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The agricultural credit scale plays a crucial role in improving the agricultural green
production efficiency (AGPE) in China. This paper selected the panel data of
30 provinces in China from 2009 to 2020 and used the Metafrontier-Malmquist-
Luenberger index to calculate the agricultural green production efficiency. On this
basis, this paper uses the Panel Tobit model to analysis the impact of agricultural
credit scale on AGPE. The main conclusions are as follows: 1) From 2009 to 2020,
the average AGPE in 30 provinces was 4.2%, and agricultural technology progress
was the main driving factor for AGPE growth. 2) The agricultural credit scale
significantly promotes AGPE, and the impact of the agricultural credit scale on
AGPE presents a significant inverted U-shape. 3) The impact of the agricultural
credit scale on AGPE in eastern, central, and western regions is significantly
heterogeneous. 4) AGPE has significant spatial spillover effects. This paper
believes that improving agricultural green production efficiency requires paying
attention to the important role played by the scale of agricultural credit.
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1 Introduction

Since the reform and opening up, China’s agricultural development has made
remarkable achievements (Zhong et al., 2021). According to the data published in the
China Statistical Yearbook, the gross domestic product of China’s primary industry has
increased from 0.1 trillion yuan in 1978–12.10 trillion yuan in 2022, with an annual growth
rate of about 11%. The rapid development of the agricultural economy cannot be separated
from the improvement of agricultural production efficiency (Huang et al., 2023). However,
early agricultural development in China belonged to a typical “high pollution, high
emissions, and low efficiency” development model. This extensive agricultural
development model caused many environmental pollution issues, seriously restricting
the improvement of agricultural production efficiency (Liu et al., 2021; Huang et al.,
2022). In the face of this dilemma, in recent years, the Chinese government has begun
to advocate the agricultural green and high-quality development model, solving the
problems of environmental pollution and excessive waste of resources generated in
agricultural development by promoting green agricultural development (Wang et al.,
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2022). From the perspective of China’s agricultural development,
improving the efficiency of green agricultural production is the key
to achieving sustainable development of China’s agricultural
economy (Wen and Wang, 2022; Li et al., 2023). Based on this,
many scholars have pointed out that agricultural green production
efficiency can be used to measure green agricultural development
(Liu and Feng, 2019; Sheng et al., 2022). Undoubtedly, improving
the efficiency of green agricultural production has played a crucial
role in promoting the green development of China’s agriculture.

With the continuous development of rural finance in China, the
Chinese government has continuously increased the investment
scale of agricultural credit, which has played an increasingly
important role in improving agricultural production efficiency
(Wang et al., 2022); Wen and Wang, 2022). Agricultural credit is
a form of providing working capital for agricultural reproduction. It
is the general term for financial organizations to carry out credit
activities in rural areas, including savings and loans (Wang et al.,
2022). Agricultural credit investment can provide strong financial
support for agricultural mechanization, agricultural technology
research and development, and agricultural green production,
thereby affecting the efficiency of agricultural green production
(Li et al., 2021). Therefore, clarifying the relationship between
agricultural credit scale and agricultural green production
efficiency has essential theoretical and practical significance for
promoting green agricultural development and achieving high-
quality economic growth in China.

Currently, research on the agricultural green production
efficiency mainly focuses on the following two aspects: on the
one hand, it is the measurement of agricultural green production
efficiency. The measurement methods of agricultural green
production efficiency mainly include SFA and DEA (Yu, 2021;
Yao and Wu, 2022; Du et al., 2023). SFA is a parametric analysis
method that requires the strict setting of the form of the production
function during the measurement process (Kumbhakar et al., 2015).
If there is a deviation in the formal setting of the production
function, it will lead to errors in the estimation results (Du et al.,
2022a; Du et al., 2022b). Therefore, there are better choices than SFA
to measure agricultural green production efficiency. DEA is a
nonparametric analysis method that estimates the objective
function through linear programming to estimate the efficiency
of a decision-making unit (DMUs) (Färe et al., 1992; Färe et al.,
1994). This method does not need to set the specific form of the
production function strictly, so most scholars use the DEA method
to measure agricultural green production efficiency (Han et al., 2018;
Xu et al., 2019; Zhong et al., 2021; Huang et al., 2022; Yang et al.,
2022).

On the other hand, it is about the influencing factors of
agricultural green production efficiency. Scholars pointed out that
environmental regulation (Sun, 2022), climate change (Song et al.,
2022), agricultural insurance (Li et al., 2022), agricultural innovation
(Djoumessi, 2021), financial inclusion (Hu et al., 2021), carbon
trading (Yu et al., 2022), and green trade barriers (Liu et al., 2023)
can impact agricultural green production efficiency. However, there
are relatively few studies on the impact of agricultural credit scale on
agricultural green production efficiency. Wang et al., 2022)
discussed the spatial spillover effect between agricultural credit
and agricultural total factor productivity, arguing that agricultural
credit inhibits the increase of total factor productivity in

surrounding areas. However, this study ignores the possible
nonlinear relationship between agricultural credit and agricultural
total factor productivity.

The existing research has laid an excellent theoretical foundation
for this paper, but there are still the following areas worth
improving: 1) From the perspective of research framework, the
existing literature rarely discusses the impact of agricultural credit
scale on agricultural green production efficiency. 2) From the
perspective of research content, the existing literature rarely
discusses the nonlinear relationship between agricultural credit
and agricultural green production efficiency. 3) From the
perspective of research method, traditional DEA methods to
measure agricultural green production efficiency mostly assume
that agricultural production in various regions has a common
production Frontier. However, there is significant heterogeneity
in natural resource endowments, and the agricultural production
technology set in different regions is not the same (Du et al.,
2023). Therefore, it is difficult to reflect regional differences in
agricultural green production efficiency measured under the
common Frontier.

