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Predicting land susceptibility to wind erosion is necessary to mitigate the negative
impacts of erosion on soil fertility, ecosystems, and human health. This study is the
first attempt to model wind erosion hazards through the application of a novel
approach, the graph convolutional networks (GCNs), as deep learningmodels with
Monte Carlo dropout. This approach is applied to Semnan Province in arid central
Iran, an area vulnerable to dust storms and climate change. We mapped
15 potential factors controlling wind erosion, including climatic variables, soil
characteristics, lithology, vegetation cover, land use, and a digital elevation model
(DEM), and then applied the least absolute shrinkage and selection operator
(LASSO) regression to discriminate the most important factors. We constructed
a predictive model by randomly selecting 70% and 30% of the pixels, as training
and validation datasets, respectively, focusing on locations with severe wind
erosion on the inventory map. The current LASSO regression identified eight
out of the 15 features (four soil property categories, vegetation cover, land use,
wind speed, and evaporation) as the most important factors controlling wind
erosion in Semnan Province. These factors were adopted into the GCN model,
which estimated that 15.5%, 19.8%, 33.2%, and 31.4% of the total area is
characterized by low, moderate, high, and very high susceptibility to wind
erosion, respectively. The area under curve (AUC) and SHapley Additive
exPlanations (SHAP) of game theory were applied to assess the performance
and interpretability of GCN output, respectively. The AUC values for training and
validation datasets were estimated at 97.2% and 97.25%, respectively, indicating
excellent model prediction. SHAP values ranged between −0.3 and 0.4, while
SHAP analyses revealed that the coarse clastic component, vegetation cover, and
land use were the most effective features of the GCN output. Our results suggest
that this novel suite of methods is highly recommended for future spatial
prediction of wind erosion hazards in other arid environments around the globe.
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1 Introduction

Soil erosion by water and wind are the two main processes
leading to its degradation (Webb et al., 2016; Duniway et al., 2019;
Soloki and Noori Nahad, 2019; Liu et al., 2021; Jia et al., 2022). Soil
erosion by wind is an environmental hazard, which threatens land
productivity and ecosystems, reduces atmospheric visibility during
dust storms, and affects ecosystems, animal, and human health
(Gregory et al., 2004). Wind erosion affects ~28% of degraded land
worldwide (Oldeman, 1994; Borrelli et al., 2014). However,
predicting susceptibility to wind erosion remains a difficult task
to be accurately quantified (Webb and Strong, 2011; Forootan,
2022). On the other hand, predicting land susceptibility to wind
erosion is highly beneficial for mitigating its negative consequences,
such as depletion of soil organic carbon, decreased soil depth,
reduced soil structure stability in situ, increased dust aerosol
loading, degradation of air quality, and increased respiratory
diseases off-site (Xu et al., 2018; Gholami et al., 2020a; Gholami
et al., 2021a; Tian et al., 2021; Boroughani et al., 2022).

Wind erosion is a serious environmental problem in large areas
of Iran, especially in the central, eastern, and southern parts of the
country (Gholami et al., 2020a; Gholami et al., 2020b). It is estimated
that an area of 23.8 million ha is affected by wind erosion, of which
51% is susceptible to aeolian entrainment, 31% experiences
significant aeolian transport, and 18% represents the area
dominated by sedimentation (Ahmadi, 1999). The frequency of
dust storms has increased substantially across Iran over the last
20 years, exacerbated by prolonged dry conditions during
2000–2002 and 2008–2010 (Akoglu et al., 2015; Duniway et al.,
2019; Hamzeh et al., 2021; Rashki et al., 2021). In order to mitigate
the effects of wind erosion and associated dust storms on the
atmosphere, geosphere, and biosphere, the prediction and
mapping of land susceptibility to wind erosion are essential
(Gholami et al., 2020c; Jafari et al., 2022; Pourhashemi et al., 2022).

Wind erosion depends on a range of variables such as vegetation
cover, land surface characteristics, and climatic parameters (Gillette,
1979; Parajuli et al., 2014; Padarian et al., 2020). The contribution of
each variable to erosion susceptibility remains poorly understood
and is highly region-specific, while it is necessary to be defined in
order to effectively model the spatial distribution of wind erosion
hazards (Gholami et al., 2021c; Kannangara et al., 2022). Feature
selection (FS) is a critical step in the application of data mining
(DM) models (Kursa and Rudnicki, 2010). Various FS algorithms,
such as Boruta, leave one feature out (LOFO), and DMmodels (e.g.,
random forest, tree-based genetic algorithms, multivariate adaptive
regression spline (MARS), CForest, and Cubist), have been widely
used to select key controlling factors for environmental hazards such
as flood, land subsidence, landslides, and dust emissions (Hamza
et al., 2019; Effrosynidis and Arampatzis, 2021).

