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Introduction: During the last decades, environmental pollution has been
considered one of the challenges of the agricultural sector, which has affected
the relationship between the ecological and economic performance of
agricultural products.

Methods: In this study, the DEA-MBP approach based on the SBMmodel has been
used to investigate the eco-efficiency of saffron farms in Iran. Themain purpose of
this approach is to decrease GHG emissions by mitigating the use of highly
polluting production inputs.

Results: The results showed that the average eco-efficiency is estimated at 74%
and is 12% lower than technical efficiency without considering environmental
issues. Therefore, saffron producers are 26% far from full efficiency, and theymust
change their consumption of inputs and production of inputs according to
environmental issues in order to achieve it. Excessive use of diesel fuel and
fungicides is cause of GHG emissions in these farms.

Discussion: The use of sustainable and ecological cultivation methods in farms in
order to reduce the consumption of chemical fertilizers and fungicides should be
considered. Replacing old machinery and repairing them can also considerably
reduce fuel consumption and GHG emissions.
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1 Introduction

One of the important and complex problems in agriculture is considering the mutual
relationship between economic development and the environment. Although agricultural
activities are essential to human society and have some advantages such as food supply,
income for farmers, and the growth and development of rural areas, these activities have
caused the 26% of GHG emissions and climate change at the international level from 2006 to
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2016 (FAO (2018). Maintaining environmental quality and balance
between human activities to pursue the objectives of economic
development and the capacity of natural regenerative resources is
one of the global challenges. For this purpose, several international
organizations such as the UN and the UNFCCC have pushed for the
realization of the sustainable development paradigm. However, the
prevalence of unsustainable agriculture in most countries has raised
widespread concerns in the international arena. It has turned the
need to consider the increasing economic gains given the
importance of sustainable development as one of the challenges
for researchers and policymakers (Martinsson & Hansson, 2021).

Estimating ecological and economic efficiency (EEE) or eco-
efficiency in different sectors of agriculture has received much
attention from researchers on how to increase sustainability in
agriculture. Eco-efficiency was introduced as an operational concept
to assess sustainability in 1990 (Schaltegger, 1996), and it was revised by
the World Trade Council for Sustainable Development to encourage
producers to compete and be more environmentally friendly in
1992 and 2000 (Schmidheiny, 1992; WBCSD, 2000). In fact, by
estimating EEE, it is determined to what extent environmental
damage can be reduced and, by minimizing damage to the
environment, sustainable development can be improved in economic
enterprises (Pang et al., 2016; Güngör et al., 2022).

Eco-efficiency can be used at bothmacro andmicro levels. At the
macro level, the concept of EEE reminds us that GDP growth should
not be related to negative effects on the environment as much as
possible. Besides being satisfied with the increase in consumption of
goods, society should benefit from a good quality environment
(Zhong et al., 2022). At the micro level, EEE means that greater
economic value can be achieved with less environmental damage. It
should be mentioned that since this measure is relative, its
improvement does not necessarily guarantee the production’s
sustainability, and to ensure sustainability, definite amounts of
pressure imposed on the environment should be considered
(Huppes & Ishikawa, 2005). However, despite the limitations of
EEE, this measure is very important and popularity. One of the
advantages of EEE is the identification of actionable policy goals
rather than mandatory activities such as limiting the level of
economic activity. Improving EEE includes units that often do
not produce at the economic efficiency Frontier; Therefore, in
addition to reducing environmental effects, there is an
opportunity to save production costs (Ekins, 2005).

Saffron planting is considered a strategic and vital component of
the national economy of Iran due to its unique position in job
creation in the agricultural sector and the creation of significant
foreign exchange income for this country. Some of the particular
advantages of saffron are low irrigation, high product durability,
exploitation for 5–7 years in one planting period, ease of
transportation, productive employment, and significant currency
enhancement, which has led to the development of its cultivated area
in Iran, especially in areas without agricultural potential (Saeidi
et al., 2022). The product’s compatibility has made Iran the largest
producer of saffron in the world, producing 430 tons of saffron in
2019, more than 90% of global production and 3.5% of global market
share (Statista, 2020). Given the benefits of saffron cultivation,
increasing the production and yield of this product also has
caused many environmental problems. The negative
consequences of saffron cultivation have been estimated as GHG

emissions and nitrogen and phosphorus flow of 18.54, 8.18, and
5.18 million tons per year, respectively, in Khorasan Razavi
province, Iran (Bakhtiari et al., 2015). Thus, considering the
environmental pollution in calculating the efficiency of saffron-
producing units can identify the units that have been active in
economic saffron production and have caused the least damage to
the environment, and introduce them as a suitable model for others.
In this regard, the present study examined this criterion at the level
of saffron farms and identified the inputs that had the most
significant impact on eco-inefficiency by determining the factors
related to eco-inefficiency.

