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Constructed Wetlands (CWs) are a cost-effective, versatile and sustainable choice
for wastewater treatment. In these environments, microbial communities play a
significant role in pollutant removal. However, little is known about howmicrobial
communities in full-scale CWs contribute to maintaining water quality or how
their dynamics change in response to pulse disturbances such as fire or freezes.
Furthermore, few studies have examined the relationship between CW microbial
community structure and performance in full-scale industrial operations. We
characterized the water-column and leaf-litter layer microbial communities in
a 110-acre free water surface CW that provides tertiary wastewater treatment to a
plastics manufacturing plant. The CW’s sampling campaign was conducted over a
12-month period that includedWinter Storm Uri, a 100-year freeze event. Analysis
of 16S rRNA gene amplicon sequences revealed that the bacterial communities
experienced a temporal shift. There was also a shift in microbial community
structure between the influent and the first segment of the CW. However, no
differences in microbial community structure were observed in the second
segment of the CW. There was a negative association between microbial
community diversity and chlorophyll a, as well as microbial community
diversity and total suspended solids (TSS); demonstrating an increase in
microbial biodiversity as water quality improved throughout the CW. Six
months after the freeze, CW performance in terms of removal of water quality
constituents began to return to former removal trends. Yet, there was still a
significant difference in microbial community structure within the CW relative to
the previous year. This suggests CW functional resilience despite a shift in
microbial community structure in the wetland.
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1 Introduction

Constructed wetlands (CWs) are a cost-effective, versatile, and
sustainable alternative to conventional activated sludge wastewater
treatment (Vymazal, 2011). CWs are implemented as secondary and
tertiary treatment for industrial and municipal wastewaters, as a
technology for nutrient removal (Dimuro et al., 2014; Wu et al.,
2015; West et al., 2017; Zhu et al., 2021). CWs also provide habitats
for native and endangered species and are shown to boost the
region’s microbial diversity, an ecological characteristic linked to
water quality (Knight et al., 1997; Cardinale., 2011; Hsu et al., 2011).
Moreover, microbial communities are vital for CW performance, as
they drive nutrient cycling within the system (Stottmeister et al.,
2003; Rajan et al., 2018; Ping et al., 2019; Shirdashtzadeh et al., 2022).
CW microbial communities contribute to the reduction of organic
pollutants, as well as the removal of inorganic substances such as
heavy metals, pesticides, and pharmaceuticals (Lv et al., 2017; Yan
et al., 2018; Guo et al., 2020; Wang et al., 2022). Another important
function of free water surface CWs and their microbial communities
is to prevent eutrophication and mitigate algal blooms by regulating
nutrient concentrations (Vymazal., 2007; Dunne et al., 2012; West
et al., 2017; Xia et al., 2020). Previous studies have also assessed how
CWs can control phytoplankton accumulation and limit unwanted
cyanobacterial species (Zhong et al., 2011). Researchers have been
able to correlate microbial community structure with treatment
efficiency of eutrophic water in many mesocosm-scale CW studies,
demonstrating how microbial activity plays a key role in enhancing
overall water quality in these CW systems (Liu et al., 2016; Xu et al.,
2018). Yet, few studies have been conducted on microbial
community dynamics in full-scale CWs, especially in relation to
eutrophication mitigation (Vymazal et al., 2021).

This study focuses on a 110-acre free water surface CW that
provides tertiary wastewater treatment for a plastics manufacturing
plant, located near Seadrift, Texas, along the Gulf coast. Upstream of
the CW, the wastewater is conveyed through two facultative holding
ponds before entering the wetland (Dimuro et al., 2014). Due to the
long retention time in these holding ponds, algae and other
phytoplankton proliferate. Before the CW was built, the total
suspended solids (TSS) concentration in the effluent exceeded the
EPA’s 40 mg/L TSS limit (Epa, 1997). The phytoplankton blooms also
influenced the carbon dioxide concentration in the water, which
caused the pH to fluctuate based on the phytoplankton’s diurnal
cycle. The wastewater then required chemical treatment to neutralize
the pH before discharge. After construction of the CW, chemical
treatment for TSS removal and pH neutralization were no longer
necessary. In a life cycle assessment study comparing this free water
surface CW to a more traditional sequencing batch reactor for tertiary
wastewater treatment, the CW had significant cost, energy, and
material savings relative to the conventional alternative. The net
percent value saving was estimated to be $282 million over the
wetland’s life span (Dimuro et al., 2014).