Data mining (DM) is a component of data science (DS), which
has frequently been widely used for spatial predictions in
environmental and hydrological sciences (Gibert et al., 2018;
Chowdhuri et al., 2021a; Chen et al., 2021; Saha et al., 2021;
Arabameri et al., 2022; Chowdhuri et al., 2022; Saha et al., 2022).
Over the past few years, different types of DM models (e.g., ANFIS,
frequency ratio, weights of evidence, Cubist, CForest, and extreme
gradient boosting) have been applied to map land susceptibility to
wind erosion and dust emissions in various parts of Iran, vulnerable

to wind erosion, desertification, and climate change (Gholami et al.,
2020a; Boroughani et al., 2020; Gholami et al., 2020c). Furthermore,
recurrent neural network (RNN), restricted Boltzmann machine
(RBM), gcForest, bidirectional long short-term memory (Bi-LSTM),
and Gaussian copula-based multivariate model, as deep learning
(DL) models, have been used for the spatial modeling of dust
provenance over the globe (Gholami et al., 2021a; Gholami et al.,
2021c). DLmodeling is specifically interesting because this approach
overcomes many of the restrictions placed on the modeling process
by traditional machine learning (ML) or shallow models. In
comparison with the traditional or shallow models, different
architectures of DL transform the data presentation at one level
into a representation at a higher level (LeCun et al., 2015). DL is
increasingly being used as a tool to investigate a range of scientific
problems, including spatial modeling of environmental issues
(Chowdhuri et al., 2021b; Mohammadifar et al., 2021b; Gholami
and Mohammadifar, 2022; Mohammadifar et al., 2022). Typical DL
models can be divided into four classes, namely, stacked auto-
encoder (SAE), deep belief network (DBF), recurrent neural
network (RNN), and convolutional neural network (CNN)
(Zhang et al., 2018), of which CNN is one of the most popular
for prediction goals (Reiss and Bogenberger, 2016; Zhang et al.,
2016). One branch of CNN, the convolutional graph neural
networks (ConvGNNs), has been applied to a wide range of
research topics including computer vision (Monti et al., 2017),
natural language processing, traffic prediction (Li et al., 2018),
social analysis (Backstrom and Leskovec, 2011), bioinformatics,
and fraud detection (Akoglu et al., 2015; Zhang et al., 2017;
Zhang et al., 2019), but has not yet been investigated for
environmental issues. The ConvGNN approach shows promising
results for environmental hazard prediction due to the advantage of
graphs to capture structural relations between data over analysis of
data in isolation. Overall, ConvGNNs (Zhang et al., 2019) can be
classified into the spectral-based techniques (Defferrard et al., 2016;
Kipf and Welling, 2016) and spatial-based techniques (Monti et al.,
2017; Veličković et al., 2017). In addition, aspects of game theory
may be used to assess the interpretability of predictive DM and DL
models. Previous environmental studies have successfully made use
of SHapley Additive exPlanations (SHAP) from game theory to
interpret predictive DM models for digital soil mapping and soil
erosion by water (Padarian et al., 2020;Mohammadifar et al., 2021a).
These early results indicate that it may be beneficial to explore game
theory through SHAP, in order to assess the interpretability of our
GCN model outputs for wind erosion.

This study aimed to investigate novel tools for the prediction of
susceptibility to wind erosion on the central Iranian Plateau
(Semnan Province). To the best of our knowledge, this work is
the first attempt at mapping wind erosion hazards by combining
LASSO regression, graph convolutional networks (GCNs), and
game theory. Game theory (SHAP) was applied to assess the
interpretability of the DL results. The main objectives and goals
of this study were as follows: 1) the identification of the most
important factors controlling wind erosion for the study area
using LASSO regression, 2) the spatial prediction of land
susceptibility to wind erosion by applying a GCN deep learning
model with Monte Carlo dropout, 3) the evaluation of the GCN
model using the receiver-operating characteristic area under curve
(ROC-AUC) approach, and 4) the examination of the
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interpretability of our predictive GCNmodel using game theory. We
assess, on the basis of our case study, whether this approach could be
applied for spatial mapping of dryland hazards such as wind erosion
and dust plume transport worldwide.