1.1 Review of literature

To estimate efficiency, there are two main approaches,
parametric and non-parametric. Parametric approaches are
specified by a functional form, while non-parametric approaches
do not require an specific functional form (Mardani Najafabadi
et al., 2023). Currently, one of the most widely used methods of
evaluating efficiency in agricultural production is data envelopment
analysis (DEA), which is known as a non-parametric approach. The
main advantage of this method is the ability to use multiple inputs
and outputs to measure the relative efficiency of a set of
homogeneous decision-making units or DMUs (Sabouhi &
Mardani, 2017). On the other hand, one of the topics that have
been the focus of researchers in the field of efficiency evaluation with
regard to environmental issues is the Material Balance Principle
(MBP). The law of conservation of matter/energy is a basic
biophysical condition that states that the flow leaving or entering
the environment is equal or balanced. However, Lauwers (2009)
stated that MBP had been neglected in most studies conducted in
this field. One of the most common models in the field of
introducing undesirable data into efficiency measurement models
is the Directional Distance Functions (DDF) introduced by Chung
et al. (1997). However, despite the popularity of this model and
many models of EEE estimation, Coelli et al. (2007) raised many
criticisms that these models are not compatible with MBP.

Many studies have been conducted in examining EEE and various
efficiency indicators have been used for this purpose. The first studies in
this field have generally attentive to the effect of pollution control on
economic growth at the macro level (Christainsen & Haveman, 1981;
Gollop & Roberts, 1983; Färe et al., 1989). Using this method, several
limited studies have been performed at the micro level, including the
study of Pashigian (1984) and Pittman (1981). Later, Pittman (1983)
calculated the EEE of Wisconsin paper factories by incorporating
environmental variables into common productivity indicators. In this
method, pollution is considered a cost variable. The important point
about adjusted productivity indicators is that, unlike conventional inputs
and outputs (IOs), the price of undesirable variables such as pollution is
not known, and some proxies (observed indicators such as pollution
taxes) should be used for the price of these variables (Coelli et al., 2007).
The first studies that included environmental variables were also
evaluated on the assumption that reducing pollution is a costly activity.

In general, environmental efficiency studies can be classified
into two important categories by considering environmental
pressure variables as undesirable inputs or outputs (Long,
2021). A large part of the first studies in this field have
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incorporated environmental pressures such as pollution or waste
increase as undesirable inputs or outputs into efficiency
measurement models (Tyteca, 1997), and the other part
focused on the explanation of EEE as the economic value ratio
and environmental damage (Kuosmanen & Kortelainen, 2005),
much attention was paid to ecological characteristics, and unlike
the first category models in which physical IOs entered the model
directly, only economic value added and environmental variables
were included in the model (Kuosmanen & Kortelainen, 2005;
Picazo-Tadeo et al., 2011; Martinsson & Hansson, 2021).

Many studies in the first category have used Frontier models
to measure the EEE introduced by Tyteca (1997). These models
are placed in two categories of parametric and nonparametric
Frontier approaches. Lauwers (2009) in his study showed that
most studies on efficiency measurement models, including
nonparametric Frontier models, have not considered the
MBP. Coelli et al. (2007) also examined some studies in EEE
with DEA models (Färe et al., 1989; Färe et al., 1996; Reinhard
et al., 2000) and showed that these studies are only compatible
with MBP requirements in certain conditions and do not comply
with this principle in general. In this regard, Coelli et al. (2007)
criticized the DEA models used in these papers, including the
DDF model that is matchable with MBP requirements. In
another study, the network DDF model combined with the
MBP was used to estimate the EEE of coal-fired power plants
in the US (Färe et al., 2013).

