Moran’s I).

The Global Moran’s I can disclose the regional clustering of
the spatial layout of ecological environment vulnerability. Its
value is between plus and minus 1. A value above zero denotes a
positive spatial correlation, a zero value denotes no spatial
correlation at all, and a value below zero denotes one
negative (Wan et al., 2011). The following is the calculation
formula:

Global Moran′s I � N∑N
i�1∑N

j�1wij xi − �x( ) xj − �x( )
∑N

i�1∑N
j�1wij xi − �x( )2 (7a)

Where N is the total of elements;wij is the spatial weight matrix;
xi represents the ecological vulnerability value of position i; �x is the
average value of all ecological vulnerability values.

Local Moran’s I, also known as LISA (Local Indicators of Spatial
Association, is a valuable indicator of the geographic correlation of
each unit’s ecological vulnerability (Anselin, 2010). When the global
auto-correlation exits, LISA is able to analyze further whether there
is spatial heterogeneity. Therefore, it is necessary to calculate Local
Moran’s I. The calculation formula is shown in Eq. 8, and the
parameters in the formula are consistent with Eq. 7 (Lei et al., 2019;
Xiong et al., 2021).

TABLE 2 Calculation methods of indicators.

Indicators Formula Parameters and explanation

NDVI Bnir−Bred
Bnir+Bred

Bi indicates the bands of Landsat5 TM and Landsat8 OLI/TIRS bands; βi are the surface reflectance
of each band in different images; SI and IBI respectively denote soil index and building index. Crist.

(1985); Xu. (2008), Xu. (2010)

Wet β1Bblue + β2Bgreen + β3Bred + β4Bnir + β5Bswir1 + β6Bswir2

NDSBI

SI � (Bswir1+Bred )−(Bblue+Bnir )
(Bswir1+Bred )+(Bblue+Bnir )

IBI � ( 2Bswir1
Bswir1+Bred )−(

Bnir
Bnir+Bred −

Bgreen
Bgreen+Bswir1)

( 2Bswir1
Bswir1+Bred )+(

Bnir
Bnir+Bred −

Bgreen
Bgreen+Bswir1)

NDBSI � SI+IBI
2

LST γ × (φ1+Lsensor+φ2ε + φ3) + δ ε is the surface specific emissivity; γ is a constant; φi based on calculations by Jimenez-Munoz et al.
(2009); Lsensor is the radiation brightness measured by the sensor

mNDWI Bgreen−Bswir1

Bgreen+Bswir1
Bi indicates the bands of Landsat5 TM and Landsat8 OLI/TIRS bands Xu (2005)
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LocalMoran′s I � xi − �x( )∑N
j�1 xj − �x( )

∑N
i�1 xi − �x( )2 (7b)

The LISA has five types of spatial aggregation, High-High (HH),
High-Low (HL), Low-High (LH), Low-Low (LL), and Not
significant (Jing et al., 2020). The HH represents that a region
with a high value is accompanied by other areas with a high value. In
contrast, the LL means that an area with a low value is accompanied
by other sites with a low value. LH denotes that the chosen area’s
value is low while the surrounding area’s value is high. HL denotes
that while the value of the selected location is high, the value of the

nearby area is low. HH and LL show high positive spatial
correlations and regional clustering and similarity.

2.3.4 Coupling coordinative degree model
The coupling coordination degree describes the degree of

interaction and coordination among systems or elements,
reflecting the strength of each system’s interconnectedness and
the good or bad coordination between systems. In recent years,
the coupling coordination degree model has been widely used to
describe the nonlinear interaction between multiple systems in
many disciplines, such as biology, geography, ecology, and
urbanization (Li et al., 2013; Liu et al., 2022). The coordination
coupling degree model (CCDM) is used to evaluate the degree of
coordination development between two or more subsystems, and its
calculation formula is shown as follows:

C � n
����������
X1X2 . . .Xn

√
X1 + X2 + . . . + Xn

T � α1X1 + α2X2 + . . . + αnXn

D � �����
C × T

√

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(8)

Where C denotes the coupling degree between systems, T
represents the coordination degree between systems, D denotes
the coordination coupling degree between systems, X1X2 . . .Xn

indicates the selected subsystem, α1α2 . . . αn represents the
coefficients to be determined and α1 + α2 + . . .+αn � 1. C and D
take values between 0 and 1.

