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Editorial on the Research Topic
Advanced technologies for industrial wastewater reclamation

Humankind is facing the significant challenge of water scarcity (Martins et al., 2020).
Since 1950, the world population has doubled, and global water consumption has increased
by more than 600% (Martins et al., 2020). A report by the United Nations demonstrated that
two-thirds of the world’s population would face water stress by the year 2025 (Ahmed, 2006).
A significant fraction of the increased water consumption was attributed to the rapid growth
in the industrial developments (Sathya et al., 2022). Nearly all water consumed in industries
ends up as industrial wastewater (IWW). The release of IWW into the environment may
adversely affect the environment and pose a health threat to humans and our ecosystem
(Martins et al., 2020).

Innovative solutions are therefore needed to provide adequate treatment of IWW to
meet the increasingly stringent discharge standards and explore options to obtain sufficient
water to support industrial developments (Cai et al., 2021). Treating and reclaiming treated
industrial effluent can be an effective option to meet both challenges. Nonetheless, IWW is
far more complex than domestic sewage, containing numerous organic and inorganic
pollutants and exhibiting much greater variability in wastewater characteristics (Sathya et al.,
2022). As a result, employing state-of-the-art biological treatment technologies alone is often
inadequate for meeting stringent discharge standards, not to mention the ability to meet
water reclamation requirements (Samaei et al., 2018; Sathya et al., 2022). Alternatives such as
advanced oxidation processes (AOPs, e.g., ozonation (Deng et al., 2021a; Jothinathan et al.,
2021), Fenton (Cai et al., 2020a; Cai et al., 2021; Sathya et al., 2022) and photocatalytic
oxidation (Thiruvenkatachari et al., 2008; Autin et al., 2013) and separation processes (e.g.,
membrane filtration (Deng et al., 2021b; Liu et al., 2021) and adsorption (Ambaye et al.,
2020) have been used for treating recalcitrant organics. However, AOPs typically require
high energy (e.g., O3-generation in the ozonation process and UV-irradiation in the
photocatalytic process) and chemical (e.g., oxidants and catalysts in the Fenton process
and persulphate-based oxidation process) consumptions and therefore are expensive options
(Loh et al., 2021; Wu et al., 2021; Jothinathan et al., 2022). Separation processes, on the other
hand, have been used for pollutant removal and resource recovery, but innovative strategies
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are still needed to reduce their costs (Ambaye et al., 2020; Liu et al.,
2021). Thus, there is a need to develop innovative technologies and
build upon our knowledge of existing technologies for IWW
treatment and reclamation.

Beyond the development of innovative technologies,
combinations of the existing technologies could also obtain
considerable performance with reduced energy and chemical
consumption. Deng et al. (2021b) combined catalytic ozonation
processes with a membrane bioreactor (MBR) for the treatment of
phenolic wastewater produced by the petrochemical industry. This
combination achieved total organic carbon (TOC) and phenolic
compounds removals of 98.0% and 99.4%, respectively, and
decreased the membrane fouling rate of MBR by 88.2%. The
pretreatment by catalytic ozonation in the combined process
reduced the acute biotoxicity of the wastewater by 79.2% and
increased the 5-day biochemical oxygen demand to chemical
oxygen demand ratio (BOD5/COD) by 2.45-folds, which
significantly contributed to the performance enhancement and
membrane fouling mitigation of MBR (Deng et al., 2021b). Tong
et al. (2018) combined the adsorption processes by ligntie-activated
coke (LAC-adsorption) and immobilized biological filter (IBF) in
the treatment of heavy oil wastewater on a pilot-scale system. The
combined process obtained a dissolved organic carbon (DOC)
removal of 85.9%, where most biorefractory compounds were
removed by the pre-LAC-adsorption process and benefitted the
subsequent IBF, and the post-LAC-adsorption process contributed
to amides removal (Tong et al., 2018). Cai et al. (2020b) combined
the fluidized bed reactor-based Fenton processes (FBR-Fenton) with
a biological activated carbon (BAC) system for the reclamation of
reverse osmosis concentrate and obtained a COD removal of 69%
with a low average effluent COD of 26 mg/L. In the combined
process, the FBR-Fenton processes markedly contributed to the
degradation of humic acid and fulvic acid and improved the
BOD5/COD ratio by 4.2-10.0 times, which strengthened the
performance of the BAC system (Cai et al., 2020b).