Among the drawbacks of the DEA-MBP model presented by
Coelli et al. (2007) model is that, first, it does not consider the actual
amount of pollution that is difficult to find in agriculture. Also, this
model cannot show the difficulty of the production and disposal of
pollutants. Finally, when the number of inputs is too large, the
validity of the results is severely influenced (Arabi et al., 2017).
Overall, a more inclusive and MBP-compliant model is needed to
measure EEE. Later, Arabi et al. (2017) provided a complete model,
including input-orientation and easy application of others, and the
inability of distance models and Slacks-Based models (SBM)
introduced by Färe et al. (2013) in determining the optimal
composition of fuels.

According to review studies done by Zhou et al. (2018) and
Emrouznejad and Yang (2018), the agriculture sector had the
highest focus of studies during 2015–2016. Many studies have
also applied the DEA approach in this area, including Grassauer
et al. (2021) who used a combination of DEA and LCA approaches
to estimate the EEE of Austrian farmers with different types of
agricultural activities.

Martinsson and Hansson (2021) examined the EEE of the dairy
farmers in Austria and used zero net emissions by 2045 to
determine a specific emissions threshold. Some research shows
that most industrialized countries such as China have low EEF
(Yao et al. (2018); Pang et al. (2016) examined the EEE of the
agricultural sector in China. For this purpose, he used the DEA
technique and the Theil index. In this study, non-radial SBM
models have been used, and several undesirable outputs of total
nitrogen, total phosphorus and agricultural plastic waste have been
considered; Gómez-Limón et al. (2012) calculated the EEE of olive
farms using the DDF and distinguished in Andalusia (Spain).
Picazo-Tadeo et al. (2011) examined the EEE of drip-irrigation
farms in Castilla y León (Spain). The study of several

environmental indicators and the calculation of deficiency and
excess of these indicators for production units were among the
innovations of his study.

Selecting environmental-economic variables based on type of
activity is one of the important issues in the study of EEE. In some
studies, various variables have been used as environmental pressure
indicators. Nemecek et al. (2011) divided environmental indicators
into three main groups: resource, nutrient, and pollution indicators.
Each category considers different aspects of the environment and
different management options. For example, Martinsson and
Hansson (2021) considered the cost of fuel, heating equipment,
and the cost of fertilizers as indicators of environmental pressure.
Grassauer et al. (2021) used cumulative energy demand, normalized
eutrophication potential, and global warming potential. Urdiales
et al. (2016) used carbon dioxide emission data. Arabi et al. (2017)
applied sulfate gas produced in a power plant over a 1-year period as
an indicator. Mulwa et al. (2012) selected excess nitrogen and
phosphate fertilizers as the environmental pressure indicators.

After thorough research on different past studies and
environmental data, we applied excess carbon dioxide equivalent
as an environmental pressure indicator in the present study. It is
worth mentioning that no study has been done so far to calculate the
EEE of saffron, and only in some, environmental issues of cultivation
of this crop have been investigated. For example, in the study of
Bakhtiari et al. (2015), the emission rate equivalent to carbon dioxide
in the saffron production cycle during 5 years was calculated using
conversion coefficients of inputs. Feizi et al. (2015) investigated the
energy efficiency of saffron in Khorasan Razavi province. According
to their study, saffron farms had an stable and efficient system
(economically) in the Khorasan Razavi province.

Thus, this study aimed to investigate the EEE of saffron producers
using the DEA-MBP model. In addition, examining the difference
between the optimal consumption of inputs in the two cases, with and
without considering the environmental pressure is another goal. In
general, this study has contributed to the literature in two aspects. First,
the DEA-MBP method has not been used in agriculture so far. Second,
the calculatingmethod of the environmental pollutant variable has been
introduced for the first time; thus, the interaction of the environmental
and economic variables is better indicated. In addition, this type of
calculation is consistent with the limitations of the lack of proportionate
GHG emission data from agricultural activities and provides valuable
information to the researcher.

1.2 Case study

Saffron is widely cultivated in Iran due to its high added value.
The main centers of saffron production in this country are the
Khorasan Razavi and South Khorasan provinces and 76% of Iranian
saffron is produced in these two provinces (Statista, 2020). South
Khorasan province ranks second in saffron cultivation with
17,000 ha of cultivated area and production of 66 tons of this
product. Meanwhile, Ghaen County is considered the saffron
capital of Iran and with an global brand in saffron production in
terms of the quality of this product (Bazrafshan et al., 2019). This
County is located in the east of Iran and the north of South Khorasan
province at latitude: 15.33 and longitude: 34 and 38.58–56.60
(Figure 1). The climate of this County is highly influenced by the
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heights of the mountains are stretched in the vicinity of that. Ghaen
County is located such that at the beginning of the cold season, it is
announced as the coldest point in Iran (Khanali et al., 2017). The
average annual rainfall in this County is 180 mm, and it is
recognized as the rainiest County in the province. The
fluctuations and changes in temperature are high in Qaen both
temporally and spatially. The range of average monthly temperature
changes during the year is 23.5°C. The absolute maximum and
minimum are 41oC and 28°C, respectively. Due to the geographical
and climatic location of this County, the cultivation capability of
strategic crops such as saffron is of great importance (Statistical
Center of Iran, 2020).