The CW has been successfully treating the plastics manufacturing
plant’s wastewater for 26 years, despite several notable storm events
and other pulse disturbances. During August 2017, Hurricane Harvey
inundated the surrounding area, leaving large amounts of plant debris
behind. In March 2018 operators conducted a prescribed burn on the
two eastern cells of the CW to remove this debris (Figure 1. The
controlled burn targeted portions of Cell 3 and Cell 4 where the plant

debris left over from Hurricane Harvey was most dense. After the
burn, there were areas in the centers of Cell 3 and Cell 4 that remained
unburned. The CW operators noted that phragmites grew back in
areas previously dominated by cattail plants prior to the burn. The
impact of prescribed burns on the performance and microbial
communities in constructed wetlands treating industrial wastewater
has never been assessed. In addition to the fire, in February 2021 the
freeze caused by Winter Storm Uri was yet another unprecedented
pulse disturbance in this CW’s history. Beginning on the evening of
14th February 2021, the winter storm brought temperatures in
Seadrift, TX to below freezing (<32°F) for a period of over 48 h,
which caused a massive plant die-off throughout the wetland and, for
several months afterwards, plant detritus traveled through the CW. A
freeze’s influence on the microbial community structure within a
subtropical CW of this scale has previously never been studied.
Consequently, this CW is a good model to assess biological
diversity and microbial community dynamics for similar tertiary
wastewater treatment systems utilized for large industrial applications.

There is limited knowledge of how pulse disturbances impact
CW microbial community structure and alter the performance of
full-scale CWs. Many CWs are designed to mitigate phytoplankton
bloom conditions generated by preceding facultative holding ponds.
Yet, there is little research on how these pulse disturbances affect
downstream eutrophication potential or the organisms that balance
ecosystem functioning to reduce blooms. Moreover, climate change
has enhanced the severity of storms and variability of weather
patterns. Scientists are attempting to discern whether the pulse
events brought on by these storms have long-term effects on CW
microbial communities (Jacquet and Altermatt, 2020). Studies
indicate that severe storm disturbances can impact short-term
plant and microbial biogeochemical cycling within estuarine,
wetland, and other aquatic environments (Huang et al., 2021).
More specifically, the Winter Storm Uri freeze’s impact on the
CW’s pollutant removal trends and microbial community structure
also presents an opportunity to assess how full-scale CW

FIGURE 1
Layout of the CW (Cell 2, Cell 3, Cell 1, Cell 4), where Cell 2 and
Cell 3 represent the first segment of the CW and Cell 1 and Cell 4
represent the second segment of the CW. Control Box 4 distributes
water to Cell 2 and Cell 3. Water from Cell 2 and Cell 3 is
conveyed to Control Box 5.Water fromCell 1 and Cell 4 is conveyed to
Control Box 7.
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performance correlates to full-scale CW microbial community
shifts.

In this study we performed a year-long characterization of the
microbial communities across a full-scale, 110-acre CW. This was
achieved by sampling the water-column and leaf-litter layer from six
locations in the CW system between 25th August 2020–3rd August
2021 and using 16S rRNA gene sequencing to characterize the
microbial communities. The objectives of this study were to 1)
assess the relationship between the performance of the CW and its
microbial communities, both over time and space; and 2) evaluate the
impact of the controlled burn and the freeze on performance and the
microbial communities in the CW.We hypothesized that 1) we would
observe both spatial and temporal shifts in the microbial community
across the CW; 2) shifts in the microbial community would be
associated with changes in water quality parameters (suspended
solids, pH, chemical oxygen demand (COD), NH4-N, chlorophyll
a); and we could identify taxonomic groups strongly associated with
changes in water quality parameters, and thus CW performance; 3)
the controlled burn and the Winter Storm Uri freeze impacted the
CW’s microbial community structure, also influencing performance.

2 Materials and methods

2.1 Site location and sampling procedure

The CW in this study is located directly southwest of a plastics
manufacturing plant in Seadrift, Texas. The CW closely resembles the

plant composition and structure of many other free water surface
CWs and natural wetlands found in subtropical climates. This CW
consists of emergent macrophytes, such as cattails, bullrushes, and
phragmites planted in a shallow basin with a water depth ranging
from 1 to 5 ft. The site’s average daily flow was approximately
5.8 MGD. The average HRT for the entire CW was approximately
7–9 days. As shown in Figure 1., effluent wastewater from a facultative
holding pond is conveyed to Control Box 4 where it is then distributed
to Cell 2 and Cell 3 from Control Box 4 West and Control Box 4 East
outlet pipes. Cell 2 and 3 make up the first segment of the CW.
Afterwards, the wastewater is combined in Control Box 5 and is
distributed to Cell 1 and 4 through Control Box 5 West and Control
Box 5 East outlet pipes. Cell 1 and 4 make up the second segment of
the CW. Wastewater from Cell 1 and 4 is consolidated again in
Control Box 7, the end point of the CW. Samples were collected near
the outlet pipes directly east and west of Control Box 4 and near the
inlet pipes directly east and west of Control Box 5 and 7. Samples for
Control Box 4 East and Control Box 4West were combined since they
represent an average of the CW’s influent. Samples taken represent a
total of 5 locations throughout the CW; the influent, as well of the ends
of Cell 2, Cell 3, Cell 1, and Cell 4 (Figure 1). This was done to assess
beginning, middle, and end points of the entire CW, while also
isolating unburned and burned wetland cells (Cells 3 and 4 were
burned, Cells 1 and 2 were not burned).

