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In this study, the aim was to create daily ground-level NO2 maps for Vietnam
spanning from 2019 to 2021. To achieve this, various machine learning models
(including theMixed EffectModel, Neural Network, and LightGBM)were utilized to
process satellite NO2 tropospheric columns from Ozone Monitoring Instrument
(OMI) and TROPOMI, as well as meteorological and land use maps and ground
measurement NO2 data. The LightGBMmodel was found to be themost effective,
producing results with a Pearson r of 0.77, RMSE of 7.93 μg/m³, and Mean Relative
Error (MRE) of 42.6% compared to ground truth measurements. The annual
average NO2 maps from 2019–2021 obtained by the LightGBM model for
Vietnam were compared to a global product and ground stations, and it was
found to have superior quality with Pearson r of 0.95, RMSE of 2.27 μg/m³, MRE of
9.79%, based on 81 samples.
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1 Introduction

Air pollution poses a significant threat to the environment and human health in
many countries. In Vietnam, Nitrogen dioxide (NO2) is recognized as a particularly
important air pollutant. To monitor and manage the levels of NO2 and other harmful
pollutants such as PM2.5, PM10, SO2, and O3, the Ministry of Natural Resources and
Environment (MONRE) has implemented automatic and continuous monitoring
systems. However, the current monitoring of NO2 in Vietnam is limited due to the
lack of representative monitoring stations across the country. In recent times, modeling
techniques utilizing data from monitoring stations, satellite imagery (remote sensing),
and auxiliary sources have gained widespread acceptance in generating spatial NO2

information. This approach provides additional data to supplement the readings from
monitoring stations, thus providing insights into the distribution of NO2 concentrations
on a larger scale, especially in regions without monitoring stations. The NO2 satellites
used for this purpose include the Ozone Monitoring Instrument (OMI), Global Ozone
Monitoring Experiment–2 (GOME-2), SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY), and TROPOspheric Monitoring
Instrument (TROPOMI).

Many studies have been conducted globally to map NO2 using satellite imagery. For
instance, Larkin et al. (2017) used a land use regression (LUR) model to estimate global NO2
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levels in 2011 with a resolution of 100 × 100 m. They incorporated
model and satellite data/model data from SCIAMACHY, GOME-2,
and GEOS Chem, as well as land cover features such as vegetation
index, tree cover, traffic, etc., and monitoring station data from
58 countries. The model’s performance varied depending on the
region, with the coefficient of determination (R2) ranging from
0.42 in Africa to 0.67 in South America. In North America,
Europe, and Asia, the R2 value was approximately 0.52, which is
consistent with the global average (0.54) (Larkin et al., 2017). To
further enhance the accuracy of NO2mapping, a study conducted by
Anenberg et al. (2022) estimated the global average annual NO2

levels from 1990 to 2020 at a resolution of 1 × 1 km. This study used
Land Use Regression (LUR) incorporating OMI NO2 andMERRA2-
reanalysis data. Results indicate that the new NO2 concentration
data is more precise than that of Larkin’s study in rural areas, with a
Pearson r of 0.58 and a Root mean square error (RMSE) of 2.26
(ppb) (Anenberg et al., 2022). The results of this study have
important implications for public health, as they were able to
estimate the NO2-attributable pediatrics asthma incidence using
the improved NO2 concentration data. Paraschiv examined the
relationship between OMI data and monitoring stations across
Europe during the period of 2005–2014. Their findings indicate a
Pearson r value ranging from 0.53 to 0.86 (Paraschiv et al., 2017).
Hyung Joo Lee and colleagues (2014) developed a mixed-effect
model (MEM) to estimate daily NO2 concentrations in New
England, United States from 2005–2010. Their model was based
on various data sources, including station data, tropospheric column
NO2 (OMI), historical land use data such as population density,
traffic, topography, as well as meteorological data such as
temperature and wind speed. They evaluated the model using a
10-fold cross-validation (CV) method and found an R2 value of 0.79,
indicating good model performance (Lee and Koutrakis, 2014). In
the mentioned studies, OMI NO2 satellite data is commonly used to
estimate NO2 maps.

Recently, some studies have been conducted using
TROPOMI satellite data (the most recently launched satellite
with high resolution data) with Machine Learning models and
auxiliary data to estimate ground-level pollutant concentrations
(e.g., NO2, O3). A study by Kang et al. (2021) estimated ground-
level NO2 and O3 with a resolution of 6 × 6 km at East Asia using
NO2 data from the TROPOMI satellite, other satellite products
(Landcover, Aerosol Optical Depth - AOD, Digital Elevation
Model - DEM), meteorological data from models, and auxiliary
data (road density, population density). Several different
machine learning models were experimented, including
Multiple Linear Regression (MLR), Support Vector Regression
(SVR), Random Forest (RF), Extreme Gradient Boosting
(XGBoost), and Light Gradient Boosting Machine
(LightGBM). XGBoost showed better results when estimating
NO2 with a 10-fold cross-validation R2 of 0.7 and RMSE of
4.75 ppb. Long et al. (2022) map daily ground-level NO2

concentrations in China at a resolution of 0.05° using machine
learning models based on decision trees (Decision Tree, Gradient
Boost Decision Tree, Random Forest, Extra-Trees). They found
that the Extra-Trees model incorporating spatial and temporal
information performed exceptionally well in estimating ground-
level NO2 concentrations, achieving a cross-validation R2 of
0.81 and an RMSE of 3.45 μg/m3 in test datasets (Long et al.,