3 Results

3.1 Overall characteristic of ecological
vulnerability

As demonstrated in Table 3, the sum contribution rates of the first,
second, and third principal components (PC1, PC2, PC3) were higher
than 99%, with 99.13% in 2000, 99.47% in 2005, 99.80% in 2010, 99.73%
in 2015, 99.77% in 2020, respectively. It indicated that PC1, PC2, and
PC3 concentrated the majority of traits of the four indicators.

Table 4 displays the results of descriptive statistics for the EVI and
all data variables used in this study. During the past 2 decades, NDVI
and Wet values in the Jianghan Plain have fluctuated upwards. Their
mean values increased from −0.096 and 0.445 in 2000 to −0.033 and
0.476 in 2020, with increases of 65.62% and 6.97%. It indicated that
water conservation capacity in the Jianghan Plain had improved, and
the vegetation cover had shown an increasing trend. The NDBSI had
decreased by 20.32 percent, with the average value falling
from −0.123 in 2000 to −0.148 in 2020, meaning a reduction in the
Jianghan Plain’s surface exposure.While the surface temperature, which
is strongly tied to water and plant, increased annually, with the average
value increasing from 21.226 in 2000 to 22.452 in 2020, a 5.75%
increase. It meant that the water-heat balance difference in the
Jianghan Plain had increased, which had a substantial impact on the
regional ecological vulnerability. Regarding the Minimum, four
indicators showed a decreasing and then increasing trend. The
turning year of NDVI and WET occurred in 2010, while the
turning year of LST and NDBSI was in 2010. And the maximum of
NDVI, LST,WET, andNDBSI peaked in 2020. The standard deviations

TABLE 3 PCA results in 2000,2005,2010,2015 and 2020.

Year Indicator PC1 PC2 PC3 PC4

2000

NDVI 0.758 −0.587 −0.162 0.232

WET 0.148 0.517 0.030 0.842

NDBSI 0.632 0.557 0.273 −0.464

LST 0.057 0.278 −0.947 −0.147

Eigenvalue 0.009 0.003 0.002 0.000

Percent eigenvalue 64.42% 20.48% 14.23% 0.87%

2005

NDVI 0.865 0.207 −0.419 −0.179

WET 0.060 −0.368 0.316 −0.72

NDBSI 0.480 −0.528 0.536 0.451

LST 0.131 −0.736 −0.661 0063

Eigenvalue 0.009 0.002 0.001 0.000

Percent eigenvalue 78.64% 14.17% 6.66% 0.53%

2010

NDVI 0.561 0.267 0.768 −0.156

WET 0.077 0.124 −0.291 −0.946

NDBSI 0.636 0.446 −0.562 0.283

LST 0.524 0.845 0.097 0.039

Eigenvalue 0.012 0.005 0.002 0.000

Percent eigenvalue 63.46% 28.12% 8.22% 0.20%

2015

NDVI 0.801 −0.575 −0.029 0.162

WET 0.101 0.396 0.003 0.912

NDBSI 0.589 0.709 0.105 −0.374

LST 0.039 0.093 −0.994 −0.041

Eigenvalue 0.015 0.003 0.002 0.000

Percent eigenvalue 75.22% 12.93% 11.59% 0.27%

2020

NDVI 0.813 −0.555 −0.112 0.136

WET 0.103 0.353 0.123 0.921

NDBSI 0.555 0.648 0.376 −0.361

LST 0.142 0.384 −0.912 −0.041

Eigenvalue 0.015 0.002 0.002 0.000

Percent eigenvalue 76.96% 12.12% 10.69% 0.23%
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of all four indicators except LST were less than 0.2, indicating that all
variables used in this study were discrete to a small extent in 2000,2005,
2010, 2015, and 2020. From 2000 to 2020, the average EVI values in the
Jianghan Plain were between 0.5 and 0.7. The ecological vulnerability
level of most areas in Jianghan Plain was mainly at Moderate or
Extreme levels. During 20 years, the mean EVI value showed a
trend of “down—up—down,” demonstrating that the ecological
vulnerability of Jianghan Plain fluctuated downward. Indirectly, it
also side reflected the movement toward enhancing the
environmental quality of Jianghan Plain. Moreover, the turning
years of the trends of the other three indicators are consistent with
the EVI except for LST.