2 Materials and methods

2.1 Study area

Semnan Province is a region covering 97,322 km2 in the
northern part of the central Iranian Plateau, lying on the
southern margins of the Alborz mountain range (Figure 1).
The region is hyper-arid to semi-arid, with rough terrain and
low population density, covering the northern part of the Kavir
Desert. The altitude of the study area ranges substantially from
658 m in the south and central parts to 3,885 m in the north.
Mean annual precipitation follows a steep gradient from 75 mm
in the hyper-arid south to 699 mm in the more mountainous and
vegetated northern part. The topography and climatic
conditions contribute to significant variability in soil organic
carbon stock (OCS) contents across the province, with values
ranging from near zero in the central and southern parts to 78%
in the north.

2.2 Mapping factors controlling wind
erosion

Initially, maps for 15 potential factors controlling wind
erosion in Semnan Province were generated (S1 and S2). The

potential factors were selected based on previous studies
investigating land susceptibility to wind erosion in Iran
(Gholami et al., 2020b; Gholami et al., 2020c; Gholami et al.,
2021b). These factors include topography, which is expressed
through a digital elevation model (DEM), and spatial
distribution of precipitation, evaporation, surface wind speed,
normalized difference vegetation index (NDVI), soil bulk
density, nitrogen and organic carbon stock (OCS), surface
cation exchange capacity (CEC), proportion of surface
sediment of clay, silt, sand, and percentage of the coarse
fragment, lithology, and land use. The topographical data for
the DEM were downloaded from https://earthexplorer.usgs.gov
with a spatial resolution of 30 m × 30 m. Climatic/
meteorological data (precipitation, evaporation, and wind
speed) were derived and interpolated from measurements at
27 synoptic meteorological stations in Semnan Province and
surrounding areas averaged over the period 2012–2019, and
mapped in ArcGIS. The NDVI data were retrieved for June
2020 using the MODIS (Moderate Resolution Imaging
Spectroradiometer) satellite sensor on the assumption that
June is representative for average annual vegetation cover in
Semnan Province. We assume that since vegetation in the
province is sparse and comprises bushes, shrubs, and minimal
tree cover, variability in NDVI values is minimal over the spring
and summer months in Semnan Province. Soil characteristics
were obtained from publicly available data (https://soilgrids.org)
and mapped with a spatial resolution of 50 m × 50 m. The
geology of Semnan Province is characterized by a number of
lithological units ranging in age from Paleozoic through to
Quaternary. In this study, we used existing geological maps
generated by the Iranian Geological Survey and Mineral

FIGURE 1
Location of Semnan Province in the Iranian map and the inventory map of wind erosion with training and test data points.
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Exploration department. Furthermore, we incorporated land use
maps for the year 2020 from the Iran Forest, Rangeland, and
Watershed Management Organization (IFRWMO). Since the
spatial resolution of potential factors in various constructed
maps is not uniform, all input layers used for modeling were
converted to a consistent spatial resolution of 50 × 50 m. The
details of input data used in the modeling process are presented
in Table 1. It should be noted that most of the variables here are
used as controls for the topographical, land use, and soil
characteristics of the examined area that are fixed and not
changed along season.

2.3 Inventory map of wind erosion

We then developed an inventory map for predicting land
susceptibility to wind erosion (Gholami et al., 2020a) over the
study region, using a previously generated map of the regions for
which active wind erosion has been monitored from the IFRWMO.
Furthermore, 70% and 30% of the pixels (80 pixels and 33 pixels,
respectively) in these regions (Figure 1) were randomly selected for
training and test (validation) datasets, to build a new predictive
model. We additionally selected 80% (training) and 20% (validation)
of the training dataset for our predictive models.

TABLE 1 Details of input data used in the modeling process.

Data type Source/spatial resolution/scale

DEM USGS/30 m × 30 m

Climatic data 27 synoptic meteorological stations/annual

Soil data https://soilgrids.org//250 m × 250 m

NDVI MODIS satellite product (MOD13Q1)/250 m × 250 m

Lithology map Geological Survey and Mineral Exploration of Iran/1:200,000

Land use map Iran Forest, Rangeland, and Watershed Management Organization/1:200,000

FIGURE 2
Flow chart of the key steps in mapping of wind erosion hazards in Semnan Province, Iran, using feature selection, graph convolutional networks
(GCNs), and game theory.
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3 Mapping wind erosion hazards using
LASSO regression, deep learning, and
game theory

In Figure 2, we summarize our workflow for mapping of land
susceptibility and wind erosion hazards in Semnan Province,
including feature selection by LASSO regression, the GCN deep
learning model, and game theory-based interpretation. This
workflow may be applied in other dryland environments and for
spatial mapping of various environmental hazards around the globe.
Each step is detailed in the following subsections.