In summary, the innovation points of this paper can be
summarized in the following three aspects: 1) In terms of
research content, this paper brings the scale of agricultural credit
and green production efficiency into the same analytical framework
system. It deeply explores the impact mechanism of agricultural
credit scale on agricultural green production efficiency. In addition,
this paper delves into the driving and inhibitory effects of
agricultural credit scale on agricultural green production
efficiency. 2) Based on the panel Tobit model, this paper
empirically examines the impact of agricultural credit scale on
AGPE and its non-linear relationship. Furthermore, the spatial
econometric model is used to discuss the spatial spillover effect
of the impact of agricultural credit scale on AGPE. 3) The
Metafroniter-Malmquist-Luenberger index is used to measure
agricultural green production efficiency. The model divides
provinces with homogeneous agricultural development into
groups and calculates intra-group and common Frontier
efficiency, respectively. This can effectively avoid bias in
estimation results caused by regional heterogeneity among
samples, and the conclusions drawn are closer to the actual situation.

The rest of this paper is arranged as follows: part 2 is the
mechanism analysis; part 3 is the methodology and Data; part
4 is the empirical results; part 5 is the discussion part; and part
6 is the conclusions and policy recommendations of this paper.

2 Mechanism analysis

Agricultural credit is an essential guarantee for improving
Agricultural green production efficiency, which many scholars
have recognized (Wang et al., 2022; Wen and Wang, 2022).
However, some scholars have found that agricultural credit also
can inhibit agricultural green production efficiency. Therefore,
according to Ding et al. (2022a), Ding et al. (2022b), Wen and
Wang (2022), this paper establishes a theoretical framework for the
impact of agricultural credit on agricultural green production
efficiency from both the driving and inhibiting effects. Figure 1 is
the theoretical framework of this paper.
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Agricultural credit has a driving effect on agricultural green
production efficiency. Firstly, agricultural credit can solve the
shortage of funds for agricultural enterprises in technological
innovation, which is conducive to agricultural technological
innovation. When the latest technological achievements in
agriculture are translated into agricultural production practice, it
can improve the production level of green agriculture, promote
technological progress in agricultural production, and promote the
improvement of agricultural green production efficiency (Thi and
Chi, 2022). Secondly, agricultural credit can improve farmers’
scientific and technological quality and improve agricultural
green production technology. Generally, in areas with high levels
of agricultural credit, farmers are more likely to obtain credit funds,
which is beneficial for farmers to purchase new equipment for green
agricultural production and improve their ability to practice and
operate new technologies. This contributes to the progress of
agricultural technology, thereby improving agricultural green
production efficiency (Grivins et al., 2021). Thirdly, agricultural
credit is conducive to optimizing the allocation of agricultural input
factors and improving the allocation efficiency of agricultural
production factors. Under the traditional technology model,
farmers often increase food production by expanding the input
of production materials. After agricultural credit solves the problem
of funding shortage for farmers to purchase new equipment, farmers
will widely use new equipment and new production technologies,
reducing production materials while increasing food production and
improving agricultural green production efficiency (Wen andWang,
2022; Zhao et al., 2022).

However, agricultural credit also has an inhibitory effect on
agricultural green production efficiency. Some scholars have
pointed out that while enjoying agricultural credit to enhance
agricultural green production efficiency, it is also necessary to be
vigilant against the inhibitory effect of the blind expansion of
agricultural credit scale on agricultural total factor productivity
(Wang et al., 2022); Wen and Wang, 2022). The possible reasons
for this phenomenon are: Firstly, the insufficient input of
agricultural credit funds has hindered the improvement of
agricultural green production efficiency. Affected by risk
control, rural financial institutions have an insufficient
investment in agricultural credit funds. The credit risk of rural
financial institutions’ credit investment in agricultural technology
is relatively high. Although the scale of rural credit in China
continues to expand, there is still massive room for
improvement in agricultural green production efficiency (Wen
and Wang, 2022). Secondly, the irrational structure of agricultural
credit allocation has reduced the allocation efficiency of
agricultural credit funds. If agricultural credit is invested
outside of agricultural production, it will reduce the
improvement of agricultural production technology. Only when
credit funds are used in intermediate links of agricultural
production can agricultural technological efficiency be
effectively improved, while China’s agricultural production
intermediate links invest fewer credit funds (Fan, 2020).
Thirdly, agricultural credit will hinder the growth of farmers’
income and inhibit the use of new agricultural technologies.
Although agricultural credit can promote the growth of farmers’
consumption, the relationship between the scale of agricultural
credit and farmers’ income is an “inverted U-shaped” relationship

(Zhu et al., 2022). The expansion of agricultural credit has not
improved farmers’ income levels in long-term development, and
these factors have lowered farmers’ production aspirations,
thereby impeding farmers’ use of new technologies. This is not
conducive to the improvement of agricultural green production
efficiency.

In summary, agricultural credit can solve the shortage of funds
in improving agricultural green production efficiency. However,
there are also some problems, such as inhibiting farmers’ income
growth and impeding the use of new technologies. Based on this, this
paper proposes the following hypothesis: With the continuous
expansion of the agricultural credit scale, this driving effect may
have a downward trend. There may be an “inverted U-shaped”
relationship between the scale of agricultural credit and agricultural
green production efficiency.

3 Methodology and data

3.1 Metafrontier-Malmquist-Luenberger
index

According to Ding et al. (2022b) and Du et al. (2022a), this paper
uses the Metafrontier-Malmquist-Luenberger index (MML) based on
DEA model to measure the agricultural green production efficiency
(AGPE). Significant differences exist in regions’ natural resource
endowments and agricultural production technologies. Therefore,
using a common production boundary to measure agricultural green
production efficiency may lead to a deviation between the estimated
results and the actual situation. This paper applies the meta-Frontier
technology to measure the agricultural green production efficiency. Oh
and Lee (2010) combined the Metafrontier technology with the
Malmquist index and proposed the Metafrontier-Malmquist index.
According to Oh and Lee (2010), this paper adds undesirable outputs to
the Metafrontier-Malmquist index and constructs the Metafrontier-
Malmquist-Lunberger index to measure agricultural green production
efficiency. The model is described as follows.

Define three types of production technology collections: current
group technology SCg , global technology S

G
g , and common technology

SM, where g refers to the different groups. According to the
production characteristics of China’s agriculture production, this
paper divided the study area into the eastern, central, and western
regions. Each group includes Jh provinces, that is, g = 1, 2, 3 in this
paper. Based on the above assumptions, this paper constructs the
following production possibility set:

SC,tg � X,Y, U( ): ∑Jh
j�1
Xjtλjt ≤X;∑Jh

j�1
Yjtλjt ≥Y;∑Jh

j�1
Ujtλjt ≤U; λjt ≥ 0

⎧⎨⎩ ⎫⎬⎭
(1)

Among them, the group Frontier can be expressed as
SGg � SC,1g ∪ SC,2g ∪/∪ SC,Tg , and the common Frontier is the sum
of the group Frontier, which can be expressed as SM �
SG,1g ∪ SG,2g ∪ SG,3g .