Figure 3 illustrates the proportional change in each ecological
vulnerability level. From 2000 to 2020, the majority of ecological
vulnerability level was either Moderate or Strong. The proportion of
Slight and Light levels increased, whereas the percentage of the Slight
level was the lowest each year. Over 20 years, the proportion of
Moderate level fluctuating grew, with the highest rate occurring in
2020. The change in the Extreme level was the opposite of the
Moderate level, and it showed a fluctuating decrease, with the lowest
percentage of 29.06% in 2020. The rate of Extreme level was the
largest in 2010 with 9.29%, and only 0.86%, 0.02%, 0.34%, and 0.13%
in 2000, 2005, 2015, and 2020, respectively. The temporal changes of
the extreme level were generally consistent with the EVI trend in
study time.

Dark green, light green, yellow, orange, and brown represent
Mild, Light, Moderate, Strong, and Extreme ecological vulnerability,
respectively, in Figure 4. From 2000 to 2020, the spatial and
temporal patterns of ecological vulnerability in the Jianghan Plain
were highly variable and strongly tied to human agricultural
production, urban expansion, and some government policies over
20 years. The temporal and spatial patterns of ecological
vulnerability in the Jianghan Plain were highly variable from
2000 to 2020 and were deeply associated with human agricultural
activities, urbanization, and specific government policies. Ecological
vulnerability decreased from south to northwest in the Jianghan
Plain in 2000. The region with the lowest ecological vulnerability was
Zhongxiang, while Hanchuan was the most vulnerable. In 2005,
2010, 2015, and 2020, the ecological vulnerability decreased from
west to east in the Jianghan Plain. In 2010, the area of Extreme level
in the Jianghan Plain increased significantly and was mainly
distributed in Dongbao, Dangyang, Songzi, Gongan, Shihou, and
Jiangling. In 2015 and 2020, Anlu, Yunmeng, Hanchuan, Xiantao,
and Honghu in the eastern proportion of the Jianghan Plain and
Zhongxiang in the northern part of the Jianghan Plain had low
ecological vulnerability levels, while the regions with comparatively
high ecological vulnerability levels were primarily situated in the
central and northeastern proportion in the Jianghan Plain.

In terms of city scale, from 2000 to 2020, the EVI value of
Jingmen was low, which represented the ecological environment was
relatively good and the possibility of ecological degradation was
relatively low (Figure 5). The relatively high EVI values in Xiaogan
indicated high ecological vulnerability. Nonetheless, it displayed a
significant downward trend, meaning that the ecological
environment in Xiaogan has considerably improved from 2000 to
2020. Jingzhou and Yichang have higher EVI values, and in 2010 the
EVI of these two cities was the highest of all cities studied. It
suggested that the two cities were more vulnerable to
environmental threats. However, after 2010, the EVI values of the
two cities also decreased significantly, reflecting that the two cities’
ecological environment had become better and was trending in a
positive direction.

Regarding the district and county scales, the EVI values of each
district and county showed fluctuations and decreases. And in 2010,
all other Counties or Districts showed an increasing trend except
Honghu, Dongdao, Jingshan, Duodao, Shayang, Yingcheng,
Hanchuan, and Anlu. Most Counties or Districts had their
maximum values of EVI in 2010, while all Counties or Districts
had the lowest EVI values in 2020, which denoted that all counties or
districts had improved their ecological environment quality with
proper environmental protection measures in 2000–2020.

3.2 Dynamic changes in EVI

Based on the EVI level classification findings in 2000, 2005, 2010,
2015, and 2020, the spatial distributions were mapped in Figure 6, and
the area changes were listed in Table 5 to investigate further shifts of
ecological vulnerability in the Jianghan Plain over 20 years. We
determined the area changes for each EVI level and categorized the
results into four categories based on four time periods (2000–2005,
2005–2010, 2010–2015, and 2015–2020). They were, respectively,
Obvious Improvement (OI), Slight Improvement (SI), Invariability

TABLE 4 Statistics of four indicators and EVI.