3.1 Feature selection by LASSO regression

Feature selection (FS) describes the process of narrowing
down the potential factors (explanatory features or variables),
which can be used to describe a response feature (Fonti and
Belitser, 2017). In this case, the response feature is the
susceptibility to wind erosion and the explanatory features are
the 15 parameters (potential factors) mapped in Supplementary
Figures S1, S2.

The most influential factors controlling wind erosion in our
study area were selected using the LASSO regression, a type of FS
algorithm proposed by Tibshirani (1996). LASSO is considered to
be the optimal approach for FS in our study since it combines the
qualities of ridge regression and subset selection, thus improving
the model’s accuracy and interpretability. LASSO is a regression
analysis that performs both variable selection and regularization
in order to enhance the prediction accuracy and interpretability
of the resulting model, which is a major reason for its selection
against other regression approaches. Furthermore, LASSO is a
forward-looking variable selection method for regression, which
is a type of penalized least-squares approach incorporating L1-
penalty function (Muthukrishnan and Rohini, 2016). The LASSO
approach transforms each coefficient by a constant component λ,
truncating at 0, with the objective of minimizing prediction
errors (Fonti and Belitser, 2017). Therefore, LASSO decreases
the residual sum of squares, subject to the sum of the absolute
value of the coefficient being less than a constant. During the
application of FS, the features (variables) that still had a non-zero
coefficient after the shrinking process were selected to be part of
our model. The LASSO can be written as follows:

β̂
lasso � argmin

β
∑N
i�1

yi − β0 −∑P
j�1
xij βj⎛⎝ ⎞⎠2

subject to∑P
j�1

βj
∣∣∣∣∣ ∣∣∣∣∣≤ t,

(1)
where β0 and βj are the constant coefficient and the coefficient
vector, respectively, yi indicates the outcome, and xi =
(x1, x2, . . . , xp)ti is the covariate vector for the ith case.

3.2 Graph convolutional networks

Here, we undertake the first known study using convolutional
graph neural networks (ConvGNNs) to investigate wind erosion
susceptibility. The first adoption of neural network approaches to

directed acyclic graphs was reported by Sperduti and Starita
(1997). Neural networks have since been more widely applied
in the form of graph neural networks (GNNs) of various kinds for
a wide range of applications (Gori et al., 2005; Scarselli et al.,
2009; Gallicchio and Micheli, 2010). Among these, graph
convolutional networks (GCNs; Figure 3), first proposed by
Kipf and Welling (2016), are a type of spectral-based
convolutional GNN (Wu et al., 2020), which introduce a first-
order approximation of Chebyshev spectral CNNs (hereafter
ChebNet) (Defferrard et al., 2016).

In this study, we train GCNs using a Monte Carlo dropout (Gal
and Ghahramani, 2016). Assuming K = 1 and λmax = 2, the equation
of XpG gθ � ∑K

i�0θiTi (~L)X, is simplified as follows:

XpG gθ � θ0X − θ1 D
−1
2 AD−1

2 X, (2)
where, K, G,Θ, and X indicate the layer index, a graph, the learnable
model variable, and the feature vector, respectively.

To restrain the number of variables and avoid over-fitting, we
assumed θ = θ0 = −θ1 for our GCNs, leading to the following
definition of graph convolution:

XpG gθ � θ In +D−1
2 AD−1

2( )X. (3)

To allow multiple channels of inputs and outputs, our GCN
modifies Eq. 3 into a compositional layer as follows:

H � XpG gΘ � f �AXΘ( ), (4)
where �A � In +D−1

2 AD−1
2 and f (.) indicates an activation

function. Applying In +D−1
2 AD−1

2 empirically causes numerical
instability to GCNs (Wu et al., 2020). To solve this problem,
GCNs use a normalization trick to replace �A � In +D−1

2 AD−1
2 by

�A � ~D
−1
2 ~A~D

−1
2 with ~A � A + In and ~Dii � ∑

j

~Aij.Here, θ is the
learnable model variable, while A and D indicate the graph
adjacency matrix and the degree matrix of A.Dii � ∑n

j�1Aij.
The predicted susceptibility values for all the pixels ranged

between 0 and 1, with higher values indicating higher
susceptibility to wind erosion. We divided susceptibility
predictions into four classes: low (0–0.25), moderate (0.25–0.50),
high (0.50–0.75), and very high (0.75–1).