2022). Wang et al. (2022) used Random Forest to estimate the
daily maximum 8-hour average ground-level ozone
concentration at a 10 km spatial resolution in California. They
utilized TROPOMI’s total ozone column combined with ozone
profile information retrieved by the Ozone Monitoring
Instrument (OMI) and auxiliary data (meteorological, land
use). Their model achieved an overall 10-fold CV R2 of
0.84 and an RMSE of 0.0059 ppm. In another study,
Grzybowski et al. (2023) employed various data sources,
including Sentinel-5P, meteorological data, and other ancillary
data, to estimate ground NO2 levels in Poland. Among the
methods used, the random forest (RF) model emerged as the
most accurate, with mean absolute error (MAE) values of 3.4 μg/m3

and 3.2 μg/m3 for the hourly and weekly estimates, respectively.
The corresponding mean absolute percentage error (MAPE)
values were 37% and 31%, indicating relatively moderate
deviations from the true values (Grzybowski et al., 2023). The
tree-based model demonstrates strong estimation capabilities in
air pollution estimation problems using remote sensing and
auxiliary data.

Currently, there are no studies on nationwide NO2 estimation in
Vietnam utilizing satellite images and multi-source data. However, a
study conducted in 2015 developed daily PM2.5 maps for Vietnam
from 2010–2014 using a multivariable regression model (Nguyen
et al., 2015). Recently, a study provided a long-term daily PM2.5 map
for Vietnam from 2012–2020 using mixed effect models based on
ground PM2.5 measurements, integrated satellite Aerosol Optical
Depth (AOD), meteorological and land use maps (Ngo et al., 2023).
The daily mean PM2.5 maps have high validation results with ground
PM2.5 measurements, achieving a Pearson r of 0.87, R2 of 0.75,
RMSE of 11.76 μg/m³, and MRE of 36.57% on a total of 13,886 data
samples.

This study aimed to develop daily ground-level NO2 maps
with a resolution of 1 × 1 km over Vietnam using satellite images
and multi-source data from 2019–2021. The NO2 tropospheric
columns were derived from OMI and TROPOMI satellite
devices, and different models such as Mixed Effect Model,
Neural Network, and LightGBM were tested. Although the
models are not new, this is the first study to experimentally
construct a high-resolution NO2 map for the entire territory of
Vietnam based on satellite data. Various machine learning
models were experimented to find the optimal model that fits
the data in Vietnam. The NO2 maps hold promise in providing
useful information on NO2 distribution across Vietnam,
supporting decision-making and policies to reduce NO2

pollution and improving public health.

2 Materials

2.1 Measurement data

The hourly ground measurements of NO2 were collected from
monitoring stations in Vietnam. Vietnam is situated in the East of
the Indochina peninsula, at the heart of Southeast Asia, with its land
area covering 331,236 km2, stretching from (8°27′N, 102°8ʼE) to
(23°23ʼN, 109°27ʼE). The country is divided into six distinct
economic zones, namely, the Northern Midlands and Mountains,

Frontiers in Environmental Science frontiersin.org02

Ngo et al. 10.3389/fenvs.2023.1187592

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1187592


Red River Delta (RRD), North Central Coast and South Central
Coast, Central Highlands, South East, and Mekong River Delta
(MRD) as illustrated in Supplementary Figure S1.

The Northern Center for Environmental Monitoring (NCEM),
which operates under the Vietnam Administration of Environment
(VEA) under MONRE, is responsible for air pollution monitoring in
Vietnam. As of 2021, over 90 stations have been installed across the
country, with most of them located in the Red River Delta (RRD)
region. These stations measure various pollutants such as NO2,
PM10, PM2.5, SO2, CO, O3, as well as meteorological variables like
temperature, humidity, and wind speed. Hourly NO2 concentration
(μg/m³) data from 74 stations were collected between 2019–2021 in
this study, with poor quality data stations removed. The distribution
of ground stations is illustrated in Supplementary Figure S1.