2 Materials and methods

In this study, to calculate the EEE at the farm level, the DEA-
MBP model developed by Arabi et al. (2017) was selected and
adjusted based on the IOs of saffron production and the appropriate
environmental pressure index. In this section, first, the DEA model
and the MBP were explained, and the integration of MBP
requirements in DEA models was also discussed. Then, a
comprehensive model of EEE, considering the inputs in three
categories of high and low pollutants and independent variables
are presented. Finally, the IOs used in the research and how to
estimate them are explained. The conceptual framework of the steps
to determine the EEE of saffron is shown in Figure 2. The following
presents the additional explanations of this Figure.

2.1 Data envelopment analysis (DEA)

DEA is a non-parametric method that determine the efficiency
of those DMUs that have similar IOs using the linear programming
and does consider the basic assumption of a consequential
relationship between IOs (Mardani Najafabadi & Taki, 2020). As

this approach encompasses all numbers and information, it is
known as comprehensive data analysis. This method is used in
the study of Charnes et al. (1978) based on Farrell’s approach. Then,
efficiency calculations in different conditions were invented and
introduced by different DEA models (Emrouznejad & Yang, 2018).

2.1.1 The conditions of DEA-MBP models
In the following, first the conditions of material balance and

incompatibility of DDF model with these conditions are expressed.
To use MBP Equations, if α and b are defined as the non-negative
coefficients, the amount of pollution can be calculated as:

Z � α′X − b′y (1)
Where X, y and Z are inputs, outputs and pollution rate per unit

of production, respectively.
The DDF model is that the model seeks the maximum amount

of θ that can keep the vector X, y + θy, and Z − θZ within
production possibility set. If these vectors are substituted in Eq.
1, we obtain: Z − θZ � α′X − b′(y + θy).

For efficient units, if � 0 , the unit is located on the Frontier and
the MBP is established.

The Coelli et al. (2007) model can be represented as model (2) by
considering N DMUs:

∑
N

n�1
λnXni ≤Xe

oi i � 1, . . . ., I

∑
N

n�1
λnynj ≤yoj j � 1, . . . ., J

λn ≥ 0, n � 1, . . . , N

(2)

where o represents the DMU under study, Xe
oi is calculated to find

the best input to produce the lowest amount of pollution, Xni and
ynj represent the ith input and jth output of n unit, respectively, and
λn is the unit vector of fixed values. Despite This DEA-MBP model
benefits, as mentioned earlier, some of its limitations cause
inadequacy in application for some industries.

FIGURE 1
Geographical location of Ghaen County.
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2.1.2 Modified DEA-MBP model
There are several models that comply with the MBP

requirements. Here is an SBM model for calculating inefficiency
as model (3) (Färe & Grosskopf, 2010):

Do x, y( ) � Max ∑
I

i�1
ai+∑

J

j�1
βj

S.t.

∑
N

n�1
λnXni ≤Xio − ai.1; i � 1, . . . ., I

∑
N

n�1
λnyjn ≥yjo + βj.1 ; j � 1, . . . ., J

λn ≥ 0, βj ≥ 0, ai ≥ 0; i � 1, . . . ., I, j � 1, . . . ., J, n � 1, . . . , N

(3)

Finally, in order to model EEE in a wider way and to solve the
defects of model 3, the inputs are classified into two categories of
high and low pollutants. Based on this, the EEE model is presented
as an alternative to model (4):

Do X, y, Z( ) � Max∑
L

l�1
alL+∑

H

h�1
ahh+∑

M

m�1
am+∑

J

j�1
βj+∑

K

k�1
γk

S.t.