3.3 Assessing GCN performance to spatial
modeling of wind erosion

Previous studies have used several statistical indicators to assess
the reliability and feasibility of predictive DM and DL models in
environmental challenges (Gholami et al., 2021a; Gholami et al.,
2021c), including root-mean-square error (RMSE), mean absolute
error (MAE), mean bias error (MBE), the Nash–Sutcliffe efficiency
coefficient (NSC), Taylor diagram, and the receiver-operating
characteristic–area under curve (ROC-AUC). In this study, we
applied the ROC-AUC (Hong et al., 2017) to evaluate the
developed GCN model for spatial prediction of wind erosion
susceptibility in Semnan Province. Using the area under curve
(AUC) value, we classified the accuracy of the model prediction
into five categories: poor (50%–60%), moderate (60%–70%), good
(70%–80%), very good (80%–90%), and excellent (90%–100%)
(Tibshirani, 1996).
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3.4 Interpretability of GCNs using game
theory

In addition, we interpreted our GCN model for predicting wind
erosion hazards using the game theory approach of SHapley
Additive exPlanations (SHAP) (Lundberg and Lee, 2017;
Kannangara et al., 2022). SHAP values indicate the contribution
of a given factor to the final predictions of a model. SHAP specifies
the explanation as follows:

g z′( ) � Ø0 +∑M
j�1
Øj z

′
j, (5)

where g, z′ ∈ (Akoglu et al., 2015), and M are the explanation
model, the coalition vector, and the maximum coalition size,
respectively.

For calculating SHapley values, we fit a model fSU(i), involving
factor i, and another additional model, fs. All possible subsets S ⊆ F
comprise the empty set and the set F of all factors. The final factor

FIGURE 3
Conceptual diagram of our graph convolutional network (GCN) model for predicting land susceptibility to wind erosion.

FIGURE 4
Plot constructed by the least absolute shrinkage and selection
operator (LASSO) regression for feature selection. The X-axis of the
plot is the log of lambda [Log(λ)], which implies that for a value of 2 in
the x-axis, the lambda value is 100. The numbers at the top of the
plot indicate the number of predictors included in the model. The
position of red points along the Y-axis indicates the area under curve
(AUC) values corresponding to the number of the variables shown on
the top x-axis.

TABLE 2 Values of the potential factors controlling wind erosion, as estimated
by the least absolute shrinkage and selection operator (LASSO) regression.

Potential factor Value Decision

Soil nitrogen 0 Reject

OCS −0.04 Accept

Precipitation 0 Reject

Sand content 0 Reject

Silt content 0 Reject

Wind speed −0.17 Accept

Bulk density 0.01 Accept

CEC 0.01 Accept

Clay content 0 Reject

Coarse fragment −0.01 Accept

DEM 0 Reject

Evaporation 0.04 Accept

Lithology 0 Reject

Land use 0.01 Accept

NDVI −5.03 Accept
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contribution, Øi ∈ R, is the weighted average of all marginal
contributions (Padarian et al., 2020), which is given as

∅i � ∑
S⊆F i( )

S| |! F| | − S| | − 1( )!
F| |! fSU i( ) xSU i( )( ) − fS xS( )[ ]. (6)

4 Results and discussion

4.1 Discriminating important from non-
important features influencing wind erosion

The results of the LASSO regression, which was used to select
the important factors responsible for wind erosion, are presented
in Figure 4; Table 2. Figure 4 shows that AUC values decrease with
the increasing number of the potential factors controlling wind
erosion, which indicates that the model’s accuracy increases when
more potential factors are considered within the LASSO
regression.

Out of the 15 features examined as potential factors controlling
wind erosion, seven were identified as non-important in our study
area and were excluded from further analysis. These non-important
factors comprise soil nitrogen, precipitation, sand, silt, and clay
content; topography (DEM); and lithology.