2.2 Satellite data

In order to monitor air pollution at stations on a national scale,
satellite images are also used which has a larger coverage than the
traditional monitoring method. The development of satellite
technology can solve the problem of monitoring air pollution on
a large scale. For this study, we utilized two satellite based NO2

tropospheric column products, namely, OMI (Ozone Monitoring
Instrument) (Levelt et al., 2006) and TROPOMI (TROPOspheric
Monitoring Instrument) (Veefkind et al., 2012), to estimate NO2

concentrations at ground level over Vietnam.
TROPOMI, launched in October 2017, is a satellite instrument

on board the Copernicus Sentinel-5 Precursor satellite (S5P). It
measures air quality, ozone, ultraviolet radiation, and aids in climate
forecasts with high spatial resolution. TROPOMI provides daily and
global coverage of multiple trace gases (such as NO2, CO, SO2, CH4,
CH2O, O3) and aerosol properties. Prior to Sentinel-5P, NASA’s
OMI on the Aura satellite had been observing the ozone layer and
atmospheric pollutant gases, including NO2, since October 2004.
However, the daily OMI NO2 product has a lower spatial resolution
(13 × 24 km) compared to the more detailed NO2 product from
TROPOMI (3.5 × 5.5 km).

Both of OMI and TROPOMI data were obtained from the
Multi-Decadal Nitrogen Dioxide and Derived Products from
Satellites (MINDS) program (Lamsal et al., 2022a; Lamsal et al.,
2022b). The goal of this project is to adapt OMI operating
algorithms to other satellite devices, and to create and store
consistent multi-satellite Level 2 and Level 3 NO2 products. They
adapt their well-validated OMI NO2, cloud, and geometry-
dependent surface reflectivity retrieval algorithms to satellite
instruments that include SCIAMACHY, GOME-2, TROPOMI.
The adaptation of OMI algorithms for these satellite data aims to
provide consistent and long-term records suitable for analyzing
global trends in NO2. OMI MINDS NO2 and TROPOMI MINDS
NO2 were both downloaded from NASA’s open source (https://disc.
gsfc.nasa.gov/). The data are listed in Supplementary Table S1.

2.3 Meteorological data

Meteorological parameters are the factors that have an
important influence on the concentration of NO2 pollutant over

time. For example, high temperature can accelerate photochemical
reactions thereby reducing NO2 concentration; high relative
humidity increases the conversion rate from NOx to secondary
aerosols thereby also reducing NO2 concentrations. In this study, we
utilized meteorological maps generated by the Weather Research
and Forecasting (WRF) model, which employed input data from the
fifth generation of ECMWF reanalysis (ERA-5) obtained from
(https://cds.climate.copernicus.eu) during 2019–2021. The spatial
resolution of the input data was 0.25 ° × 0.25 ° with hourly temporal
resolution. The meteorological data of the ERA-5 was used as the
initial and boundary conditions for the simulation in the WRF
model. The WRF configuration was set up with two nested domains
over Vietnam, with spatial resolution of 15 and 5 km respectively.
The output data of the model was meteorological maps (including
Temperature, Humidity, WindSpeed, Planetary Boundary Layer
Height - PBLH) with a frequency of 4 images/day at 0, 6, 12,
18 h (GMT+0) and a spatial resolution of 5 × 5 km. The data are
listed in Supplementary Table S1.

2.4 Land use data

Land use factors are closely associated with the sources of
emissions. For instance, regions characterized by high traffic
density tend to exhibit elevated smog emissions from vehicles,
leading to higher concentrations of NO2. Conversely, areas
covered with vegetation generally experience lower pollution
levels compared to urbanized areas. In this study, we utilized
the following data: normalized difference vegetation index
(NDVI) map, road map. The data are listed in Supplementary
Table S1.

The NDVI product used in this study is generated from Terra
MODIS satellite images through the MOD13Q1 product, Collection
6, level 3, which has a spatial resolution of 250 m and a temporal
resolution of 16 days (Didan, 2015). NDVI maps provide spatially
and temporally consistent observations of vegetation status in the
study area. In this study, we collected MOD13Q1 product during
2021 from NASA open source (https://search.earthdata.nasa.gov/
search).

The road map used in this study was obtained from the latest
OpenStreetMap (OSM) data in 2022, available in vector format and
comprising road shapes. OSM is a community-driven mapping service
that is freely accessible and open to the public. OSMwidely employed in
various applications within the geosciences, earth observation, and
environmental sciences. OSM offers global map objects, including
data types such as nodes (representing points on Earth), ways
(polyline representations of road objects, buildings, etc.), relations
(establishing relationships between objects), and tags (containing
object-related information) (Vargas-Munoz et al., 2021).

3 Methods

This study developed daily NO2 maps using a method shown in
Figure 1. The input data included NO2 data from monitoring
stations, NO2 tropospheric column density from satellites,
meteorological maps from the WRF model, NDVI maps, and
road maps. These data were preprocessed and integrated to

Frontiers in Environmental Science frontiersin.org03

Ngo et al. 10.3389/fenvs.2023.1187592

https://disc.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
https://cds.climate.copernicus.eu
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1187592


create a training dataset, which was used to develop statistical
models for generating the daily NO2 map. The daily NO2 maps
were then aggregated into monthly and annual averages, and
validated using station observations and compared with the
global NO2 product.