In order to further explore the drivingmechanism of agricultural
green production efficiency, this paper defines agricultural green
total production efficiency as AGPE. The calculation method is
shown in Formula 2 below.
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In order to further explore the drivingmechanism of agricultural
green production efficiency, this paper decomposes AGPE. The
calculation method is shown in Formula 2 below.

AGPEM Xt, Yt, Ut, Xt+1, Yt+1, Ut+1( ) � �D
M

Xt+1, Yt+1, Ut+1( )
�D
M

Xt, Yt, Ut( )
(2)

In formula (2), �D
M(X,Y,U) is the global direction distance

function. Further, AGPE can be decomposed as follows:

AGPEM Xt, Yt, Ut, Xt+1, Yt+1, Ut+1( )
� �D

C
Xt+1, Yt+1, Ut+1( )
�D
C
Xt, Yt, Ut( ) ×

�D
M

Xt+1, Yt+1, Ut+1( )/ �D
C
Xt+1, Yt+1, Ut+1( )

�D
M

Xt, Yt, Ut( )/ �D
C
Xt, Yt, Ut( )

⎧⎨⎩ ⎫⎬⎭
� �D

C
Xt+1, Yt+1, Ut+1( )
�D
C
Xt, Yt, Ut( ) ×

�D
G

Xt+1, Yt+1, Ut+1( )/ �D
C
Xt+1, Yt+1, Ut+1( )

�D
G

Xt, Yt, Ut( )/ �D
C
Xt, Yt, Ut( )

⎧⎨⎩ ⎫⎬⎭
×

�D
M

Xt+1, Yt+1, Ut+1( )/ �D
G

Xt+1, Yt+1, Ut+1( )
�D
M

Xt, Yt, Ut( )/ �D
G

Xt, Yt, Ut( )
⎧⎨⎩ ⎫⎬⎭

� TEt+1

TEt ×
BPGt+1

BPGt ×
TGRt+1

TGRt � EC × BPC × TGC

(3)

In formula (3), EC represents the technical efficiency change
from t to t+1 period. BPG (Best Practice Gap) represents the gap
between the Frontier of DMUs in the group and the group Frontier.
BPC (Best Practice Change) refers to the change of BPG from t to
t+1 period, which is usually used to reflect the technological progress
of each DMUs. When BPC>1, the technical level is improved. On
the contrary, when BPC<1, the technical level has not been
improved. TGR represents the gap between the group Frontier
and the common Frontier. TGC represents the change of TGR
from t to t+1 period. TGC>1 indicates that the distance from the
group Frontier to the common Frontier decreases over time and vice
versa.

According to (Wang et al., 2022) and Du et al., 2023, this paper
has built an input-output indicators system and use theMetafrontier

Malmquist Luenberger index to measure the agricultural green
production efficiency.

The input variable in this paper are as follows: 1) Labor. This
paper uses the number of agricultural employees in each province
(10 thousand people) to represent the labor input. 2) Agricultural
machinery. In this paper, the total power of agricultural machinery
in each province (10,000 kw) is selected to represent the input of
agricultural machinery input. 3) Land. This paper uses the total
planting area of crops in each province (1000 HA) to express the
land input. 4) Water. The effective irrigation area of each province
(1000 HA) is the proxy variable of water input. 5) Power. The
agricultural diesel consumption of each province (10,000 tons) is the
proxy variable of power input. 6) Fertilizer. The amount of pure
fertilizer application in each province (10,000 tons) is the proxy
variable of fertilizer input. 7) Pesticide. The use amount of pesticide
in each province (10,000 tons) is the proxy variable of fertilizer
input. 8) Agricultural film. The consumption of agricultural
plastic film (10,000 tons) is the proxy variable of agricultural
film input.

This paper’s output variables mainly contain desirable and
undesirable outputs. The desirable output in this paper is the
gross value of agriculture (10,000 yuan). And the undesirable
output is the agricultural carbon emissions (10,000 tons). In the
process of agricultural production, agricultural carbon emissions
have become the main source of environmental pollution (Wang
et al., 2022). Therefore, choosing agricultural carbon emissions as
undesired output is very reasonable. According to Liu et al. (2021)
and Yu et al. (2022), the calculation formula for agricultural carbon
emissions is as follows:

C � ∑Cr � ∑ Sr•δr (4)

In formula (4), C represents the total carbon emission of the
agricultural sector; Cr is the agricultural carbon emission sources; Sr
is the number of agricultural carbon emission sources; δr is the
coefficients of agricultural carbon emission sources. The carbon

FIGURE 1
Theoretical framework.
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emission coefficients of each agricultural carbon emission source are
shown in Table1.

3.2 Variable selection and model
construction

3.2.1 Panel Tobit model
To further study the impact of agricultural credit scale on the

agricultural green production efficiency, this paper takes the
estimated results of agricultural green production efficiency based
on the MML index as the explained variable and the agricultural
credit scale as the core explanatory variable. Since the efficiency
value calculated by the DEA model is a limited variable, if the least
squares method is used for regression, it will lead to an error in the
estimation result (Liang et al., 2021; Huang et al., 2022). In contrast,
the panel Tobit model uses the maximum likelihood method to
estimate, which can effectively solve the problem of limited data.
Therefore, we use the Panel Tobit model to analyze the impact of the
agricultural credit scale on the agricultural green production
efficiency. According to Tobin. (1958), the basic form of the
panel Tobit model is as follows:

yit
* � Xitβ + Zitδ + μi + εit
yit � yit

*, if yit
* > 0

yit � 0, if yit
* ≤ 0{

where, i � 1, 2,/30; t � 2009, 2010,/2020.

(5)

In formula (5), yit
* represents the agricultural green production

efficiency of province i in year t, which is the explained variable of
this paper. Xit represents the agricultural credit scale of province i in
year t, which is the explanatory variable of this paper. Zit represent
the control variables of this paper. β and δ are parameters to be
estimated. μi is the individual effect. εit is the random disturbance
term, εit ~ N(0, σ2).