Years Statistics NDVI WET LST NDBSI EVI

2000

Minimum −0.494 −0.703 −0.087 −0.490 0.000

Maximum 0.830 0.029 30.156 0.410 1.000

Mean 0.445 −0.096 21.226 −0.123 0.656

Std Dev 0.103 0.030 1.348 0.061 0.358

2005

Minimum −0.677 −0.849 −5.185 −0.905 0.000

Maximum 0.983 0.184 55.49 0.68 1.000

Mean 0.516 −0.092 21.512 −0.134 0.605

Std Dev 0.138 0.033 2.239 0.083 0.072

2010

Minimum −0.788 −0.929 3.235 −0.524 0.000

Maximum 0.861 0.213 35.142 0.483 1.000

Mean 0.467 −0.095 21.925 −0.125 0.627

Std Dev 0.035 0.035 2.720 0.081 0.099

2015

Minimum −0.226 −0.735 4.851 −0.610 0.000

Maximum 0.979 0.129 36.779 0.723 1.000

Mean 0.526 −0.050 22.343 −0.131 0.577

Std Dev 0.126 0.032 2.336 0.091 0.094

2020

Minimum −0.345 −0.807 5.153 −0.644 0.000

Maximum 0.996 0.162 44.597 0.943 1.000

Mean 0.476 −0.033 22.452 −0.148 0.546

Std Dev 0.146 0.037 1.678 0.093 0.091
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FIGURE 3
The proportion of ecological vulnerability index (EVI) in Jianghan Plain from 2000 to 2020.

FIGURE 4
Spatial distribution of ecological vulnerability index (EVI) in Jianghan Plain from 2000 to 2020.
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(IN), Slight Deterioration (SD), and Obvious Deterioration (OD). The
analysis revealed that ecological vulnerability remained stable in the
majority of the Jianghan Plain, with IN accounting for the largest
proportion in each period, at 52.04 percent, 53.65 percent,
55.44 percent, and 60.12 percent, respectively. It showed that the
construction of ecological civilization in the Jianghan Plain had
achieved remarkable achievements, the regional ecological
environment had been improving, and the ecological carrying
capacity and buffering capacity also had been increasing. The ratio
of OI and OD change was less than 0.1%, showing that from 2000 to
2020, there were fewer regions with significant ecological vulnerability
changes in the study area. Except for 2005–2010, the proportion of SI
was second only to IN, with 37.52%, 1.46%, 29.02%, and 27.53% in the
four periods, and the largest proportion in 2010–2015. And the
proportion of SD increased and then decreased between 2000 and
2020, with ratios of 10.44%, 44.90%, 14.62%, and 12.34%. Above, it was
demonstrated that the degree of ecological vulnerability fluctuated
downward in the Jianghan Plain.

Figure 7 illustrates the complex spatial variations in ecological
vulnerability levels between 2000 and 2020. From 2000 to 2010, the
ecological vulnerability of the Jianghan Plain mainly shifted from
levels III and IV to other levels. The areas where the classes remained
unchanged were all in the central regions of the Jianghan Plain.

From 2000 to 2005, the ecological vulnerability in the northern part
of the Jianghan Plain changed mainly from the level III to the level
IV and V, indicating a decrease in ecological vulnerability. The north
part of the Jianghan Plain is relatively high in elevation, and forests
dominate the land use. And China implemented the policy of
returning farmland to forest in 1999. The protection of forests
increased its area, which influenced the change in regional
ecological vulnerability from 2000 to 2005. In the southern
portion of the Jianghan Plain, ecological vulnerability decreased
from level IV to other levels, whereas ecological vulnerability
decreased from level IV to level III in the southeast and
southwest, indicating an improvement in ecological fragility.
From 2005 to 2010, the ecological vulnerability of the southwest
and northwest portions of the Jianghan Plain deteriorated,
manifesting a change from level III or IV to level V. However,
these deteriorated areas showed an improving trend during
2010–2015, with a shift from the Ⅴ level to other levels. Most
regions’ ecological vulnerability levels remain unchanged from
2015 to 2020. Some areas in the north mainly changed from Ⅱ to
Ⅲ level. The central part of Jianghan Palin showed areas where theⅢ
level became Ⅱ level orⅣ level, changed toⅢ level, which indicated a
decrease in ecological vulnerability level and an improvement in the
ecological environment.

FIGURE 5
The mean ecological vulnerability index (EVI) of each county in Jianghan Plain from 2000 to 2020.
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FIGURE 6
Scatter plots of the ecological vulnerability index (EVI) in Jianghan Plain from 2000 to 2020.

TABLE 5 Changes in EVI level from 2000 to 2020.