3.1 Preprocessing data

The preprocessing of the monitoring station data, satellite
images and ancillary data was similar to what we did for PM2.5

pollutant published recently (Ngo et al., 2023). NO2 concentration
data from monitoring stations were standardized in uniform
structure. After that, the data was cleaned and removed outliers.
The process of removing outliers was carried out in the following
steps: 1) Eliminating outliers by threshold. NO2 observations with
values exceeding 300 μg/m3 or less than 1 μg/m3 were discarded). 2)
Using statistical methods to find outliers (too high/too low)
compared to measured data in the neighboring period
(±15 days). 3) Using the statistical method to find outliers (too
high/too low) compared to the measured data in the neighboring
period (±15 h), find out the outliers compared to the measured data
measured at neighboring stations. 4) Finding outliers where the
value does not change over a long period of time (Wu et al., 2018).
These outliers were manually rechecked for accuracy. Subsequently,

the hourly data were aggregated into daily, monthly, and annual
averages for the purpose of data integration and modeling.

Multi-source satellite data, which are NO2 tropospheric column
density data from OMI, TROPOMI products and NDVI from the
MOD13Q1 product, have different format, temporal and spatial
resolutions. Preprocessing is required to convert satellite data into
the same format and to project them in the same spatial grid. The
preprocessing steps for the NO2 and NDVI satellite images involve
value extraction and transformation (converting value), geo-
referencing, and resampling. Value extraction and transformation
is the process of extracting related data layers and re-computing the
values based on metadata information such as offset and scale factor
of data. Geo-referencing means correlating the internal coordinate
system of a map or an aerial image to a geographic coordinate
system. In order to integrate multi-source data, a grid with uniform
coverage and spatial resolution was defined. The grid covers the
entire territory of Vietnam based on the WGS84 reference system
and has cell size of 1 × 1 km. The satellite data were resampled and
projected on this grid using the nearest resampling method for
images with spatial resolution greater than 1 km (i.e., OMI,
TROPOMI, meteorological maps) and the average resampling
method for satellite images with resolution less than 1 km
(i.e., MODIS NDVI, population density map). The GDAL tool
was used to perform the above processes (GDAL, 2022). All the
maps were then aggregated into daily maps for further calculation.

FIGURE 1
The methodological approach for estimating ground-level NO2.
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Quality flag bands were used to filter out low-quality pixels
from the satellite products (OMI NO2 and TROPOMI NO2) to
ensure the accuracy of the data. The bands used for filtering
include “VcdQualityFlag” (even integer), “CloudFraction”
(<0.3), and “qa_value” (>0.75), as recommended in previous
studies (Lamsal et al., 2022a; Lamsal et al., 2022b). After quality
control, the OMI and TROPOMI data were averaged on a daily
basis to create a daily satellite combined dataset with a common
grid (1 × 1 km grid).

The WRF model provides meteorological data in NetCDF
format. The Unified Post Processing (UPP) Toolkit (NCEP UPP,
2022) was used to process the WRF model output data. UPP,
which was developed at the National Center for Environmental
Prediction (NCEP), has the capability of calculating various fields
and interpolate them at different pressure levels from output data
of the WRF model. We used the UPP tool to calculate
temperature maps, humidity maps at 2 m height, planetary
boundary layer height maps, wind speed at 10 m. Then, those
data were resampled on the standard grid in order to be
consistent with other satellite image products in the study
area. These meteorological maps were then aggregated into
daily mean maps for modeling.

NDVI, a MOD13Q1 product from Terra MODIS, was
preprocessed similarly to those described for NO2 maps, which
were value extraction and transformation, geo-referencing, and
resampling. The road map data was in vector format (shapefile),
containing road lines and line characteristics. In order to use this
feature as input of the model, the line density calculation was applied
to convert the data into raster format (grids). It calculates a
magnitude-per-unit area from polyline features, which fall within
a radius around each cell (pixel). The radius is set approximately
1 km. The output image was then applied the nearest neighbor
resampling method using the gdalwarp tool to get the same grid as
the other maps.

3.2 Integrating data

Once the maps and station data were preprocessed, they were
combined to create the training dataset. The aim was to establish the
connection between the values on the maps and the observed NO2 at
the ground level. To ensure compliance with spatial and time
constraints, the following measures were taken:

• Spatial constraint: The map data was extracted at the exact
location of the ground station.

• Time constraint: The map data and ground-based NO2

observations were synchronized by calculating the daily
average values.

3.3 Modeling and validation

This study tested three different models: mixed effect model,
neural network, and LightGBM. The MEM model has been widely
used in the past to estimate pollution using satellite imagery and
multi-source data. Recently, tree-based models have shown good
results in estimating NO2 maps. Therefore, in this study, we selected

two machine learning models (MEM and LightGBM) to compare
their performance. Additionally, we also wanted to experiment with
a deep learning model. However, CNN-based models were not
suitable for the current dataset, as complex deep learning models
may not be suitable for sparse and limited data. Hence, we chose to
experiment with a neural network model with multiple hidden
layers and compared it with traditional machine learning models.