Eight rounds of water-column grab samples were taken from 25th
August 2020 to 3rd August 2021 (Supplementary Table S1). The winter
storm freeze event occurred in the middle of the sampling campaign;
taking place 6 months after the initial sampling period and 6 months

FIGURE 2
Observed OTUs clustered at 97% sequence similarity. (A) Venn diagrams of distinct and shared species in water-column and leaf-litter layer biofilm
samples; (B)NMDS analysis plot of all samples grouped by water-column versus leaf-litter layer sample type (AMOVA, p < 0.001); (C) rarefaction curves of
water-column (blue) and leaf-litter layer (green) samples; and (D) NMDS analysis plot of all samples grouped by influent versus the rest wetland cells
(AMOVA, p = 0.009).
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before the final sampling period. Plant operators collected water
samples with a sampler swivel dipper near the inlet and outlet
pipes of the wetland’s control structures; rinsing the sampler swivel
dipper at least three times between sampling locations with wetland
water. Sample aliquots for chlorophyll a determination were stored in
500 mL opaque amber HDPE bottles. Sample aliquots for DNA
extraction as well as TSS, volatile suspended solids (VSS), COD and
NH4 determination were stored in clear 250 mL and 500 mL HDPE
bottles. To study the microbial communities found in the wetland’s
leaf-litter layer, passive samplers were created by inserting
approximately 4–6 oz of Encompass All 5 mm granular activated
carbon (ASIN: B01BX95VZU) in CNZ universal media fine mesh
aquarium bags (ASIN: B015S1WW9). Seven rounds of passive
samplers were deployed on the leaf litter layer near water sampling
locations and retrieved multiple weeks afterwards (Supplementary
Table S2). All samples were immediately stored in separate Ziplock
bags and placed on ice after collection. Passive samplers were created
by filling fine-mesh aquarium filter bags with granular activated
carbon. Passive samplers were retrieved, stored in Whirl-Pak bags,
and placed on ice. All samples were shipped within 24 h on ice via
FedEx overnight to Rice University for further processing and analysis.

2.2 Water chemistry and environmental
parameter measurements

Water, temperature, and pH were measured onsite by CW
operators. TSS and VSS were measured following Standard
Method 2,540 and NH4-N was measured using Standard Method
4,500 (APHA, 2017). COD was measured using low-range
CHEMetrics COD vial kits with a potassium hydrogen phthalate
blank standard curve (CHEMetrics, US). All water samples designated

for chlorophyll a extraction were filtered and processed in low-light
conditions. 150 mL of water from the CW water-column was filtered
through 0.45-micron filters and stored at −20°C until chlorophyll a
extraction. Chlorophyll a samples were extracted and measured
spectrophotometrically following EPA method 446.0.

2.3 DNA extraction and 16S rDNA gene
sequencing

For each water-column sample, 50 mL was filtered through a
0.22-micron filter and filters were stored at −80°C until DNA
extraction. DNA was extracted from 40 water-column samples
(Supplementary Table S1). Biomass was scraped from passive
samplers and decanted from passive sampler collection Whirl-Pak
bags into 15 mL centrifuge tubes. Solids were spun down, collected in
0.25–0.50-g pellets and stored in a −80°C freezer until extraction.
Three passive samplers were lost after deployment for unknown
reasons, likely due to local wildlife. DNA was extracted from a
total of 32 leaf-litter samples (Supplementary Table S2). The 25th
August 2020 water samples’ genomic DNA was extracted using the
FastDNA SPIN Kit for Soil (MP Biomedicals, France), following the
manufacturer’s protocol. To increase through-put all other water-
column and passive sampler biofilm samples’ genomic DNA was
extracted using Promega’s Maxwell® RSC PureFood GMO and
Authentication Kit (Promega Corporation, US). Concentrations of
DNA were measured using a DNA HS Assay kit on a Qubit
fluorometer (Thermo Fisher Scientific, US). To pass quality
assurance (QA), sample DNA extracts must have contained 30 ng
of DNA template. The 20th October 2020 leaf-litter biofilm sample
extract from Cell 4 did not pass QA. DNA extracts from the
71 samples were shipped to BGI genomics for PCR amplification