Year OI SI IN SD OD

2000–2005

Change level 4 3 2 1 0 −1 −2 −3 −4

Area/km2 0 0.41 317.05 16676.64 23570.87 4,728.81 0.43 0 0

Change area/km2 0.41 16993.69 23570.87 4,729.24 0

Percentage 0.00% 37.52% 52.04% 10.44% 0.00%

2005–2010

Change level 4 3 2 1 0 −1 −2 −3 −4

Area/km2 0 0.01 0.4 659.89 24298.41 19941.8 393.35 0.34 0

Change area/km2 0.01 660.29 24298.41 20335.15 0.34

Percentage 0.00% 1.46% 53.65% 44.90% 0.00%

2010–2015

Change level 4 3 2 1 0 −1 −2 −3 −4

Area/km2 0.02 32.15 216.07 13310.63 25112.2 6580.43 42.68 0.01 0

Change area/km2 32.17 13526.70 25112.20 6623.11 0.01

Percentage 0.07% 29.87% 55.44% 14.62% 0.00%

2015–2020

Change level 4 3 2 1 0 −1 −2 −3 −4

Area/km2 0.03 4.08 516.55 11952.73 27229.63 5377.11 213.5 0.58 0

Change area/km2 4.11 12469.28 27229.63 5590.61 0.58

Percentage 0.01% 27.53% 60.12% 12.34% 0.00%
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4 Discussion

4.1 Spatial auto-correlation analysis of EVI

Considering the actual situation of Jianghan Plain, a 3 km × 3
km grid was established to extract the image information in order to
ensure the completeness of the details within the scale and the
precision of calculation. In this study, we extracted 4,319, 4,337,
4,304, 4,323, and 4,261 sample points from the images of 2000, 2005,
2010, 2015, and 2020 due to the varying extent of water bodies in
each year. Moran’s I index and LISA were used to conduct a spatial
autocorrelation analysis of EVI in the Jianghan Plain using the
previously mentioned sample points. Figure 8 depicts the scatter plot
of Moran’s I for Jianghan Plain’s EVI. From 2000 to 2020, the scatter
points were primarily dispersed in the first and third quadrants,
indicating that the ecological vulnerability in Jianghan Plain had a
positive spatial correlation and a clustered instead of random

distribution. And the value of Moran’s I increased and decreased
over the past 2 decades, with values of 0.517, 0.579, 0.748, 0.462, and
0.397, respectively. In 2010, Moran’s I had its highest value, implying
a significantly positive spatial correlation.With a value of only 0.397,
the ecological vulnerability of Jianghan Plain was the weakest spatial
correlation in 2020.

By analyzing the local spatial correlation pattern based on the
LISA cluster map, we could determine the spatial distribution of
5 cluster types (No Significant, H-H, H-L, L-L, L-H) each year. As
depicted in Figure 8, the No Significance was most prevalent in
relatively low-elevation regions, including Qianjiang, Jianli, Shishou,
and Xiantao. From 2000 to 2020, L-L and H-H were more
concentrated and prominent, while HH and LH were more
dispersed and fewer. And the spatial spread of L-H and H-L was
more variable. In 2000, the H-H dominated the eastern and western
parts of the Jianghan Plain, whereas the L-L dominated these regions
in 2005 and 2010. In addition, the area of L-L decreased

FIGURE 7
Spatial and temporal pattern of ecological vulnerability index (EVI) in Jianghan Plain in four period (A2000-2005, B2005-2010, C2010-2015, D2015-
2020).
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continuously from 2010 to 2020, indicating that the environment
quality had enhanced and the degree of ecological vulnerability had
declined as a result of the promotion of the development of
ecological civilization (Zhu et al., 2022). In conjunction with the
preceding, the temporal tendencies of L-L and HH are consistent
with the EVI’s movements in the Jianghan Plain.

4.2 Driving forces analysis

The ecological vulnerability manifests in the degree of structural
and functional integrity of ecosystems. Natural attributes and
human activities influence regional ecological vulnerability and
lead to spatial and temporal changes (Abd El-Hamid et al.,
2020). Natural factors are the material basis for the existence and
continued positive role of regional ecosystems, and changes in the
natural environment usually affect the structure and function of
regional ecosystems, which in turn leads to the emergence of
ecological vulnerability problems. However, in contrast to the
long-term slow evolution of natural factors, the dramatic
disturbance of human activities is more likely to cause sudden
changes in the regional ecological environment and create
ecological vulnerability problems. It has been proved that
ecological vulnerability is directly related to the natural
conditions of the regional ecological background. Still, the natural

conditions only determine the potential existence of environmental
vulnerability. The main factors that cause the further transformation
of potential environmental vulnerability to actual ecological
vulnerability are the excessive production and living activities of
human beings, such as rapid urbanization, irrational exploitation of
resources, environmental pollution, and so on (Hou et al., 2016).