The LASSO regression identifies precipitation as a non-
important factor for land susceptibility to wind erosion hazards
in Semnan Province. Precipitation is generally considered an
important factor controlling aeolian erosion and dust storms
since low precipitation has a positive feedback effect for reducing
soil moisture and vegetation growth, thereby enhancing erosion by
wind (Sissakian et al., 2013; Parajuli et al., 2014). In the case of
Semnan, the mountainous areas within the province receive
relatively high rainfall and have a correspondingly lower
vulnerability to aeolian erosion. This context reduces the relative
importance of precipitation for dust emission in the study region,
highlighting the sensitivity of local factors in the LASSO regression
process. This suggests that in other arid regions, the current non-
important factors may be highly sensitive to land susceptibility to
wind erosion (Gholami et al., 2020a; Gholami et al., 2021a; Gholami
et al., 2021c).

Although percentage fractions of unconsolidated silt, clay, and
sand often influence dust emission and transport (Bagheri-
Bodaghabadi and Jafari, 2022), our LASSO regression classified
these factors as non-important for Semnan Province. Clearly,
then, the fact that our LASSO regression finds typically
influential factors to be non-important for our study region
indicates that the classification of the importance of potential
factors is highly region-specific and depends on local
geographical, land cover, and meteorological conditions.
Important factors are likely to depend on the type of soil, the
dimension of desert areas, and topography.

LASSO criteria identified eight features as important variables
for wind erosion in Semnan Province: wind speed, evaporation,
OCS, bulk density, cation exchange capacity (CEC), coarse
fragment, land use, and NDVI. Only these eight features entered
into the spatial modeling process using GCNs to predict land
susceptibility to wind erosion hazards in Semnan Province.

4.2 Map of wind erosion hazards

Figure 5 shows the map of susceptibility to wind erosion in
Semnan Province, as produced by the GCN deep learning model
using the eight important factors (Figure 4; Table 2).

According to the results, a substantial proportion of the region
(c. 65%) exhibits high or very high susceptibility to wind erosion,
which is 33.2% (= 32,300 km2) and 31.4% (= 30,581 km2),
respectively. Areas classified as having low and moderate
susceptibility to wind erosion represent 15.5% (= 15,136 km2)
and 19.8% (= 19,305 km2) of the total area in Semnan Province,
respectively.

The southern and central parts of the study area are classified as
having very high susceptibility to wind erosion (Figure 5) and,
therefore, suffer from extreme soil erosion hazards. These areas lie
within the Kavir Desert, which is known as a generation point (dust
source) for dust storms impacting the whole central Iranian Plateau
(Bagheri-Bodaghabadi and Jafari, 2022; Marjovvi et al., 2022). The
Kavir Desert experiences high evaporation rates, low surface soil
moisture, and high wind speeds; it contains only sparse vegetation
cover and has low soil OCS and low CEC. Furthermore, these
regions contain substantial unconsolidated fine-grained sand at
the surface, sourced by alluvial input from inland streams. Dry
river beds and ephemeral lakes have long been recognized as areas
with high potential for wind erosion and dust emissions across the
Middle East (Rashki et al., 2017). Such areas, with high sediment
availability and frequent high wind speeds, often become the major
sources of erodible sand for dust/sand storms in Semnan Province.

The part of Semnan Province with the lowest susceptibility to
wind erosion is located in the north within the Alborz mountain
range. This area (c. 35.5% of the province) is characterized by steep
slopes, relatively high vegetation cover, and low evaporation rates, as
well as by high proportions of silt-sized sediment and coarse
fragments on the surface (Supplementary Figures S1, S2). Each of
these factors represents negative feedback for wind erosion (Parajuli
et al., 2019) and is likely to contribute to the GNS assessment of low
susceptibility in our study. Although this part of Semnan Province
was found to have the lowest susceptibility to wind erosion, it is
nevertheless the part of the Iranian Plateau that is more susceptible
to wind erosion than other areas (Gholami et al., 2020c; Gholami
et al., 2021b).

Figure 6 summarizes the results of sensitivity analysis for our
GCN deep learningmodel.We found that the most sensitive features
for the model are surface coarse fragment cover, evaporation, and
land use; these factors exhibit the highest slopes on the graph and the
largest variation in the normalized predictor change. The high
importance of these features for soil susceptibility to wind
erosion indicates strong regional dependence specific for Semnan
Province. Using the same deep learning methods, we would likely
find the deciding factors to be different in other arid environments
(Gholami et al., 2021b; Gholami et al., 2021c; Gholami and
Mohammadifar, 2022).