FIGURE 3
Relative abundance (%) of the phylum-level taxonomic diversity for 7 most dominant phyla of different samples collected from the ends of the CW’s
Cell 2, Cell 3, Cell 1 and Cell 4 through (A) grab samples of the water column and (B) passive sampler biofilms.
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and sequencing. Technicians at BGI genomics amplified the
V4 hypervariable region of the bacterial 16S rRNA gene using
F515 (5′- GTGCCAGCMGCCGCGGTAA-3′) and R806 (5′-
GGACTACHVGGGTWTCTAAT-3′) primers (BGI genomics,
China). PCR products were purified by Agencourt AMPure XP
beads and the purified PCR products were dissolved in an elution
buffer (BGI genomics, China). After library QA, qualified libraries
underwent paired-end sequencing on the HiSeq 2,500 platform.

2.4 Sequencing analysis

Microbial communities were analyzed using the Schloss lab MiSeq
standard operating procedure using Mothur v.1.43.0 (Kozich et al.,
2013). Sequences were clustered into operational taxonomic units

(OTUs) with a 97% sequence similarity threshold. The consensus
taxonomy was then determined for each OTU, where reference
sequences were obtained from a Mothur-formatted version of the
ribosomal database project (RDP) training set (v. 9) (Kozich et al.,
2013). All sample groups were subsampled to the smallest sample size
for downstream alpha and beta-diversity analysis. Rarefaction curves
were generated to visually assess the number of OTUs identified per
sample as a function of sequencing depth (Figure 2C). Relative
abundances were determined for the top seven dominant phyla
from the taxonomy summary files generated in Mothur. Species
richness (Chao1) indices and species evenness (Shannon) indices
were calculated using Mothur for an alpha-diversity analysis. For
beta-diversity, a non-metric multidimensional scaling (NMDS)
paired with an analysis of molecular variance (AMOVA) test was
used to determine significant differences in sample bacterial

FIGURE 4
NMDS analysis plot with 90% confidence ellipses of (A) water-column samples for CW cells grouped by sampling period; (B) all water-column
samples for CW cells grouped by sampling location; (C)NMDS analysis plot with 90% confidence ellipses of leaf-litter layer samples for CW cells grouped
by sampling period; and (D) leaf-litter samples for CW cells grouped by sampling location.
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community structure through separate CW sampling locations and
sampling periods. The sequence distance matrices generated were
visualized using the NMDS plots (Figure 4). Samples were grouped
by location (i.e., Influent, Cell 2, Cell 3, Cell 1, Cell 4) to determine
spatial changes and by sampling time period to determine temporal
changes. Design files were also created to group samples by sample
type, sampling location, and sampling time period for AMOVA. The
AMOVA results for different sampling periods was determined with
and without influent samples included in the analysis to determine if
influent community structure impacted differences observed between
samples grouped by different sampling rounds. Correlation coefficients
for each OTUwere calculated inMothur using the corr. axis command
and were used to identify individual OTUs associated with shifts in
microbial community structure (Supplementary Table S15) (Kozich
et al., 2013). These correlation coefficients were overlaid onto the
original sample NMDS plot as an ordination biplot to visualize
associations between specific OTUs and the axes (Figure 7B). Code
for these analyses performed usingMothur is shown in the SI (App. B).
Sequence reads for all samples have been submitted to the National
Center for Biotechnical Information (NCBI) database (BioProjectID:
PRJNA948846).

2.5 Data analysis

Percent removal for each environmental parameter during the
first segment of the CW was calculated by subtracting averaged first
segment concentrations from averaged influent concentrations.

Averaged second segment concentrations were subtracted from
averaged first segment concentrations to determine percent
removal in the second segment of the CW. T-tests were used to
determine significant differences in environmental parameter
reduction rates between the first half versus the second half of
the CW, as well as any significant differences between parallel CW
cells (Cell 1 versus Cell 4 and Cell 2 versus Cell 3).

A Spearman correlation analysis was performed using the
“Hmisc” package in R to determine the degree of correlation
between the relative abundance of the seven most dominant
phyla and measured environmental parameters (TSS, VSS, COD,
NH4-N, Chlorophyll a, pH, and Temp) within samples. A heatmap
was generated in R to illustrate the correlation matrix among the
different environmental parameters. Spearman correlation
coefficients were also determined to assess the relationship
between environmental parameters and the relative abundance of
dominant phyla (Supplementary Figures S2, S3).