The four indicators of Heat, Greenness, Wetness, and Dryness
did not simply represent the natural environment but also reflected
the impact of human activities on the natural environment from the
side. Therefore, we quantified the explanatory power of the
indicators in the Geodetector to investigate the major driving
forces of the four indicators of changes in ecological vulnerability
in the Jianghan Plain. A 3 km × 3 km grid was created using ArcGIS
for sampling, and the values of the four indicators and EVI from
2000 to 2020 at the sample sites were extracted and imported into
the detector for calculation. As can be seen in Figure 9, the outcomes
of the factor detector for four indicators over 20 years demonstrated
that p = 0, suggesting that each indicator notably affected the change
in ecological vulnerability in Jianghan Plain. Every year, NDVI had
the highest q value and had the most effect on how ecologically
vulnerable the Jianghan Plain was. It was followed by NDBSI, which
also had a q value over 0.5. With the accelerating urbanization
process, especially from 2005 to 2010, the construction land in
Jianghan Plain increased by 18.30%, and the ecological land area
decreased sharply, resulting in a decreasing trend of EVI. As

FIGURE 8
Jianghan Plain ecological vulnerability index (EVI) cluster map from 2000 to 2020.
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confirmed by many studies, urban expansion and over-exploitation
of arable land have seriously affected the regional ecological
environment (Xie et al., 2013; Liou et al., 2017; Jiang et al.,
2022). The q values of Wet changed less over 20 years, remaining
between 0.1 and 0.3, indicating that the effect of wetness on the
variation in ecological vulnerability in Jianghan Plain was more
consistent. From 2000 to 2020, LST q values were lower, exhibiting a
first ascending and then descending trend. The effect of human
activities, such as environmental pollution and land use change, was
still the main driver of regional ecological vulnerability. In response,
the local government should improve the policy system, implement
the responsibilities of all parties, coordinate the balance between
ecological vulnerability management and economic development of
residents, and take correct and appropriate measures to halt the
deterioration of ecological vulnerability. These were crucial for
accelerating the ecological management of the Jianghan Plain,
consolidating the achievements of ecological management and
construction, and finally achieving the win-win goal of enhancing
the region’s ecological and economic environments. It is somewhat
related to the slight variation in temperature and humidity in the
Jianghan Plain over the past 20 years.

In addition, changes in ecological vulnerability are closely
related to government policies. Ecological vulnerability in the
Jianghan Plain became better from 2000 to 2005, deteriorated
from 2005 to 2010, and improved significantly after 2010. In
Hubei Province, implementing the policy of returning farmland
to the forest in 2000 achieved great ecological benefits, which
directly or indirectly caused the improvement of regional
ecological vulnerability (Zhao et al., 2023). However, with the
rapid development of urbanization, the ecological environment
became increasingly fragile from 2005 to 2010. In 2012, with the
implementation of the ecological civilization construction strategy
and various ecological protection policies, the regional ecological
environment was improved again. Therefore, governments at all
levels of the Jianghan Plain should give full play to their roles to

promote the improvement of the regional ecological environment
and the management of ecological problems and ultimately achieve
the win-win goal of enhancing the regional ecological and economic
environment.

4.2.1 Sustainable development and local
government suggestions

The 2030 Agenda for Sustainable Development sets out 17 goals
and 169 sub-goals comprising the Sustainable Development Goals
(United Nations, 2015). The development of these goals has placed
greater emphasis on integrating the intrinsic linkages between social
development, economic development, and environmental
protection, changing the previous failure to pay sufficient
attention to the ecological field and addressing the persistent
problems and emerging challenges facing humanity and the
planet. China has also been working toward sustainable
development goals. With the rapid urbanization of the Jianghan
Plain, the urban heat island is profoundly affecting the natural
environmental processes on the surface and the sustainable
development of human society. Clarifying the relationship
between carbon emissions and urban heat islands can inform
how to achieve low-carbon and decarbonized sustainable
development goals. (Wise et al., 2009). We divided the Jianghan
Plain into 4,903 cells using a 3 km × 3 km grid and determined the
urban heat island (UHI) area in 2000 and 2020 based on LST >
LSTave+0.5 × δ (LSTave denotes the mean value of LST in the
Jianghan Plain, and δ denotes the standard deviation of LST in
the Jianghan Plain) (Shahfahad et al., 2021). We determined carbon
emission coefficients for each land use type in the Jianghan Plain
based on the IPCC framework and some studies on carbon emission
coefficients (IPCC, 2007; Zhu Q. et al., 2015; Zhou S. et al., 2021).
Then, we used the coupling and coordination degree model
(CCDM) to measure the relationship between urban heat island
density (UHII) and carbon emissions after standardized data
(Naikoo et al., 2023). As shown in Figure 10, the UHI area of
the Jianghan Plain was mainly located in the central region in
2000 and shifted to the west in 2020, and the urban heat island
effect in the eastern part was mitigated. Based on the results of
CCDM, the spatial distribution patterns of the coupling and
coordination degrees of carbon emissions and urban heat island
density in the Jianghan Plain in 2000 and 2020 were generally
consistent. The region’s area with high coupling and coordination in
2020 increased significantly compared to 2000. In fact, the urban
heat island effect and carbon emissions showed high coupling and
high coordination in the central urban areas of each city, as has been
demonstrated by some scholars (Sharifi et al., 2020; Dewa and
Buchori, 2023). Extreme incoordination occurred mainly in the
northern part of the Jianghan Plain, which was at a higher elevation
and had a less significant urban heat island. The emergence of the
urban heat island phenomenon not only has specific effects on
human health but also has adverse effects on vegetation growth and
climate change. (Heaviside et al., 2017; Shahfahad et al., 2022).
Therefore, promoting the implementation of low-carbon emission
reduction is conducive to mitigating the negative impacts of the
urban heat island effect and reducing the fragility of the regional
ecology (Imam and Banerjee, 2016; Chen and You, 2020). This is
also the way to improve the ecological environment of Jianghan
Plain and achieve sustainable development.