Overall, wind erosion and its contribution to desertification and
land degradation is controlled by the arid climate, high evaporation
rates, low precipitation, sparse vegetation cover, and intense winds
(Keramat et al., 2011) in Semnan Province and in central Iran, more
broadly. However, the balance and drivers of the determining
factors—demonstrated here to be regionally specific—may be
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altered by future climatic change, including extensive droughts and
increasing average temperatures, and by anthropogenic degradation
of ecosystems and mismanagement of water, soil, and plant
resources over the whole Middle East region (Amiraslani and
Dragovich, 2011; Middleton, 2017; Middleton, 2019; Emamian
et al., 2021; Papi et al., 2022). On this basis, continued
monitoring of the relative contributions of various controlling
factors to dynamic phenomena such as desertification and dust
storms in arid environments is recommended.

4.3 Assessment of GCN model performance

The performance of our GCN modeling results was assessed
using the area under curve (AUC) approach on the training and test
datasets (Figure 7). The calculated AUC values for the training and
validation datasets were found to be the same (97.2% and 97.25%,
respectively), thus indicating an excellent prediction accuracy
(Yesilnacar, 2005). The results show that GCNs significantly
improve the performance of the predictions for land
susceptibility to wind erosion and support the findings of
previous studies, which suggested that GCNs are an efficient
graph model for semi-supervised learning (Chen et al., 2018) and
constitute a useful tool for completing missing data (Belghaddar
et al., 2021). The DL hybrid models (e.g., convolutional neural
network-gated recurrent unit (CNN-GRU) and dense layer deep
learning–random forest (DLDL-RF)) were also recently shown to be
efficient methods for classifying dust sources in the Middle East
(Gholami and Mohammadifar, 2022).

4.4 Relative contributions of the most
important factors for wind erosion hazards

The SHAP values of the game theory were used to determine the
contribution of each feature to our GCN model output for land
susceptibility to wind erosion. We found that the contributions of
the variables followed the order: coarse fragments >NDVI > land use >
SOM > wind speed > CEC > bulk density > evaporation. Figure 8
illustrates the relative contributions of these parameters based on SHAP
values and combines the feature importance with feature effects. The
value, and therefore the relative importance of each parameter, is given

FIGURE 5
Map of wind erosion hazards generated by the graph convolutional network (GCN) model in Semnan Province, Iran.

FIGURE 6
Graph convolutional network (GCN) model sensitivity analysis.
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by the color scheme. Overlapping points are projected in the y-axis to
give a sense of the distribution of the SHAP values per feature, as per the
published approach (Gholami et al., 2021c).

Land susceptibility to wind erosion has previously been shown to
be driven by a wide range of topographic and bio-climatic variables
including surface roughness (which equates to our coarse fragment
parameter), mineralogy, vegetation cover (comparable with NDVI),
soil characteristics (e.g., soil texture, bulk density, and organic matter),

wind speed, precipitation, and evaporation (Goudie and Middleton,
2006; Shao, 2008). Depending on the meteorological, topographical,
and soil conditions in the study area, factors controlling the wind
erosion may be highly variable from place to place. For example,
Gholami et al. (2020c) reported that DEM-extracted variables are the
most important factors that control wind erosion in the Jazmurian
Basin, while in Central Asia, other parameters like precipitation, bulk
density, slope, and lithology (among others) mostly controlled land

FIGURE 7
Validation of the wind erosion hazardmap generated by the graph convolutional network (GCN)model for (A) training and (B) test datasets using the
area under curve (AUC).

FIGURE 8
SHapley Additive exPlanation (SHAP) values for the eight most important features identified by the least absolute shrinkage and selection operator
(LASSO) regression.
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susceptibility to wind erosion using the LOFO algorithm (Gholami
et al., 2021c). Precipitation can act as a roughness factor for
controlling wind erosion in arid and semi-arid regions, while
lithology can be another effective variable. Geological formations
such as Qsd (sand dune unit) or Qal (Quaternary alluvial deposits)
are the most susceptible units against wind erosion because they have
single-grain structures with loose particles (Li et al., 2022; Li et al.,
2023). The current results largely support these arguments while
additionally identifying the main contributing factors and their
relative contributions using novel techniques. Our novel approach
also predicts the spatial variability of wind erosion hazards and
enables the assessment of model performance.