3 Results and Discussion

3.1 CW wastewater treatment performance

Removal rates throughout the CW were largely dependent on
influent concentrations of TSS, VSS, COD, and chlorophyll a, which
fluctuated over time (Supplementary Figure S1). Supplementary
Tables S3, S4 show lower removal rates typically corresponded to
influent concentrations that were already within or near EPA

FIGURE 5
(A) Chao1 and (B) Shannon diversity indices of water-column samples in every location throughout the CW during each sampling round—with red
points demonstrating influent sample diversity indices; (C) Chlorophyll a concentration versus Chao1 indices with trendline and coefficient of
determination; (D) Chlorophyll a concentration versus TSS concentration with trendline and coefficient of determination (E) Spearman correlation
analysis heatmap of environmental parameters (TSS, VSS, COD, NH4-N, Chlorophyll a, pH, and temperature) within the CW cells (left),
demonstrating a positive correlation between chlorophyll @ and TSS (p = 0.526) within CW cells.
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standards (EPA, 2022). The CW had the greatest removal
efficiencies on days that corresponded with some of the greatest
pollutant concentrations in the influent. Studies have shown that
removal efficiencies usually decrease if influent environmental
parameter concentrations are especially low (Kadlec et al., 1995;
Rousseau et al., 2004). This study’s CW had the lowest removal
efficiencies in the first half of the 12th March 2021 sampling period.
During this sampling period plant detritus associated with the freeze
was navigating through the CW. The additional organic material
elevated TSS, VSS, COD, chlorophyll a, NH4-N, and pH levels at the
mid- and end-points of the CW. Average water quality
measurements for all sampling periods are presented in
Supplementary Table S3. Percent reductions of environmental
parameters throughout the CW are presented in Supplementary
Table S4.

NH4-N levels increased from the influent to Cells 1 and 4 of the
CW during most of the sampling occasions. This is not unexpected
because NH4-N concentrations were relatively low within the
influent (<1 mg/L) for all but one sampling round. The natural
decay of plant biomass and other organic matter in this study’s CW
may have been responsible for the slight uptick in NH4-N levels in
the middle and end sampling points (Yamanaka, 1995). A strong
negative correlation was evident between temperature and NH4-N
(ρ = −0.7109), confirming that nitrification rates were sensitive to
temperature, and increased as temperature increased. We observed
that effluent NH4-N concentration tripled during the sampling
period following the Winter Storm Uri freeze.

Cell 2 achieved significantly greater changes towards
pH neutrality relative to Cell 3 (p = 0.043). These differences in
pH reduction may be the result of suspected short-circuiting due to
Cell 3’s denser plant coverage in some regions. For all other water
chemistry parameters, parallel wetland cells (Cell 2 vs. Cell 3 and

Cell 1 vs. Cell 4) showed no significant differences in percent
removal (AMOVA, p ≥ 0.05) (Supplementary Table S5). This
suggests that plant regrowth patterns and coverage differences
between Cell 2 vs. Cell 3 and Cell 1 vs. Cell 4 had no measurable
impact on performance. The absence of any significant differences in
percent removal also suggests that the controlled burn on Cell 3 and
4 had no long-term impact on CW performance. There were also no
significant differences in pollutant removal rates between the first
and second segment of the CW (Supplementary Table S5). During
the 25th August 2020, 15th September 2020, 20th October 2020, and
16th December 2020 sampling periods, most pollutant removal rates
were greater in the first segment of the CW (Supplementary Table
S4). However, at other times the majority of the pollutants were
removed from the second segment of the CW, which underscores
how vital the entire CW is for ensuring that water quality parameters
remain within EPA limits.

3.2 CW microbial community structure

A total of 5,185,553 reads were initially generated for all samples
after sequencing. A total of 4,177,818 sequences were analyzed after
filtering the data and removing undesired reads, resulting in
55,625 OTUs (App. B). 553 of the OTUs were classified as
archaea and the other 55,072 were classified as bacteria. The
sample with the smallest number of sequences contained
41,960 reads; therefore, all other samples were subsampled to this
size for alpha and beta diversity analyses.

The CW’s leaf-litter layer microbial communities were found to
be distinct from the water-column communities (p < 0.001) (Figures
2A, B). Furthermore, the leaf-litter layer contained, on average, more
diverse microbial communities than the water-column