FIGURE 9
The results of the Factor Detector.

Frontiers in Environmental Science frontiersin.org13

Yi et al. 10.3389/fenvs.2023.1191532

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1191532


Ecological vulnerability monitoring and driving force analysis
provide decision-makers with suggestions for environmental
improvement to achieve sustainable development (Li F. et al.,
2022). In this study, we promoted the following suggestions
further to improve the sustainable development of the Jianghan
Plain and achieve the win-win goals of economy and ecology.

First, gradually change the urban development model to ensure
ecological land use. The rapid expansion of urban land in the
Jianghan Plain has led to increasing fragmentation of habitats.
Local governments should do reasonable urban planning,
especially in Yichang and Jingzhou, to ensure the regional
ecological environment is not degraded. They should effectively
reduce the inefficient use of urban land, promote urbanization from
incremental expansion to stock renewal, improve internal urban
greening, and ensure the quality and quantity of regional ecological
land. In addition, the governments should promote low-carbon
production and living, improve regional carbon emission
efficiency, and reduce regional carbon emission levels to enhance
environmental quality.

Second, protect arable land and vigorously develop green
agriculture. As the Jianghan Plain is a substantial food
production base in China, protecting the quality and quantity of
basic farmland is a must to protect the regional ecological

environment and an inevitable choice to ensure national food
security. From the factor results, vegetation cover is the main
factor affecting the ecological vulnerability of the Jianghan Plain,
so the local government should develop green agriculture and eco-
agricultural tourism, ensure the planting of crops and various trees,
prevent the emergence of “non-farming” and “non-grain,” and
improve regional vegetation cover (Zhang et al., 2019). In
addition, the government should strictly regulate the use of
fertilizers, designate an ecological compensation system to
prevent soil pollution, protect the region’s natural background
from deterioration, and improve the ecological environment’s
carrying capacity and buffering ability to cope with artificial
disturbances.

Third, develop resources rationally and improve their utilization
rate. The government should scientifically formulate resource
development plans for the Jianghan Plain, improve resource
utilization rates, eliminate resource waste, and maximize the
value of local ecological resources to achieve sustainable
economic development.

Fourth, improve the policy system and play a macro-control
role. The relevant departments need to provide reasonable
policies to guide local companies, groups, and individuals to
participate in ecological protection, such as strengthening

FIGURE 10
(A) Urban heat island in 2000; (B) coupling degree in 2000; (C) Coordination degree in 2000; (D) Urban heat island in 2020; (E) coupling degree in
2020; (F) Coordination degree in 2020.
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supervision and establishing a sound regulatory mechanism.
They also need to implement the responsibilities of all parties,
coordinate the balance between ecological vulnerability
management and residents’ economic development, take
correct and appropriate measures to stop the deterioration of
ecological vulnerability, and play a macro-regulatory role in the
rational use of resources and ecological protection.