In addition to the IWW treatment and effluent reuse, the
recovery of valuable resources is also essential under the global
trends of the circular economy (Goglio et al., 2019; Soltangheisi
et al., 2019; Cheng et al., 2022). Wastewater is a rich source of
organic carbon, nutrients (e.g., nitrogen N) and phosphorus P) and
metals (e.g., potassium K), copper (Cu) and silver (Ag).
Concerning energy generation, Heidrich et al. precisely
determined the energy content of domestic wastewater (DWW)
through freeze-drying samples to minimize the loss of volatiles and
organic matters. Their results indicated that DWW contains an
energy generation potential of 7.6 kJ/L (Heidrich et al., 2011).
Wang et al. also estimated that the energy content of DWW related
to COD was 23 W per capita (Wang et al., 2017). Similar
assessments on IWW are lacking, but a significant energy
recovery potential of organic IWW can be estimated due to
their normally much higher organic carbon concentration. In
terms of nutrients, it has been estimated that more than 20% of
consumed P fromminerals is excreted by human activities (Cordell
et al., 2009). Robles et al. estimated that the global resource
recovery from waste streams could essentially retrieve 50% of
the P consumed by humans. Additionally, an N to P mass ratio
of over 3 has been widely observed in research done on various
waste streams, which indicated that more N than P is lost during

the wastewater treatment (Batstone et al., 2015; Robles et al., 2020).
Some kinds of IWW contain extremely high concentrations of N
and P compared to DWW (Bokun et al., 2020; Deng et al., 2022).
For example, in coking wastewater, the ammonia concentration is
usually in a high range of 500-2,000 mg N/L, and it could further
research the range of 3,500-10,000 mg N/L in the semi-coking
wastewater when the pyrolytic temperature of coal was reduced
to 600°C-800°C (Ma et al., 2017; Bokun et al., 2020; Huang et al.,
2021). P concentration is usually high in the waste streams, such as
fertilizer production wastewater, paper pulping and making
wastewater and some of the chemical industry wastewater (Bian
et al., 2011; Hutnik et al., 2013; Gentili & Sveriges, 2014).
Specifically, the P concentration in the wastewater from the
phosphorus mineral fertilizers industry (Hutnik et al., 2013)
and the wastewater from PolyTH production industry (Bian
et al., 2011) could reach 445 mg P/L and 15,000-18,000 mg P/L,
respectively. Metal ions are also rich in IWW, such as K andMg are
rich in dairy wastewater and manure wastewater (Goglio et al.,
2019), and Ag and Cu are rich in deplating wastewater (Gu et al.,
2020). Based on the abovementioned information, IWW is an
abundant source of energy, nutrients and metals to be recovered
and reused, which could significantly contribute to the circular
economy. Furthermore, the worldwide increase in consumption
and the gradual depletion of natural resources have emphasized
the need for resource recovery from waste streams (Goglio et al.,
2019; Soltangheisi et al., 2019). Therefore, instead of releasing
resource-rich waste streams into the water bodies increasing the
environmental risk, this resource recovery can lead to multiple
benefits, such as generating valuable products, greatly improving
wastewater treatment processes, reclaiming wastewater,
maintaining the ecological balance of aquatic environments and
reducing the carbon footprint in wastewater disposal. In order to
fulfill this vision, novel technologies for resource recovery from
IWW need to be developed by the research community.

This Research Topic focuses on novel technologies for IWW
treatment for the purpose of resource reclamation. This includes the
dissemination of knowledge generated from studies regarding the
development, optimization, and applications of advanced
technologies aiming at the treatment and resource recovery of
IWW. It also aims to address an important aspect of sustainable
water management with an emphasis on meeting the needs of the
industrial sector from a global perspective.

We hope this Research Topic can contribute significantly to both
the research and the engineering communities for managing IWW
treatment and reclamation.
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