FIGURE 6
(A) Percent change towards pH neutrality; (B) percent change in Chlorophyll a concentration; and (C) percent change in NH4-N concentration for
(A1-C1) the first segment of the CW and for (A2-C2) the second segment of the CW; dashed blue lines demarcate sampling periods before (left) and after
(right) the Winter Storm Uri Freeze.
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(Supplementary Tables S4, S5). Leaf-litter layer Shannon’s diversity
has previously been shown to increase in wetlands with more
planted regions (Li et al., 2021). The plant matter and root
exudates found within this sediment interface zone of this CW
may have introduced greater substrate complexity relative to the
water-column, thereby contributing to more diverse microbial
communities (Rafieenia et al., 2022). Moreover, the CW’s leaf-
litter layer microbial communities had fewer significant structural
shifts over different sampling periods relative to the water-column
communities (AMOVA, p < 0.05) (Supplementary Tables S8, S9).
Previous studies have established that substrate variability can drive
microbial community shifts in other CWs (Feng et al., 2021; Wang
et al., 2022). Thus, substantial differences in the CW’s substrate
composition may account for greater litter layer community
stability. Microbial community succession occurs more slowly in
the leaf-litter layer region relative to the water-column and leaf litter
layer microbial communities are less influenced by the CW’s
hydrology because the microbial communities in the leaf litter
layer have less immediate exposure to the changing wastewater
substrate as compared to the microbial communities that already
exist in the wastewater. The leaf litter microbial communities are
also influenced by factors that do not change as much over the CW’s
weeklong HRT, such as plant root exudate exposure (Rafieenia et al.,
2022). This is consistent with our finding that this study’s CW’s leaf-
litter layer microbial communities were more stable than water-
column communities with respect to time.

The phyla compositions found throughout the CW water-
column were similar to other previous studies of microbial
communities in eutrophic water bodies and free water surface
CWs that treat wastewater containing high nutrient
concentrations. Figure 3 shows the relative abundances of
dominant phyla throughout the CW for each sampling period
within A) the water-column and B) the leaf-litter layer biofilm.
The most dominant phyla in the CW water-column and the leaf-
litter layer include Proteobacteria, Bacteroidetes, Cyanobacteria,
Verrucomicrobia, Firmicutes, Chloroflexi, and Actinobacteria.
Other researchers have observed that the dominance of specific
cyanobacteria genera influenced phyla-level bacterial compositions

in a eutrophic reservoir (Guedes et al., 2018). Furthermore, the CW’s
influent cyanobacterial bloom intensity and the dominant
cyanobacteria genera may be linked to the rest of CWs
taxonomic composition.

3.3 Microbial community analysis reveals a
temporal microbial community shift, rather
than a spatial shift throughout the second
segment of the CW

The microbial communities in the CW’s water-column
experienced a significant temporal shift throughout almost all
sampling periods (AMOVA, p < 0.05) (Figures 4A, C;
Supplementary Tables S8, S9). The 25th August 2020 and 15th
September 2020 sampling periods were the only times when no
significant microbial community differences were observed.
Notably, these dates also corresponded to when we changed
DNA extraction kit methods, indicating that extraction kit choice
likely did not drive any significant changes in microbial community
structure. The time between the 25th August 2020 and 15th
September 2020 sampling periods may have also been too brief
for a significant structural shift to occur. Lin et al. (2012) asserts that
microbial community shifts can be reasonably attributed to
environmental changes that occur over a period of months rather
than days. Seasonal changes in water temperature may drive the
temporal microbial community shift in the CW. Several studies have
also observed that seasonally-dependent factors, such as substrate
and nutrient availability, also influence other CW microbial
community structure (Vymazal, 2007; Koranda et al., 2013; Xu
et al., 2021).

No spatial distinctions in microbial community structure were
observed in the second segment of the CW for both the water-
column and leaf-litter layer within the same sampling periods
(AMOVA p > 0.05) (Figures 4B, D). The absence of spatial
changes in the second segment of the CW indicates that the
microbial communities in this environment are more sensitive to
temporal and seasonal changes than spatial factors. The shift in

FIGURE 7
(A) Relative abundance of cyanobacteria genera with dashed red line demarcating before (left) and after (right) the Winter Storm Uri Freeze; (B)
NMDS plot overlayed with ordination biplot showing genera of the OTU’s significantly associated with driving the shift in the CW’s microbial community
composition; OTU00028 & OTU00175: Gplla (Synechococcus and Prochlorococcus), OTU01069: GpXI (Microcystis), OTU00074: GpXIll (Oscillatoria),
and other unclassified Cyanobacteria, Spartobacteria, and Betaproteobacteria genera).
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microbial community structure within the first segment may also
result from substrate changes in the wastewater from the secondary
and tertiary holding ponds. Moreover, no significant differences
were detected in microbial communities when comparing
community structure in unburned and burned cells (Cell 2 vs.
Cell 3 and Cell 1 vs. Cell 4) (AMOVA p > 0.05). This indicates
that the prescribed burn had no long-term impact on the microbial
communities in Cells 3 and 4.