4.2.2 Strength and limitation
Considering the ecological vulnerability assessment’s

complexity and ambiguity, the current methods could not
achieve a scientific, objective, and comprehensive evaluation.
Combined with previous studies, to avoid subjective
consciousness seriously affecting the research results (Li
et al., 2012), Due to the complexity and ambiguity of
ecological vulnerability assessment, the current
methodologies are incapable of producing an exhaustive,
scientific, and objective evaluation. This study chose the
index system of the RSEI established by Xu Hanqiu in
combination with earlier research in order to prevent
subjective consciousness from significantly influencing the
research findings (Xu, 2013a; Wang et al., 2016). Although
there was no further apparent correlation between the
indices, this system could correctly represent soil moisture,
surface temperature, vegetation, and exposed surface
conditions of the study region. We used 2020 as an example
to determine the covariance of each indicator in order to
confirm the correlation of the indicators further. There are
two leading commonly used covariance diagnostic indicators,
the variance inflation factor (VIF) and the tolerance level (TOL)
(Yao et al., 2016). When VIF>10 (i.e., TOL0.1), the
multicollinearity of the chosen index was more severe. A
3 km × 3 km grid was used to encompass the entire image in
ArcGIS 10.8, and 4,261 sample points were obtained by
excluding the sampling points from the water bodies. Then,
the values of the EVI and four indicators were extracted, and
SPSS 25.0 was utilized to get the VIF and TOL of each indicator
(Table 6). The results of the calculations revealed that the VIF of
each indicator was less than 10, and the TOL was greater than
0.1, demonstrating there was not any correlation among the
indicators. Therefore, selecting greenness, wetness, dryness and
heat as the assessment index system in this study was desirable.
In addition, we processed and employed the remote sensing data
to construct EVI using the Google Earth Engine. It has certain
advantages of multiple data sources, online processing, and fast
speed compared with traditional local computer download
processing, dramatically improving the efficiency and
accuracy of data processing in this study.

However, there were still some shortcomings in this study.
This study’s primary purpose was to explore a regional

ecological vulnerability assessment method using objective
models through the idea of a remote sensing index. Firstly,
there was still a need for further exploration of the intrinsic
mechanisms driving ecological vulnerability changes. Second,
multiple natural and human activities influenced regional
ecological vulnerability changes, and it was not easy to fully
characterize them with a few indicators. This study selected only
four indicators to measure regional ecological vulnerability.
Simultaneously, the arable land in the Jianghan Plain was
widely distributed, and the regional environment affected
various human activities. Therefore, further exploration and
research were needed to reflect the spatial and temporal changes
of ecological vulnerability in the Jianghan Plain more
scientifically and comprehensively.

5 Conclusion

This study considered greenness, wetness, dryness, and heat
to build an ecological vulnerability assessment index system and
then used the GEE platform and principal component analysis
to make a macro, objective, and rapid evaluation of the
ecological vulnerability in the Jianghan Plain, thereby
revealing the evolutionary dynamics of its ecological
vulnerability. It provided some reference value for the
ecological vulnerability management and food security of the
Jianghan Plain and some ideas for researching regional
ecological vulnerability. The following are this study’s main
conclusions.

1) The EVI of the Jianghan Plain showed a fluctuating decline
from 2000 to 2020, with an overall improvement in
ecological vulnerability and local degradation, especially
after 2010, when the ecological vulnerability improved
significantly.

2) The average value of EVI in the 20 years was between 0.5 and 0.7,
and most areas of the Jianghan Plain were mainly at Moderately
level or Strong level. Also, Jingmen City had a more light
ecological vulnerability, but the ecological vulnerability of
Xiaogan City needed improvement.

3) Most of the areas in Jianghan Plain had the same ecological
vulnerability level in each period, accounting for 52.04%,
53.65%, 55.44%, and 60.12%, respectively. The most serious
period of degradation was 2005–2010, with about 44.90% of
the areas showing degradation, and the period with the
highest percentage of improvement was 2000–2005, with
approximately 37.52% of the areas showing an
improvement.

4) From 2000 to 2020, Moran’s I in Jianghan Plain increased and
then decreased, with values of 0.517, 0.579, 0.748, 0.462, and
0.397 in 2000, 2005, 2020, 2015, and 2020, respectively. The
spatial distribution of ecological vulnerability showed a positive
correlation and aggregated distribution rather than random
distribution.

5) Regarding the evolutionary drivers, all four indicators
significantly affected ecological vulnerability in Jianghan Plain,
and greenness and wetness were the greatest driving force for
changes in Jianghan Plain.

TABLE 6 Results of multicollinearity diagnostics.

Indicators VIF TOL Indicators VIF TOL

Wet 7.185 0.139 NDVI 5.122 0.195

NDBSI 6.260 0.160 LST 1.325 0.755
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