3.2.2 Variable selection
1) Explained Variable: Agricultural green production efficiency

(AGPE). This paper uses the agricultural green production
efficiency measured by the Metafrontier-Malmquist-
Luenberger index as the explained variables. Therefore,
according to the decomposition results of agricultural green
production efficiency, the explained variables in this paper are
EC, BPC, TGC, and AGPE, respectively.

2) Core explanatory Variable: Agricultural credit scale (ACS).
Scholars usually use the balance of rural credit to represent
the scale of agricultural credit. However, the number of large
state-owned banks in China’s rural areas is gradually decreasing.
Agricultural credit funds are from large state-owned banks and
some rural credit cooperatives or rural banks. Therefore, this
paper selects the total amount of agricultural loans in each region
to represent the scale of agricultural credit, with the unit of
10,000 yuan and the abbreviation of ACS.

3) Control variables: In the process of research, the following
control variables are also selected: ①Economic development
level (ln RGDP). This paper uses the logarithm of per capita
GDP to measure the level of economic development. ②

Industrial structure (IS): This paper uses the proportion of
added value of the primary industry in GDP to measure the

industrial structure.③ Disaster area (lnDA): This paper uses the
logarithm of affected area of crops to measure disaster area. ④
Fiscal Support (FS): This paper uses the proportion of
agricultural expenditure in total financial expenditure to
measure fiscal support. ⑤ Degree of opening up (OPEN):
This paper uses the proportion of total foreign direct
investment in GDP to measure the degree of opening up. ⑥
Urbanization level (Urban): This paper uses the proportion of
urban population in total population to measure the
urbanization level.

3.2.3 Model construction
According to the Panel Tobit model and variable selection, the

model of this paper can be constructed as the following forms:

ECit � α0 + α1 lnACSit + α2 lnRGDPit + α3ISit + α4 lnDAit

+ α5FSit + α6OPENit + α7Urbanit + μi + εit (6)
BPCit � β0 + β1 lnACSit + β2 lnRGDPit + β3ISit + β4 lnDAit

+ β5FSit + β6OPENit + β7Urbanit + μi + εit (7)
TGCit � ϕ0 + ϕ1 lnACSit + ϕ2 lnRGDPit + ϕ3ISit + ϕ4 lnDAit

+ ϕ5FSit + ϕ6OPENit + ϕ7Urbanit + μi + εit (8)
AGPEit � δ0 + δ1 lnACSit + δ2 lnRGDPit + δ3ISit + δ4 lnDAit

+ δ5FSit + δ6OPENit + δ7Urbanit + μi + εit (9)
AGPEit � δ0 + δ1 lnACSit + δ2 lnACS

2
it + δ3 lnRGDPit + δ4ISit

+ δ5 lnDAit + δ6FSit + δ7OPENit + δ8Urbanit + μi + εit

(10)

3.3 Study area, data sources and statistical
description

The study area of this paper is 30 provinces in mainland China,
excluding Tibet, Hong Kong, Macao, and Taiwan. As we all know,
China has a vast land area, and agricultural production in different
regions has significant heterogeneity. Therefore, according to the
production characteristics of China’s agriculture production, this
paper divided the study area into the eastern, central, and western
regions. The study area is shown in Figure 2 below.

Since the agricultural credit scale data before 2009 has not yet
been published, this paper selects panel data of 30 provinces in
China from 2009 to 2010 for empirical research in view of the
availability of data. The original data of all variables are from the

TABLE 1 Agricultural carbon emission source, coefficient and reference.

Carbon source Carbon emission coefficient

Fertilizer 0.8956 kg kg−1

Pesticides 4.9341 kg kg−1

Agricultural plastic sheeting 5.18 kg kg−1

Agricultural diesel 0.5927 kg kg−1

Agricultural ploughing 312.6 kg kg−2

Agricultural irrigation 20.476 kg/hm2

Frontiers in Environmental Science frontiersin.org05

Wang and Du 10.3389/fenvs.2023.1191012

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1191012


official data published by the Chinese government. Among them,
the data on agricultural credit scale comes from China Financial
Yearbook, and other data are from China Statistical Yearbook and
China Rural Statistical Yearbook. This paper uses linear
interpolation to complement a small number of missing values in
the sample. The statistical description of the samples is shown in
Table 2.

4 Empirical results

4.1 The calculation results of AGPE

According to the Metafrontier Malmquist Luenberger index,
this paper calculated the agricultural green production efficiency
(AGPE) of 30 provinces in China from 2009–2020. This paper
further decomposed the AGPE into EC, BPC, and TGC to explore
the driving force of AGPE. In addition, the AGPE of this paper is
calculated using the MaxDEA pro 6.18 software.

Table 3 shows the average value of AGPE from 2009–2020. We
can find that the average value of AGPE from 2009 to 2020 was 1.042
(AGPE > 1), which means that the agricultural green production
efficiency was 4.2% during the sample period. The average values of
technological efficiency (EC) and technological progress (BPC) were
0.996 (EC < 1) and 1.0407 (BPC > 1), respectively, indicating that the
agricultural green production efficiency was mainly driven by
technological progress during the sample period. In addition,
from the annual average of AGPE, we can find that AGPE shows
a fluctuating upward trend during the sample period.

Figure 3 shows the regional distribution differences of AGPE.
We can see that AGPE presents prominent regional imbalance
characteristics. The agricultural green TFP in the eastern, central,
and western regions was 10.22%, 3.08%, and 1.56%, respectively.
The eastern region was the highest, followed by the central region,
and the western region was the lowest. The distributions of EC, BPC,
and TGC indices also exhibit this characteristics. Let us focus on the
changes in TGC: The TGC index in the eastern region was 1.0125,
indicating that the agricultural green production Frontier in the
eastern region was significantly higher than the common Frontier.
The TGC index in the central region was 1.0009, indicating that the
agricultural green production Frontier in the central region was
slightly higher than the common Frontier. The TGC index in the
western region was 0.9932, indicating that the Frontier of
agricultural green production in the western region was lower
than the common Frontier and that agricultural green
production technology needs further improvement. From
Figure 4, it can be further found that the distribution of AGPE
presents a distinct geographical distribution characteristic of “high
in the east and low in the west”. The top three AGPE provinces are
Fujian (1.187), Zhejiang (1.182), and Tianjin (1.098), all located in
the eastern region of China.