These models were fed with input parameters including NO2

tropospheric column density (combined OMI and TROPOMI),
meteorological data (humidity, PBLH), land cover (NDVI), and
road density. Temperature and Wind Speed was not included in the
input parameters due to its potential to create significant errors in
estimating NO2 concentrations in areas where ground monitoring
stations are not installed in Vietnam. In other words, due to the
uneven distribution of stations, the learned characteristics from the
training dataset may not accurately reflect the patterns in areas
without stations. For example, in mountainous regions with rocky
terrain and dense forests (where there are no monitoring stations),
the estimated pollution levels may appear higher than in flatland
areas (with multiple monitoring stations, representing high emission
areas).

The mixed effects model (MEM) is a type of land-use regression
(LUR) model that consists of both fixed and random effect
components. The formula for this model can be expressed as:

NO2 i,j � ∑N
k�1

αk Xk,i,j + α + β( ) (1)

WhereNO2 i,j represents the estimated NO2 concentration at spatial
location j on day i. Xk,i,j refers to the kth parameter at location j on
day i, where N is the total number of parameters used in the model.
The αk, α coefficients denote the fixed effect component, which
includes the slope and intercept of input parameters. The β

coefficient represents the random effect of the intercept that
varies from day to day.

LightGBM is a popular gradient boosting tree algorithm (Ke
et al., 2017) used in machine learning. It utilizes a group of weak
learners to improve the performance of the model. The regressor is
optimized by adjusting hyper-parameters, such as the number of
trees, the maximum tree depth, and learning rate, through the use of
a grid search technique. The goal of this process is to improve the
model’s accuracy and reduce errors.

Neural network is a powerful method for modeling the
complex and nonlinear relationships between inputs and
outputs, which makes it suitable for studying atmospheric
chemistry processes. It usually includes input, output, and
hidden layers in its architecture (Nielsen, 2018). In this study,
the neural network architecture was customized to fit the dataset
size in terms of features and samples. During training and testing,
the optimizer/learning rate, metric, and epochs were adjusted to
optimize the performance of the model.

To assess the quality of the models, statistical indicators were
used to compare the estimated NO2 levels from the model with the
actual NO2 observations recorded at ground stations. The 10-fold
CVmethod was employed to evaluate the performance of the model.
After being trained and validated, the model was utilized to produce
daily NO2 concentration maps with a spatial resolution of 1 × 1 km.
To evaluate its accuracy, the daily maps were compared with
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ground station measurements using both temporal (daily mean)
and spatial (pixel value extracted at station locations) constraints.
In addition, to provide a more comprehensive analysis, daily
ground measurements and NO2 maps were aggregated into
monthly and annual averages. The annual mean of our NO2

maps was compared with the global NO2 product (Anenberg
et al., 2022) for the same study area, which provides annual
average NO2 datasets from 1990–2020 using a LUR method. The
comparison involved evaluating the annual averages of our maps
and the global product against ground station measurements of
NO2 taken in Vietnam from 2019–2021.

To compare and evaluate the models and maps, various
statistical indicators were utilized, including the Pearson
correlation coefficient (r), Root Mean Square Error (RMSE), and
Mean Relative Error (MRE).

Pearson r � ∑n
t�1 yt − �y( ) xt − �x( )�����������∑n

t�1 yt − �y( )2√ �����������∑n
t�1 xt − �x( )2

√ (2)

RMSE �
��������������
1
N

∑N

t�1 yt − xt( )2√
(3)

MRE � 1
N

∑N

t�1
yt − xt

∣∣∣∣ ∣∣∣∣
yt

.100% (4)

Here, xt, yt represent the estimated values from the model (or extracted
from the map) and the measured values at the ground station,
respectively. �x and �y are the respective average values of the two
data series.

4 Results and discussion

4.1 Model validation

Supplementary Table S2 presents the selected parameters for each
model. For the MEMmodel, the model structure has been presented in
Section 3.3 and no parameters need to be adjusted. With the NN
network, due to the small input dataset size (9,027 samples and
5 features), we designed a small size neural network consisting of
1 input layer, 3 hidden layers including 16 nodes, 32 nodes, 16 nodes,
respectively. Adam optimizer was selected with the learning rate of
0.001. The metric used was mean squared error (MSE) and the epochs
was set to 200. With the LightGBM model, through the grid search
technique, we selected a set of parameters for the model which
presented in the Supplementary Table S2.

Table 1 shows the evaluation results after setting up and training
the models. Among the experimental models, the LightGBM model
achieved the best performance, with a Pearson correlation coefficient of
0.87, RMSE of 6.28 μg/m³, and MRE of 34.65%. In contrast, the MEM
and Neural Network models had poorer quality. The LightGBMmodel
also demonstrated superior performance in the 10-fold CV, with a
Pearson correlation coefficient of 0.77, RMSE of 7.9 μg/m³, andMRE of
42.6%. Based on these results, we selected the LightGBM model to
estimate the daily NO2maps for Vietnam from 2019–2021, which were
then aggregated into monthly and annual average maps.