∑
N

n�1
λnxl ln ≤xllo + all · 1; l � 1, . . . ., L

∑
N

n�1
λnxhhn ≤ xhho − ahh · 1; h � 1, . . . ., H

∑
N

n�1
λnxn ≤ xmo − am · 1 ; m � 1, . . . .,M

∑
N

n�1
λnyjn ≥yjo + βj · 1 ; j � 1, . . . ., J

∑
N

n�1
λnzkn � zko − γk · 1 ; k � 1, . . . ., K

γk −∑
J

j�1
bjkβj �∑

H

h�1
ahhkahh −∑

L

l�1
allkall; k � 1, 2, . . . ., K

λn ≥ 0, all ≥ 0, ahh ≥ 0, γk ≥ 0, am ≥ 0, βj ≥ 0; n � 1, . . . , N, i � 1, . . . ., I,

k � 1, . . . ., K,m � 1, . . . ,M, h � 1, . . . ., H, l � 1, . . . ., L, j � 1, . . . , J

(4)

FIGURE 2
Conceptual framework to determine the EEE of saffron.
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The definition of symbols in this model is as follows:

xh: high pollution inputs
xl: low pollution inputs
x: non-polluting inputs
αh: rates of reduction and expansion of high emissions
αl: rates of reduction and expansion of low emissions
α: rate of reduction of non-polluting inputs
ah: The share of inputs pollution with high pollution
al: The share of inputs pollution with low pollution

Obviously, we should have αh> al, because if have αh � al, there
is no need to distinguish between high and low pollution. Thus, as
one of the requirements of mathematical programming models,H +
L + M = I should be here, where I indicates the total number of
inputs.

2.2 Statistical sampling

The statistical population of this research is saffron producers in
Ghaen County in South Khorasan province in Iran. The data used
for the DEA-MBP model (Eq. 4) is cross-sectional. Therefore, the
information needed to calculate the EEE was collected by
completing 237 questionnaires by saffron growers in the region
in 2020 using random sampling.

2.3 Input and output (IO) data

The input and output data used inModel (4) are explained below. In
past studies in the field of investigating the efficiency of saffron farms,
these variables have been used as themain inputs and outputs (Bakhtiari
et al., 2015; Feizi et al., 2015). In this model, the inputs used were
classified into three groups of inputs with high pollution, low pollution,
and independent variables. Thus, to achieve greater EEE, we can replace
low-emission inputs with high-emission inputs. Also, the environmental
pressure variable enters the model as an undesirable output, to increase
the desired output (economic variable) and minimize environmental
pollution. In the present study, the equivalent carbon dioxide excess is
considered as a variable of environmental pressure (Nemecek et al., 2011;
Picazo-Tadeo et al., 2011; Urdiales et al., 2016; Grassauer et al., 2021;
Martinsson & Hansson, 2021). In order to calculate this variable, the
conventional DEAmodel was first estimated and the input consumption
excess was calculated. Finally, using theGHGconversion coefficients, the
CO2 equivalent of pollutant inputs was calculated and its sum as the
undesirable output entered the model (Figure 2). Also, based on the EEE
model, the inputs used were divided into three categories of inputs with
high pollution, low pollution and independent variables. The
classification of these inputs was performed according to the
conversion coefficients of GHG. Thus, the inputs with a conversion
coefficient higher than 1, was assigned to highly-pollutant inputs and
inputs with a coefficient of less than 1 were dedicated to the low-
pollutant inputs (Guo et al., 2022). Also, two inputs of water and seed are
independent inputs in this study.

2.3.1 Production inputs
1- Seed: Saffron cormis the main factor in the growth of saffron
flowers and choosing a good daughter corms frommother corms