The influent wastewater’s substrate composition may affect
eutrophication potential throughout the CW, imposing temporal
changes on the CW’s microbial community structure. This is
because eutrophication is heavily impacted by seasonal
parameters (e.g., temperature and precipitation) and often results
in extensive, seasonal microbial community shifts (Tromas et al.,
2017; Zhao et al., 2017; Xu et al., 2021). Similar to this research,
another study centered on the microbial communities in a eutrophic
bay receiving industrial wastewater has shown spatial shifts in
microbial communities to be minor in comparison to temporal
shifts (Zhang et al., 2016). Microbial community shifts in this study’s
CW may be connected to the wetland’s phytoplankton bloom
intensity from season to season. Substrate composition may alter
the preceding facultative holding ponds’ eutrophication potential, as
pollutant concentrations are shown to fluctuate in this environment
during different times. Seasonal weather patterns can then influence
the severity of the ensuing phytoplankton blooms, shapingmicrobial
community structure in the CW.

3.4 Microbial community diversity correlates
to water quality and phytoplankton bloom
conditions within the CW

Microbial community structure in the influent was also shown
to be significantly distinct compared to the microbial community
structure in the rest of the wetland’s cells (AMOVA p > 0.05)
(Figure 2D). Microbial community richness and diversity increased
between the influent and the effluent of Cells 2 and 3 as measured
water quality parameter concentrations declined (Supplementary
Tables S6, S7). Many of these parameters, such as TSS, VSS, COD
and pH, are also associated with phytoplankton bloom conditions.
Previous research has linked other CWs’ performance to microbial
community structure and diversity. In one study, the greatest
wetland TN and TOC removal efficiencies were achieved when
CW’s bacterial richness and diversity were also at their greatest levels
(Zhu et al., 2021). Researchers found a correlation between
Shannon’s diversity index and BOD5, NH4-N, and NO3-N in a
CW built to treat eutrophic lake water; asserting that these diversity
indices can be utilized as bioindicators for pollutant removal rates in
this environment (Zhang et al., 2015). While the shift in this study’s
CW microbial community structure occurs in the first segment of
the CW for all sampling periods, the period of time with the greatest
microbial diversity occurred during the 12th March 2021 and
30th April 2021 sampling periods in Cell 1 and 4, the second
segment of the CW (Figures 5 A, B). During these time periods
overall CW operations heavily relied on the performance of Cell
1 and Cell 4 since removal of water quality constituents primarily
occurred in these cells.

Chlorophyll a, a proxy measurement for viable
phytoplankton biomass (LaBaugh et al., 1995), was negatively
correlated with Chao1 and Shannon indices, which suggests
that microbial diversity was diminished in regions of the CW
where phytoplankton bloom conditions prevailed. Throughout
the CW, parameters that were linked to elevated bloom
conditions, pH and temperature, were also positively
associated with chlorophyll a (Figures 5C–E, Spearman ρ ≥
0.362). Moreover, chlorophyll a concentrations were
correlated to TSS concentrations (Spearman, ρ = 0.575) in the
CW. This confirms that TSS, the primary environmental
parameter the CW is designed to remove, largely takes the
form of phytoplankton biomass. The CW thus effectively
mitigated the phytoplankton blooms generated in the
preceding facultative holding ponds. In other studies, alpha
diversity was also shown to decrease in environments
experiencing seasonal phytoplankton blooms (Angeler et al.,
2013; Su et al., 2017). When phytoplankton bloom conditions
in the water-column declined near the second segment of the
CW, microbial diversity increased and overall water quality
improved.

More specifically, the cyanobacterial population within the
phytoplankton bloom may have influenced the abundance of
other CW bacteria and may have affected other water quality
metrics. Cyanobacterial abundance also served as an indicator of
elevated nutrient concentrations in the holding ponds and the CW.
As primary producers, cyanobacteria are dependent on sources of
nitrogen and phosphorus. Cyanobacterial growth demonstrates the
environment’s eutrophication potential (Paerl et al., 2016). The rise
in cyanobacterial relative abundance during the December sampling
period corresponded to greater than average NH4-N concentrations
at all CW sampling locations. Nevertheless, the high relative
abundance of cyanobacteria in the CW may, then, affect overall
microbial diversity. Numerous studies have shown cyanobacterial
bloom occurrences are correlated with sharp changes in diversity
indices, such as Shannon’s (Tromas et al., 2017; Yang et al., 2021;
Zhu et al., 2021). In this study’s CW, Microcystis, one of the more
dominant cyanobacteria genera, peaked during the sampling period
with the lowest recorded Shannon and Chao1 indices ( Figures 5A,
B, Figure 7A). Other researchers have also found that Microcystis
blooms correspond to lower diversity and evenness indices in
bacterial populations throughout seasonal algal blooms (Su et al.,
2017).