4.2 Benchmark regression

Table 4 shows the regression results of the panel Tobit model.
Columns (1)–(4) show the regression results for EC, BPC, TGC, and
AGPE, respectively, as the explained variables. Column (5) shows

the estimated results after adding the square item to the agricultural
credit scale.

Firstly, from the estimation results in columns (1) to (3), we can
find that when the explained variables are BPC and TGC, the
estimation coefficients of lnACS are 0.0237 and 0.0150,
respectively, and both are significantly positive at a 10%
significance level. When EC is the explained variable, the
estimated coefficient of lnACS is −0.2086, which is insignificant.
This result indicates that the agricultural credit scale can
significantly promote agricultural technology progress and
improve technology gaps but does not impact agricultural
technology efficiency. In addition, it can be seen from the results
that the agricultural credit scale has the most significant impact on
agricultural technology progress. When the agricultural credit scale
increases by 1%, it can promote agricultural technology progress
by 2.27%.

Secondly, from the estimation results in column (4), we can find
that when AGPE is the explained variable, the estimated value of
lnACS is 0.0446, which is positive at the significance level of 1%. This
indicates that the agricultural credit scale significantly promotes
agricultural green production efficiency. That is, an increase of 1% in
agricultural credit scale can promote a 4.46% increase in AGPE. In
addition, the estimated results of economic development level,
industrial structure, and agricultural financial support are 0.2733,
0.4100, and 0.9248, respectively, which are significantly positive.
This indicates that the level of economic development, industrial
structure, and agricultural financial support can significantly
improve AGPE. The estimated results of the disaster area and
urbanization level are −0.0297 and −0.4008, respectively, which
are significantly negative. This indicates that the natural disasters
and urbanization is not conducive to improving AGPE.

Finally, column (5) shows the result of adding the square term of
agricultural credit scale. According to the results in column (5), we
can find an interesting phenomenon: the square term of the lnACS
is −0.0168, which is significantly negative at the significance level of
5%. This indicates that the impact of the agricultural credit scale on
agricultural green production efficiency presents a significant
inverted U-shape. Expanding the agricultural credit scale to a
certain extent can promote the improvement of AGPE, but this
driving effect shows a decreasing marginal effect. When the
agricultural credit scale expands to a certain extent, continuing to
expand the scale of agricultural credit will inhibit the improvement
of AGPE. This proves the hypothesis of this paper.

4.3 Robustness test

The benchmark regression calculates AGPE using the
Metafrontier Malmquist Luenberger index. In the robustness test
section, we remeasure AGPE based on the super-efficiency SBM
model with undesirable output proposed by Tone (2004), replacing
the AGPE calculated by the Metafrontier Malmquist Luenberger
index.

The calculation results in Table 5 show that the estimated
coefficients of lnACS and lnACS2 are 0.3291 and −0.0196,
respectively, which are significant at the 10% significance level.
This is consistent with the results in the benchmark regression. It
is once again proved that the impact of agricultural credit input on
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AGPE has a significant inverted U-shaped relationship. This
conclusion also proves that the benchmark regression results in
this paper are robust.

4.4 Endogeneity test

The endogeneity problem between agricultural credit scale and
agricultural green production efficiency comes from the following
aspects: 1) agricultural credit scale and agricultural green production
efficiency are mutually causal. 2) The agricultural credit scale may
have a time lag on the improvement of agricultural green production

efficiency. Therefore, it is necessary to choose robust instrumental
variables to address estimation bias caused by endogeneity.

When selecting instrumental variables, we need to strictly follow
the assumptions of correlation and exogeneity. According to Wen
and Wang (2022), this paper selects “balance of savings deposits of
urban and rural residents” as a instrumental variable to solve
endogeneity problems. The credit funds provided by rural
financial institutions in rural areas come from the savings
deposits of urban and rural residents they absorb. Therefore, the
balance of savings deposits of urban and rural residents will affect
the total amount of credit provided by rural financial institutions in
rural areas. Based on this, we believe that the selection of the

FIGURE 2
Study area.

TABLE 2 The statistical description of the samples.

Variables Symbol Obs Mean Std.Dev Min Max

Agricultural green
production efficiency

(AGPE)

AGPE 360 1.054 0.155 0.376 1.837

EC 360 1.001 0.085 0.637 1.417

BPC 360 1.042 0.106 0.663 1.661

TGC 360 1.007 0.089 0.687 1.526

Agricultural credit Scale lnACS 360 8.579 0.934 5.889 10.756

Economic development level InRGDP 360 10.702 0.502 9.303 12.013

Industrial structure IS 360 0.100 0.056 0.003 0.293

Disaster area lnDA 360 6.089 1.566 0.693 8.908

Fiscal Support FS 360 0.114 0.032 0.036 0.204

Degree of opening up OPEN 360 0.395 0.416 0.048 3.730

Urbanization level Urban 360 0.570 0.127 0.299 0.896
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instrumental variables well satisfies the assumptions of correlation
and exogeneity. In terms of estimation methods, this paper chooses
the GMM and the two-stage least squares (2SLS) method as the
regression methods for dealing with endogeneity problems.

Columns 1) and 2) in Table 6 show the regression results of the
DIFF-GMM and SYS-GMM models. The regression results show
that the first-order lag term of AGPE is significantly positive,
indicating that the dynamic panel model is effective. In addition,
the p-values of AR (1) test for DIFF-GMM and SYS-GMM are both
0.0000, while the p-values of AR (2) test are 0.2655 and 0.3878,
respectively. This result means that the difference equations with
random perturbation terms all have first-order sequence correlation,
and there is no second-order sequence correlation. Furthermore, the
result of Sargan test indicating that the instrumental variables are
effective and there is no problem of over identification of the

instrumental variables. Column 3) is the result of 2SLS. It can be
seen that in the case of instrumental variable regression, the impact
of ACS on AGPE is still significantly positive. In addition, the result
of F-test means that there is no problem with a weak instrumental
variable in the model, and instrumental variable in this paper are
effective.

4.5 Heterogeneity test

4.5.1 Regional heterogeneity test
This paper divides China into eastern, central, and western

regions to further analyze the regional differences in agricultural
credit scale on AGPE.