4.2 Map validation

A comparison was made between the daily NO2 maps and
ground station measurements during the period of 2019–2021. The
scatter plot depicted in Supplementary Figure S2 supports the
findings presented in Table 1 regarding the model evaluation.
The daily maps had a high correlation with the ground station
observations, with Pearson r at 0.87, RMSE at 6.28 μg/m³, MRE at
34.65% based on 9,027 samples. However, the evaluation results
varied by stations as presented in Supplementary Table S3. Pearson r
varied from 0.27 to 0.88 with lower values at stations in Vung Tau,
Long An (SE and MRD region) and higher values in Bac Ninh,
Quang Ninh, Ha Noi (RRD region). The RMSE varied from 2.1 to
10.1 μg/m³. The stations with low RMSE values were located across
regions, while stations with high RMSE were mostly located in Ha
Noi, Bac Ninh, Quang Ninh (RRD). Furthermore, some stations
located in the same province had highly different evaluation results,
such as Bac Ninh, Hai Duong, Quang Ninh (RRD) and Gia Lai
(Central Highland), indicating the need for further investigation.

Annual average NO2 maps were created by aggregating daily
NO2 data from 2019 to 2021, as illustrated in Figure 2. The maps
reveal that NO2 was predominantly concentrated in the Red River
Delta region in the North, along the North Central Coast, and in the
Ho Chi Minh city area in the South. These regions are critical
economic centers of Vietnam with high population density, heavy
traffic, numerous industrial parks, and factories that generate
significant NO2 emissions. Across the country, the annual
average NO2 concentration varied from 4.4 to 36 μg/m³ in 2019,
4.2 to 32.8 μg/m³ in 2019 and 5.3 to 40.1 μg/m³ in 2021. Notably, the
national average concentration remained relatively stable between
2019 and 2021, indicating a persistent NO2 pollution problem in
Vietnam. Despite the implementation of social distancing measures

TABLE 1 Models’ evaluation results.

Model N Pearson r RMSE (μg/m³) MRE (%)

All data Mixed Effect Model 9,027 0.66 9.39 54.01

Neural Network 9,027 0.57 10.25 61.63

LightGBM 9,027 0.87 6.28 34.65

10 Fold CV Mixed Effect Model 903 0.56 10.46 59.29

Neural Network 903 0.55 10.43 62.64

LightGBM 903 0.77 7.93 42.6
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in response to the COVID-19 pandemic in 2019 and 2020 in
Vietnam, there was not a significant variation in the annual
mean NO2 levels measured at stations. This lack of variation
resulted in no significant changes in the annual NO2 maps over
the years (see Table 2; Supplementary Figure S3).

In Supplementary Figure S3, a detailed comparison is presented
between the annual average NO2 concentration maps for the years
2019, 2020, and 2021, and the ground stations located in Vietnam. It
is noteworthy that the number of stations used for annual map
assessment is less than that used for daily map assessment. This is
because, when aggregating daily data into an annual average, any
station that did not have more than 50% of the data for the year was
discarded and not used for evaluation. Furthermore, in 2019, only
three stations were evaluated, whereas this number increased to
30 in 2020 and to 48 in 2021. The difference between the annual
maps and the ground stations varied from −2.5 μg/m³ (Quang Ninh
- RRD) to 0.6 μg/m³ (HaNoi - RRD) in 2019; −3.96 μg/m³ (Bac Ninh
- RRD) to 4.6 μg/m³ (Ha Noi - RRD) in 2020; −4.12 μg/m³ (Ha
Noi–RRD) to 8.13 μg/m³ (Bac Ninh–RRD) in 2021.

To ensure a thorough assessment, we compared the quality of
our annual maps from 2019 to 2021, not only against ground
stations, but also against the annual global product (2019–2020)
developed by Anenberg et al. (2022). Table 2 displays the findings.
Our annual maps showed markedly superior quality in comparison
to both the global annual maps and the ground stations. Specifically,
we achieved a Pearson correlation coefficient of 0.95, an RMSE of
2.1 μg/m³, and an MRE of 8.6%, while the global annual maps
achieved only a Pearson r of 0.27, an RMSE of 13.3 μg/m³, and an

MRE of 57.4%. Additionally, our map from 2019 to 2021 had a
Pearson r of 0.95, an RMSE of 2.27 μg/m³, an MRE of 9.79%, and
81 samples, indicating the high quality of the annual NO2 maps in
this study and the potential of this approach to develop NO2 maps
from multi-satellite images over Vietnam.