3.5 The Winter Storm Uri freeze altered
pollutant removal patterns and microbial
community structure throughout the CW
cells

The CWwas functionally resilient, despite theWinter StormUri
freeze’s prolonged impact on microbial community dynamics.
Pollutant removal trends were restored approximately 6 months
after the freeze event. Winter Storm Uri brought on temporary
changes in pollutant removal between the first and second segment
of the CW (Figure 6). Significantly greater pollutant removal
percentages were reported during the second segment of the CW
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for VSS (p = 0.007) and COD (p = 0.047) when assessing removal
rates from sampling periods that occurred after the freeze (12March
2021–3 August 2021). During this time, plant debris contributed to
the water-column’s organic matter content within the first segment
of the CW. The freeze may have altered pH neutralization trends
within the first and second segment of the CW. Many irregularities
in water quality parameter reduction trends were also recorded
during the 12thMarch 2021 sampling date, the time period closest to
the freeze. When the 12th March 2021 sampling date was excluded
from the analysis, there were significantly greater pH trends towards
neutrality in the first half of the CW (p = 0.037). During the March
12th sampling period NH4-N levels sharply increased from 0.757 to
3.1412 mg/L throughout the CW (Figure 5). Likewise, all water
quality parameters had greater reduction percentages in the second
segment of the CW. During the March 12th and 30th April
2021 sampling periods, it was evident that the freeze took a toll
on the CW’s performance throughout the first segment of the
wetland. VSS, COD, NH4-N, and chlorophyll a concentration
increased between the first segment of the CW, rather than
decreasing between the first segment of the CW as they had in
the previous four sampling periods.

The freeze shifted the CW’s microbial communities, but
changes in environmental parameters begin to return to their
original patterns throughout the two CW segments; demonstrating
the CW’s ecological resilience after a pulse disturbance. The microbial
communities in the water-column and leaf-litter layer biofilm samples
collected closest to the freeze, 12th March 2021 were distinct from
samples collected from other time periods (AMOVA p < 0.05)
(Supplementary Table S10). Figure 7 also reveals that in the time
period following the Winter Storm Uri freeze, the shift in microbial
communities was driven by the decline of dominant cyanobacteria
genera, Microcystis, Synechococcus and Prochlorococcus (Figure 7).
Most notably, these genera are observed to drastically decrease in
relative abundance in all CW water-column samples during the 12th
March 2021 sampling period. However, Synechococcus and
Prochlorococcus relative abundance is shown to recover during the
following 30th April 2021 sampling period, but fluctuated in
subsequent sampling periods.

Microbial community contributions to constructed wetland
performance are poorly understood, particularly in response to
pulse disturbances from extreme weather events that are expected
to increase in intensity and frequency with climate change (Allison
and Martiny, 2008; Ma et al., 2018; McDowell et al., 2018). This
study’s CWmicrobial communities may have been both directly and
indirectly affected by the freeze. After a pulse event like a freeze,
wetland ecology is impacted at multiple taxonomic scales,
compounding the initial disturbance’s impact on the microbial
communities (Ross et al., 2009; Means et al., 2016). Various
cyanobacteria genera, such as Synechococcus, were observed to
rapidly die at temperatures below 15°C (Abeliovich and Shilo,
1972). Excess nutrients released from freeze-induced plant death
may also spur future algal and cyanobacterial blooms (Paerl, 2016).
Within this study’s CW, this could potentially explain the sharp
decline in the relative abundance of cyanobacteria during the 12th
March 2021 sampling period, followed by a steady recovery
thereafter. Ultimately, the CW microbial communities’ dynamics
after the freeze demonstrated the system’s resilience in response to
major pulse disturbance.

4 Conclusion

A 16S rRNA gene analysis on the microbial communities in this
study’s CW revealed a temporal shift in community structure. This
indicated that the CW’s microbial communities may have been
affected by substrate composition and seasonal changes. We did not
observe any long-term impact on the CW’s water-column or leaf-
litter layer microbial communities from the historical controlled
burn. As the CW removes TSS, the wetland’s microbial diversity
increases, indicating that healthy ecosystem functioning is tied to
improved water quality. The freeze brought on by Winter Storm Uri
was considered an unprecedented pulse disturbance during the 26-
years the CW has been in operation. The freeze created a massive
plant die off, raising the VSS, NH4-N, COD, and pH levels within the
first segment of the CW for several months after the event.
Analyzing water quality parameters and microbial communities
before and after the event also revealed that the CW experienced
an overall shift in microbial community structure. While
environmental pollutant reduction trends recovered to their
previous rates approximately 6 months after the freeze, microbial
community structure remained altered. This supports the
conclusion that the CW is capable of supporting functionally
redundant communities in the context of tertiary wastewater
treatment. The shift in pollutant removal trends after the freeze
confirmed that the CW was able to rebound after a pulse
disturbance.
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