Table 7 shows that the impact mechanism of the agricultural
credit scale on AGPE in the eastern, central, and western regions of
China is different. The estimated result of lnACS in the eastern
region is 0.8523, which is significantly positive at the significance
level of 1%. The estimated result of lnACS2 is −0.0422, which is
negative at the significance level of 1%. The estimated result of
lnACS in the central region is 0.0330, which is positive at the 5%
significance level. The estimated result of t lnACS2 is −0.49, which is
negative at the 10% significance level. The estimated result of lnACS
in the western region is 0.3494, and the estimated result of lnACS2

is −0.0197, both of which are insignificant.
According to Table 7, we can find two interesting phenomena:

Firstly, the impact of agricultural credit scale on AGPE all presents an
inverted U-shaped characteristic in the eastern, central, and western
regions. Secondly, the impact of the agricultural credit scale on AGPE
shows significant heterogeneity in the three regions. The scale of
agricultural credit has the most significant impact on agricultural
green production efficiency in the eastern region, followed by the
central region, and not evident in the western region.

4.5.2 Spatial heterogeneity test
In this section, we have constructed the spatial

autocorrelation model (SAR), the spatial error model (SEM),

TABLE 3 The results of AGPE from 2009–2020.

Year AGPE EC BPC TGC

2009–2010 0.9947 0.9944 1.0591 0.9905

2010–2011 0.9925 1.0031 1.0066 0.9851

2011–2012 1.0494 0.9703 1.0344 0.9888

2012–2013 0.9794 1.0109 1.0300 1.0079

2013–2014 1.0534 1.0280 0.9562 0.9964

2014–2015 1.0737 0.9629 1.0967 0.9975

2015–2016 1.0307 0.9992 1.0452 1.0280

2016–2017 1.0136 1.0214 1.0037 1.0053

2017–2018 1.0977 1.0010 1.0197 0.9930

2018–2019 1.0930 0.9887 1.1093 1.0009

2019–2020 1.0930 0.9779 1.0971 1.0188

Mean 1.0420 0.9960 1.0407 1.0010

FIGURE 3
Regional distribution differences of AGPE.
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and the spatial Durbin model (SDM) to verify the spatial
heterogeneity of the impact of agricultural credit scale on
AGPE. Reasonable selection of spatial weight matrix is the
basis for spatial econometric analysis. There are three
common spatial weight matrices: the 0–1 matrix, the
geographic distance matrix, and the economic weight matrix.
According to (Wang et al., 2022), this paper uses the geographic
distance matrix for spatial econometric analysis. In addition, due
to the significant spatial correlation of each variable, it is no
longer consistent with the classical assumptions of OLS.
Currently, using MLE to estimate the model will yield more
accurate results.

According to the results shown in Table 8, we can find that: 1)
The regression coefficients of the spatial lag term ρ were 0.6268,
0.7801, and 0.7429, respectively, which were positive at the
significance level of 1%. This result indicates that AGPE has a
significant spatial spillover effect. In other words, the improvement
of AGPE in the region can promote the improvement of AGPE in
the surrounding provinces. 2) The regression coefficients of lnACS
were 0.0172, 0.0164, and 0.0267, respectively, which were
significantly positive. This results also proves that agricultural
credit scale can improve AGPE. 3) From the regression results of
the spatial Durbin model, it can be seen that the regression
coefficients of W*lnACS is −0.7627, which is negative at the
significance level of 5%. This indicates that the agricultural credit
scale in the region inhibits the improvement of AGPE in
surrounding provinces.

5 Discussions

5.1 The discussions of AGPE

During the sample period, China’s agricultural green production
efficiency was 4.2%. Advances in agricultural technology mainly
drive the growth of AGPE. Agricultural technology efficiency has a
small contribution to AGPE growth. This indicates that agricultural
technology efficiency is a key factor restricting AGPE improvement.
From Table 2, we can find that the temporal distribution
characteristics of AGPE shows a fluctuating upward trend.
Figures 3, 4 show the spatiotemporal distribution characteristics
of AGPE. We can find that the spatial distribution of AGPE shows
the characteristics of “high in the east and low in the west” and
gradually decreases from east to west. This conclusion was
consistent with Chen et al. (2021), Zhong et al. (2021), Liu et al.
(2021) and (Wang et al., 2022).

In addition, AGPE exhibits a characteristic of regional imbalance.
The AGPE of the eastern, central, and western regions was 10.22%,
3.08%, and 1.56%, respectively. From the perspective of growth
sources, the AGPE growth in the three regions is driven by
agricultural technology progress. The agricultural technology
efficiency in the eastern region is the highest. In terms of the
technology gap, the eastern and central regions are slightly higher
than the common Frontier, while the western regions have a large gap
with the common Frontier. The reasons for this phenomenon may be
as follows: First, the eastern region of China has an excellent natural

FIGURE 4
Regional distribution differences of AGPE.
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climate and agricultural production environment. At the same time,
the eastern region has a high level of economic development,
advanced production technology, and high-quality workers.
Therefore, in agricultural production, the eastern region can
implement the development concept of “promoting agriculture
through science and technology” and carry out agricultural green

production activities. In addition, the advanced agricultural
production technology in the eastern region also provides technical
support for agricultural cleaner production in the eastern region.
Therefore, the eastern region has the highest AGPE. Second, the
central region is the main region of agricultural production in China.
However, compared to the eastern region, the central region lags
behind the eastern region in terms of economic development,
agricultural productivity, and labor quality. Therefore, the growth
rate of AGPE in the central region is relatively slow. Third, the western
region has a harsh natural environment, poor soil, poor economic
development, and backward agricultural technology. Due to resource
endowments, the growth rate of AGPE in western China is the
slowest, and there is a significant gap between AGPE and the
common Frontier.

5.2 The impact of agricultural credit scale on
AGPE

Through the previous part, we found that the agricultural credit
scale significantly promotes AGPE, and the impact of the
agricultural credit scale on AGPE presents a significant inverted
U-shape. In this part, we will analysis the reasons for this result.

TABLE 4 The regression results of the panel Tobit model.