5 Conclusion

In this study, dailyNO2maps at 1 × 1 kmoverVietnamwere created
using OMI and TROPOMI satellite images as well as auxiliary data from
2019–2021. Threemodels were experimented, includingMEM,NN, and
LightGBM, with LightGBM proving to have the best quality (Pearson r
of 0.87, RMSE of 6.28 μg/m³, MRE of 34.65%). The LightGBM model
was used to generate the daily NO2 maps, which were validated against
ground stations and found to be accurate. However, the quality of the
maps varied by station, with Pearson r ranging from 0.27 to 9.88 and
RMSE ranging from 2.1 to 10.1 μg/m³ between 2019–2021. The daily
mapswere then combined to producemonthly and yearly averagemaps.
Our annual average map was compared to a global product and ground
stations, and it was found to have superior quality with Pearson r of 0.95,
RMSE of 2.27 μg/m³, MRE of 9.79%, and 81 samples. This is the first
study on constructing NO2 concentrationmaps in Vietnam usingmulti-
source satellite data. The study encountered challenges such as uneven
distribution of monitoring stations in the research area and limitations
posed by cloud coverage on NO2 satellite data (OMI, TROPOMI).
Further exploration of these issues is needed in future research to
enhance the quality of the maps.

FIGURE 2
Annual mean ground-level NO2 maps from 2019 to 2021.

TABLE 2 Comparison of validation results for ours and the global annual mean maps to ground station values.

Time Study N Pearson r RMSE (μg/m³) MRE (%)

2019–2020 (Anenberg et al., 2022) 33 0.27 13.3 57.4

2019–2020 This study 33 0.95 2.1 8.6

2019–2021 This study 81 0.95 2.27 9.79

Frontiers in Environmental Science frontiersin.org07

Ngo et al. 10.3389/fenvs.2023.1187592

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1187592


Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

TXN: methodology, software, validation, formal analysis,
writing—original draft, and visualization. HP: writing—review
and editing. TTNN: conceptualization, methodology,
validation, writing—original draft, and supervision. All
authors contributed to the article and approved the submitted
version.

Funding

This research is funded by the Vietnam National Foundation for
Science and Technology Development (NAFOSTED) under grant
number 105.08-2019.331.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fenvs.2023.1187592/
full#supplementary-material

References

Anenberg, S. C., Mohegh, M., Goldberg, L., Kerr, H. K., Brauer, B., Burkart, K., et al.
(2022). Long-term trends in urban NO2 concentrations and associated paediatric
asthma incidence: Estimates from global datasets. Lancet Planet. Health 6 (1),
e49–e58. doi:10.1016/S2542-5196(21)00255-2

Didan, K. (2015). “MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global
250m SIN grid V006,” in Distributed by NASA EOSDIS land processes DAAC
(United States: United States Geological Survey). doi:10.5067/MODIS/MOD13Q1.006

GDAL (2022). GDAL documentation 2022. Available at: https://gdal.org/programs/
gdalwarp.html.

Grzybowski, P. T., Markowicz, M., and Musiał, J. P. (2023). Estimations of the
ground-level NO2 concentrations based on the sentinel-5P NO2 tropospheric
column number density product. Remote Sens. 15 (2), 378. doi:10.3390/
rs15020378

Kang, Y., Choi, H., Im, I., Park, S., Shin, M., Song, C-K., et al. (2021). Estimation
of surface-level NO2 and O3 concentrations using TROPOMI data and machine
learning over East Asia. Environ. Pollut. 288, 117711. doi:10.1016/j.envpol.2021.
117711

Ke, G., Qi, M., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). “LightGBM: A
highly efficient gradient boosting decision tree.” in Advances in neural information
processing systems. Long Beach, CA: Curran Associates, Inc.

Lamsal, L. N., Krotkov, N. A., Marchenko, S. V., Joiner, J., Oman, L., Alexander,
V., et al. (2022a). OMI/Aura NO2 tropospheric, stratospheric and total columns
MINDS 1-orbit L2 swath 13 Km x 24 km. Greenbelt, Maryland: Goddard Earth
Sciences Data and Information Services Center GES DISC. NASA Goddard Space
Flight Center.

Lamsal, L. N., Krotkov, N. A., and Marchenko, S. V. (2022b). TROPOMI/S5P
NO2 tropospheric, stratospheric and total columns MINDS 1-orbit L2 swath 5.5 Km
x 3.5 km. Greenbelt, Maryland: Goddard Earth Sciences Data and Information Services
Center. NASA Goddard Space Flight Center.