Another important finding here is that factor contributions are
strongly regionally controlled but are scale-dependent. A previous
study focusing on Isfahan Province, immediately southwest of our
study area (Gholami et al., 2020c), based on the monotone multi-
layer perception neural network (MMLPNN), found that
topography (DEM), precipitation, and NDVI were the three most
important factors controlling wind erosion and, therefore, contrasts
with current results. Therefore, the characteristics and relative
importance of potential controlling factors are highly region-
specific, even for neighboring provinces on the central Iranian
Plateau. Over larger scales, however, we start to see similarities in
the major factors controlling wind erosion. Analyses using SHAP
values for Central Asia—a similar approach to the methods used in
this study—revealed that surface coarse fragment concentration, soil
bulk density, and precipitation were the most important factors
controlling land susceptibility to wind erosion over a much larger
area than that investigated here (Gholami et al., 2021c). Overall, the
comparison with previous works that examined land susceptibility
to wind erosion over arid areas in Iran and Central Asia revealed
significant similarities in the factors that control wind erosion,
despite some regional differences, and indicated the importance
of defining scale in these sorts of studies.

We found that neural network techniques are a useful and
accurate tool for investigating the spatial variability and intensity
of land susceptibility to wind erosion (Luo et al., 2020). Our
approach may be applied not only to mapping wind erosion
hazards but also to a range of other environmental problems
requiring spatial characterization, such as soil characteristics and
the interaction between atmospheric circulation and the land
surface. Our results provide an efficient means to measure soil
erosion hazards, which can then be used for assessments of
weather systems, ecosystem restoration, human health (Xiao
et al., 2017; Wu et al., 2020; Emamian et al., 2021; Tian et al.,
2021), land management, and hazard mitigation in arid areas
(Sharifikia, 2013; Xu et al., 2019). Policymakers, as end users of
results regarding mapping of land susceptibility and wind erosion,
can use maps that are produced in this study, to alert residents in
high-risk areas for devastating phenomena like severe dust storms
and apply appropriate mitigating strategies against natural hazards.

4.5 Advantages and limitations to our DL
approach

Data science (DS) is an emerging research field that helps us
better understand the complex mechanisms behind environmental

phenomena (Gibert et al., 2018). DS has several advantages and can
support a) systematic and objective exploration and visualization of
data, b) improving data quality, c) discovery of patterns contained in
large time series, and d) producing new validated and transferable
knowledge (Gibert et al., 2018). DL models—a fully data-driven
approach—are especially interesting in environmental issues
because they overcome many of the restrictions placed on the
modeling process by traditional machine learning models (LeCun
et al., 2015; Van Dao et al., 2020).

The accuracy of the input data to the modeling process is
specifically important for generating more accurate and reliable
predictive maps for environmental applications. Additional
accuracy may be achieved with higher spatial resolution of the
imagery such as in NDVI, digital elevation, and soil mapping
that would lead to improvements in spatial mapping. Due to the
desert and remote characteristics of Semnan Province,
meteorological stations are rather scarce with unsuitable spatial
coverage. Therefore, interpolation of the meteorological data was
associated with higher uncertainty. Meteorological variables (wind
speed and rainfall) are also sensitive to the length of instrumental
data records (Li et al., 2018). Detailed analysis of various natural and
anthropogenic factors affecting land susceptibility to wind erosion
and dust storms is crucial for efficient management and mitigation
strategies of these phenomena in central Iran.

5 Conclusion

This study is the first attempt to apply GCNs to aeolian
geomorphology with the aim of predicting land susceptibility to
wind erosion. Our novel methodology comprises feature selection
using LASSO regression, the prediction of wind erosion hazards by
GCNs, and the assessment of the accuracy and elucidation of major
contributing parameters identified in our GCN model output using
game theory.

The case study region is Semnan Province in the central
Iranian plateau. The applied methodology showed that ~65% of
the total area in Semnan Province is prone to high and very high
wind erosion hazards, rendering the area as one of the most
susceptible to wind erosion parts of the arid central Iranian
Plateau. We also found that the main factors contributing to
erosion susceptibility are not necessarily the most typical since
wind erosion is largely controlled by the proportion of surface
coarse fragments, vegetation cover, and land use, as well as by
evaporation, wind speed, bulk density, and cation exchange
capacity.

The game theory was used for the first time to test the
performance and interpretability of the GCN model, using the
area under curve (AUC) and SHapley Additive exPlanations
(SHAP). The assessment showed that our GCN approach reliably
characterized land susceptibility to wind erosion. The SHAP values
showed that proportions of coarse fragments, NDVI, land use, and
wind speed contributed mostly to land degradation and wind
erosion in Semnan Province.

Our methodology can be used to predict the hazards of wind
erosion in other arid environments around the globe and may be
extended to address several environmental issues from small to large
scales.
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