(1) (2) (3) (4) (5)

EC BPC TGC AGPE AGPE

lnACS −0.2086 0.0237* 0.0150* 0.0446*** 0.3327***

(−1.621) (1.897) (1.709) (2.984) (2.915)

lnACS2 −0.0168**

(-2.546)

lnRGDP 0.5268 0.0453 −0.0537* 0.2733*** 0.2572***

(1.360) (1.084) (−1.800) (5.867) (5.563)

IS −0.8129 0.3346* −0.0993 0.4100* 0.3969*

(−0.480) (1.794) (−0.741) (1.811) (1.781)

lnDA −0.0003 −0.0223*** −0.0005 −0.0297*** −0.0312***

(−0.005) (−2.973) (−0.088) (−3.664) (−3.831)

FS −2.5041 −0.0396 0.3501 0.9248*** 0.9216***

(-0.933) (-0.128) (1.556) (2.712) (2.736)

OPEN 0.0014 0.0251 0.0579*** −0.0069 0.0041

(0.008) (1.160) (3.499) (−0.302) (0.179)

Urban −2.3366 −0.1042 0.1509 −0.4008** −0.3563*

(−1.482) (−0.650) (1.342) (−2.113) (−1.890)

Constant −0.4218 0.5001 1.3161*** −1.9882*** −3.0580***

(−0.150) (1.547) (5.707) (−5.679) (−5.583)

Obs 360 360 360 360 360

Notes: Z-statistics in the parentheses; *, **, *** represent the significance at 10%, 5%, and 1%, respectively.

TABLE 5 Results of robustness test.

Coefficient Z-value

lnACS 0.3291* 1.867

lnACS2 −0.0196* −1.924

lnRGDP 0.0813 1.241

IS −1.0889* −1.675

lnDA −0.0235** −2.209

FS −0.0188 −0.024

OPEN 0.0826** 2.470

Urban −0.1077 −0.307

Constant −1.1298 −1.384

Notes: *, **, *** represent the significance at 10%, 5%, and 1%, respectively.
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Firstly, empirical results found that the agricultural credit
scale has the most significant impact on agricultural
technological progress. This conclusion was consistent with Li
et al. (2023), Wen andWang (2022), and (Wang et al., 2022). This
phenomenon may be because the expansion of agricultural credit
has provided sufficient credit funds for farmers and agricultural
production enterprises. Farmers have improved production
equipment and increased agricultural mechanization with the
funds borrowed. Therefore, with unchanged production
conditions, agricultural credit funds significantly impact
agricultural technological progress. However, the improvement
of agricultural technology has not brought about the
improvement of agricultural technology efficiency. Therefore,
how to promote the improvement of agricultural technology
efficiency is the main task of China’s agricultural development
in the future.

Secondly, the impact of the agricultural credit scale on AGPE
presents a significant inverted U-shape. The possible reasons for
this phenomenon are that some regions excessively pursue the
blind expansion of agricultural credit scale and do not reasonably
allocate priority agricultural credit funds. Many agricultural
credit funds have been used to improve agricultural
production technology, ignoring the improvement of
agricultural technology efficiency, resulting in the uneven
allocation of agricultural credit funds (Wen and Wang, 2022).
On the other hand, the expansion of the agricultural credit scale is
divorced from the actual needs of agricultural business entities,
and there are situations where agricultural business entities
divert credit funds for other purposes, resulting in more
overdue loans, affecting the enthusiasm of financial
institutions to provide credit funds in agriculture (Mei et al.,
2022).

TABLE 6 Results of endogenous test.

Variables DIFF-GMM SYS-GMM 2SLS

L.AGPE 0.662*** (23.51) 0.9011*** (18.15)

lnACS 0.1604*** (8.21) 0.0290*** (7.34) 0.0816*** (2.96)

lnRGDP 0.1523*** (4.98) 0.091*** (3.00) 0.0611** (2.12)

IS 0.4451*** (4.28) 0.4498*** (3.65) 0.0734** (1.96)

lnDA −0.0053*** (−2.91) −0.0052** (−2.00) −0.0073*** (4.34)

FS 0.1862 (1.37) −0.1926 (0.96) 0.0459* (1.89)

OPEN 0.0692*** (6.76) 0.1048*** (5.99) 0.0516*** (2.85)

Urban 1.4414*** (5.76) −0.0735 (−0.47) −0.0874 (−0.35)

Constant −0.7406*** (−4.09) −0.4489** (−2.32) −0.1835*** (−3.07)

R_squared 0.2134

F_test 27.15***

Observation 360 360 360

Notes: z-statistics in parentheses. *, **, *** represent the significance at 10%, 5%, and 1%, respectively.

TABLE 7 Results of regional heterogeneity test.

Eastern Central Western

lnACS 0.8523*** 0.0330** 0.3494

(4.534) (2.194) (1.500)

lnACS2 −0.0422*** −0.4900* −0.0197

(−3.968) (−1.851) (−1.391)

Constant −5.3245*** 1.1139 −2.9259**

(−5.734) (1.018) (−2.483)

Control Variables Yes Yes Yes

Log-likelihood 101.3543 153.15867 94.4242

Notes: Z-statistics in the parentheses; *, **, *** represent the significance at 10%, 5%, and 1%, respectively.
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Thirdly, the agricultural credit scale significantly impacts the
AGPE in the eastern region, followed by the central and western
regions. Promoting agricultural credit scale to AGPE in the western
region should be a key concern. The eastern and central regions have
a good foundation for agricultural development and advanced
production technologies. Therefore, agricultural credit funds can
be invested to improve green production technology and promote
green agricultural development. In addition, the eastern and central
regions should pay attention to the issue of unreasonable agricultural
credit allocation, gradually increasing credit investment for
technological efficiency, reducing credit investment for agricultural
technological progress, and achieving optimal allocation of limited
agricultural credit funds. However, the western region is relatively
backward in China’s economic development. Due to the constraints
of natural resource endowments, the green agricultural development
in the western region lags behind that in the eastern and central
regions. Agricultural credit funds are not used to improve green
agricultural production. Therefore, there is a phenomenon that
agricultural credit funds do not significantly increase AGPE in the
western region.