Larkin, A., Geddes, J. A., Martin, R. V., Xiao, Q., Liu, Y., Marshall, J. D., et al. (2017).
Global land use regression model for nitrogen dioxide air pollution. Environ. Sci.
Technol. 51 (12), 6957–6964. doi:10.1021/acs.est.7b01148

Lee, H. J., and Koutrakis, P. (2014). Daily ambient NO2Concentration
predictions using satellite ozone monitoring instrument NO2Data and land
use regression. Environ. Sci. Technol. 48 (4),
140204134232009–140204134232011. doi:10.1021/es404845f

Levelt, P. F., van den OordVan Den Oord, H. J., Dobber, M. R., Malkki, A., Huib
Visser, H., Johan de Vries, J., et al. (2006). The ozone monitoring instrument. IEEE
Trans. Geosci. Remote Sens. 44 (5), 1093–1101. doi:10.1109/TGRS.2006.872333

Long, S.,Wei, X., Zhang, F., Zhang, R., Xu, J.,Wu, K., et al. (2022). Estimating daily ground-
level NO2 concentrations over China based on TROPOMI observations and machine
learning approach. Atmos. Environ. 289, 119310. doi:10.1016/j.atmosenv.2022.119310

NCEPUPP (2022). NCEP unified Post processing system (UPP). Available at: https://
dtcenter.org/community-code/unified-post-processor-upp.

Ngo, T. X., Pham, H. V., Phan, H. D. T., Nguyen, A. T. N., To, H. T., and Nguyen, T. T.
N. (2023). A daily and complete PM2.5 dataset derived from Space observations for
Vietnam from 2012 to 2020. Sci. Total Environ. 857, 159537. doi:10.1016/j.scitotenv.
2022.159537

Nguyen, T., Bui, H. Q., Pham, H. V., Luu, H. V., Man, C. D., Pham, H. N., et al. (2015).
Particulate matter concentration mapping from MODIS satellite data: A Vietnamese
case study. Environ. Res. Lett. 10 (9), 095016. doi:10.1088/1748-9326/10/9/095016

Nielsen, M. A. (2018). Neural networks and deep learning. Oxford: Determination
Press.

Paraschiv, S., Constantin, D. E., Paraschiv, S. L., and Constantin, M. (2017). OMI and
ground-based in-situ tropospheric nitrogen dioxide observations over several important
European cities during 2005–2014. Int. J. Environ. Res. Public Health 14 (11). doi:10.
3390/ijerph14111415

Vargas-Munoz, J. E., Srivastava, S., Tuia, D., and Falcao, A. X. (2021). OpenStreetMap:
Challenges and opportunities in machine learning and remote sensing. IEEE Geoscience
Remote Sens. Mag. 9 (1), 184–199. doi:10.1109/MGRS.2020.2994107

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., et al. (2012).
TROPOMI on the esa sentinel-5 precursor: A gmes mission for global observations of
the atmospheric composition for climate, air quality and ozone layer applications.
Remote Sens. Environ. 120, 70–83. doi:10.1016/j.rse.2011.09.027

Wang, W., Liu, X., Bi, J., and Liu, Y. (2022). A machine learning model to estimate
ground-level ozone concentrations in California using TROPOMI data and high-
resolution meteorology. Environ. Int. 158, 106917. doi:10.1016/j.envint.2021.106917

Wu, H., Tang, X., Wang, Z., Wu, L., Lu, M., Wei, L., et al. (2018). Probabilistic
automatic outlier detection for surface air quality measurements from the China
national environmental monitoring network. Adv. Atmos. Sci. 35 (12), 1522–1532.
doi:10.1007/s00376-018-8067-9

Frontiers in Environmental Science frontiersin.org08

Ngo et al. 10.3389/fenvs.2023.1187592

https://www.frontiersin.org/articles/10.3389/fenvs.2023.1187592/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1187592/full#supplementary-material
https://doi.org/10.1016/S2542-5196(21)00255-2
https://doi.org/10.5067/MODIS/MOD13Q1.006
https://gdal.org/programs/gdalwarp.html
https://gdal.org/programs/gdalwarp.html
https://doi.org/10.3390/rs15020378
https://doi.org/10.3390/rs15020378
https://doi.org/10.1016/j.envpol.2021.117711
https://doi.org/10.1016/j.envpol.2021.117711
https://doi.org/10.1021/acs.est.7b01148
https://doi.org/10.1021/es404845f
https://doi.org/10.1109/TGRS.2006.872333
https://doi.org/10.1016/j.atmosenv.2022.119310
https://dtcenter.org/community-code/unified-post-processor-upp
https://dtcenter.org/community-code/unified-post-processor-upp
https://doi.org/10.1016/j.scitotenv.2022.159537
https://doi.org/10.1016/j.scitotenv.2022.159537
https://doi.org/10.1088/1748-9326/10/9/095016
https://doi.org/10.3390/ijerph14111415
https://doi.org/10.3390/ijerph14111415
https://doi.org/10.1109/MGRS.2020.2994107
https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.1016/j.envint.2021.106917
https://doi.org/10.1007/s00376-018-8067-9
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1187592

	Development of ground-level NO2 models in Vietnam using machine learning and satellite observations with ancillary data
	1 Introduction
	2 Materials
	2.1 Measurement data
	2.2 Satellite data
	2.3 Meteorological data
	2.4 Land use data

	3 Methods
	3.1 Preprocessing data
	3.2 Integrating data
	3.3 Modeling and validation

	4 Results and discussion
	4.1 Model validation
	4.2 Map validation

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