Fourthly, the improvement of AGPE in the region can improve
the AGPE in the surrounding areas. However, the improvement of
agricultural credit scale in the region is not conducive to the
improvement of AGPE in the surrounding areas. Generally
speaking, the characteristics of agricultural credit funds in China
determine that agricultural credit activities only occur within local
provinces, and there is no cross-provincial capital flow. The level of
financial development in different regions varies greatly, so there is
also a significant gap in the scale of agricultural credit funds. Due to
the profit-seeking nature of capital, agricultural production
materials will flow from regions with low credit scales to regions
with high credit scales to obtain more financial support. Therefore,
due to the “siphon effect,” areas with sizeable agricultural credit
scales have inhibited the increase in AGPE in surrounding areas.

6 Conclusions and policy
recommendations

6.1 Conclusion

This paper selected the panel data of 30 provinces in China from
2009 to 2020 and used the Metafrontier-Malmquist-Luenberger
index to calculate the agricultural green production efficiency
(AGPE). On this basis, this paper uses the panel Tobit model to
analysis the impact of agricultural credit scale on AGPE. The
conclusion of this paper are as follows.

Firstly, the average value of AGPE in 30 provinces was 4.2%
during 2009–2020. The average value of EC, BPC, and TGC were
0.9960, 1.0407, and 1.0010, respectively. Therefore, improving
agricultural technology efficiency is a key factor in promoting
China’s AGPE growth. In addition, AGPE has significant regional
imbalances. From the perspective of growth rate, eastern region >
central region > western region.

Secondly, the agricultural credit scale significantly promotes
AGPE, and the impact of the agricultural credit scale on AGPE
presents a significant inverted U-shape. In addition, the level of
economic development, industrial structure, and agricultural
financial support can significantly improve AGPE.

Thirdly, the impact of the agricultural credit scale on AGPE in
eastern, central, and western regions is significantly heterogeneous.
According to the estimated results, the scale of agricultural credit has
the most significant impact on AGPE in the eastern region, followed
by the central region, and the most negligible impact on AGPE in the
western region.

Fourthly, AGPE has significant spatial spillover effects. The
improvement of AGPE in the region can improve the AGPE in
the surrounding areas. However, the improvement of agricultural
credit scale in the region is not conducive to the improvement of
AGPE in the surrounding areas.

TABLE 8 Results of spatial heterogeneity test.

SAR SEM SDM

lnACS 0.0172** 0.0164** 0.0267*

(2.386) (2.185) (1.746)

W*lnACS −0.7627**

(−2.455)

Control Variables YES YES YES

ρ/λ 0.6268*** 0.7801*** 0.7429***

(9.735) (14.130) (3.004)

R2 0.5647 0.5148 0.5753

Fixed effect YES YES YES

Time effect YES YES YES

Log-likelihood 324.6630 313.7623 392.4399

Notes: Z-statistics in the parentheses; *, **, *** represent the significance at 10%, 5%, and 1%, respectively.

Frontiers in Environmental Science frontiersin.org12

Wang and Du 10.3389/fenvs.2023.1191012

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1191012


6.2 Policy recommendations

According to the research conclusion, although the regression
results support the hypothesis that agricultural credit scale has an
“inverted U-shaped” effect on agricultural total factor productivity
in this article, it cannot be denied that the scale of agricultural credit
has a positive effect on agricultural total factor productivity, and its
theoretical value for the development of rural economy in China.
Therefore, from the conclusion made above, this paper puts forward
some policy recommendations as follows:

Firstly, the “dual-wheel-drive” growth model should become
China’s primary mode of agricultural economic growth. Therefore,
efforts should be made to improve agricultural technology efficiency.
Improve China’s agricultural science and technology innovation
capacity by strengthening investment in agricultural science and
technology research and development, increasing financial support,
establishing special funds, and improving talent treatment. Improve
the conversion rate of agricultural scientific and technological
achievements and the application level of agricultural production
technologies by improving the transformation and promotion system
of agricultural scientific and technological achievements. By
promoting advanced agricultural production technologies to
farmers and using platforms such as agricultural technology
stations to strengthen education for farmers, farmers are guided to
apply advanced production technologies to the production process to
improve agricultural technology efficiency. In addition, it is also
necessary to promote the coordinated growth of regional AGPE
and establish interregional agricultural development cooperation
mechanisms.

Secondly, in the process of improving AGPE, it is necessary to
expand the agricultural credit scale and pay attention to the efficiency of
agricultural credit. It is necessary to continuously strengthen support for
agricultural technological efficiency, control the scale of credit for
agricultural technological progress, and prevent the inhibitory effect
of the blind expansion of agricultural credit on AGPE. In addition, the
agricultural credit scale should meet the actual needs of rural
development, promoting technological efficiency improvement and
considering technological progress. Credit funds should be invested
in entities with urgent needs for improving AGPE.

Thirdly, pay attention to the scale of agricultural credit investment
in various regions, prevent the “inverted U″ phenomenon, and make
the allocation of agricultural credit funds more reasonable and effective.
Agricultural credit scale should be tailored to local conditions based on
the actual situation of agricultural total factor productivity in various
regions. The eastern region should focus on improving agricultural
technology efficiency to improve the growth quality of AGPE. The
central region should pay attention to the issue of irrational agricultural
credit provision, gradually increase credit input for technological
efficiency, control the scale of credit for technological progress, and
optimize the allocation of limited agricultural credit funds. The western
region needs to pay more attention to using agricultural credit funds to
improve AGPE.

Fourthly, pay attention to the spatial spillover effect of AGPE, and
promote the rational flow of production factors within the region.
Attention should be paid to the exchange and cooperation of
production factors such as agricultural production technology,
capital, talent, and information technology among regions. Establish
a mechanism for the coordinated development of agriculture among

regions. Avoid regional protectionism and “beggar thy neighbor”
phenomena, and jointly promote the upgrading of AGPE.

6.3 Limitation and future research

Due to the limitations of research conditions, some aspects of
this article still deserve further improvement in future research.
Firstly, there are many methods for measuring AGPE, and in the
future, we can focus on updated methods for measuring AGPE.
Secondly, if the research data can reach the county and city levels,
there may be more exciting research results. Thirdly, the specific
characteristics of the agricultural sector and credit systems in China
may not be representative of other contexts. This study aims to
provide a theoretical basis and empirical test for studying
agricultural credit input and agricultural green production
efficiency. We hope that our research can better promote China’s
agricultural green production efficiency.
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