is one of the most significant factors affecting the quality of
saffron. This corm is usually oval-shaped and contains brown
straws that protect it from dryness and soil heat by absorbing
moisture.
2-Water: Suitable water supply in terms of quantity, quality and
irrigation schedule is a key strategy in achieving appropriate
saffron yield. Saffron has high irrigation efficiency and drought
tolerance, and although it needs irrigation in arid regions such as
Iran, it has less irrigation requirement than other conventional
agricultural products. Experts believe that plants that have more
main root length, number of lateral roots, root length density and
root-to-shoot ratio are more resistant to drought tolerance
(Farooq et al., 2009).
3- Chemical fertilizers: Phosphate, nitrogen, and phosphorus
fertilizers are the most widely used chemical fertilizers in saffron
cultivation. The determination of the amount of use of these
fertilizers, according to the amount of these elements in the farm
soil and also their timely use, in addition to affecting the amount
and quality of saffron, it is effective on the amount of GHG
emissions and pollution of water resources.
4- Animal manure: Animal manure is used to provide the
organic matter needed by the saffron plant. The replacement
rate of this fertilizer with chemical fertilizers and determining the
appropriate time of its use affects the quality and quantity of
saffron products.
5- Fungicides: The color, smell and taste of saffron are attractive
to many rodents, birds, insects, etc. One of the methods to fight
against pests and diseases of saffron is to disinfect the bulbs with
fungicides and acaricides before planting. Also, the fungicides are
useful to prevent or minimize the attacks of fungi as Fusarium
oxysporum and Rhizoctonia violacea.
6-Manpower: This variable is the number of hours of manpower
use per hectare during the production period of saffron. In Iran,
for saffron cultivation, high manpower is used compared to
conventional crops such as wheat. However, according to
some studies, the number of manpower decreases with
increasing land size, which indicates an increase in
dependence on machinery with increasing land size.
7- Machinery: In different stages of planting, growing and
harvesting saffron products, different machines are used along
with manpower and as a substitute for manpower. The total
hours of use of these machines per hectare has been used as a
machineries variable in estimating the efficiency of saffron.
8-Diesel fuel: The use of agricultural machinery from fossil fuels
is one of the main causes of GHG emissions. The amount of
diesel fuel used per hectare has been used as one of the input
variables in calculating efficiency. The use of old and
disproportionate machines with agricultural operations and
farm area is one of the factors of high fuel consumption in
saffron fields.

2.3.2 Production outputs
As mentioned before, in this study, saffron stigma is considered

as a desirable output and the equivalent carbon dioxide excess GHG
as an undesirable output.

1- Saffron stigma: Saffron stigma is the most important part of
saffron that is used as coloring and flavoring agent. Therefore, the
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yield of stigmas harvested per hectare is considered as the
desirable output.
2- The carbon dioxide equivalent excess of inputs: Due to the
lack of comprehensive information on the net emission of GHG
from saffron farms, the total carbon dioxide equivalent of GHG
from the consumption of inputs was applied according to
previous studies (Nemecek et al., 2011; Urdiales et al., 2016;
Grassauer et al., 2021; Martinsson & Hansson, 2021). Since some
of these inputs are absorbed by the plant, in this paper, only the
excess consumption of polluting inputs is considered as
undesirable output for each farm. Thus, this variable, instead
of measuring the pollution potential of inputs, has been
calculated according to the f excess farm consumption of
these inputs. This indicates the effect of technical inefficiency
of farms on the level of environmental pressure and the
relationship between economic and environmental issues is
emphasized.

2.4 Data processing

In order to calculate the undesirable output mentioned in the
above paragraph, first, the envelopment analysis model of
conventional output-oriented data was estimated and based on
that, the excess consumption of inputs was calculated using the
output and inputs referred in the research. Then, the excess carbon
dioxide equivalent consumption of GHG emission inputs was
calculated using the GHG conversion coefficients of each input
and their sum was entered into the model as undesirable output. The
GHG conversion ratio of the inputs used in this research is shown in
Table 1.

A statistical description of the IOs defined above is given in
Table 2. As mentioned earlier, the inputs used are divided into three
categories of high-pollution, low-pollution and independent inputs,
which are categorized according to the size of the GHG conversion
coefficients of each input (Table 1). Thus, the inputs with a

TABLE 1 GHG conversion coefficients of saffron production inputs.

Inputs Unit Equivalent to kg of CO2 per unit Sources

Potassium kg 0.15 Lal (2004)

Nitrogen kg 1.3 Lal (2004)

Phosphate kg 0.2 Lal (2004)

Manure Ton 0.005 Mohammadi et al. (2014)

Fungicides kg 3.9 Lal (2004)

Machinery MJ 0.071 Khoshnevisan, Rafiei, et al. (2013a)

Fuel Liter 2.76 Khoshnevisan, Rafiei, et al. (2013b)

Electricity kWh 0.608 Khoshnevisan, Rafiei, et al. (2013a)

Manpower hour 0.7 Nguyen & Hermansen (2012)

TABLE 2 Statistical description of IOs used in saffron cultivation in Ghaen County per hectare.

Unit Average Minimum Maximum Coefficient of variation

Inputs Low-Polluting Potassium kg 5.67 0 96 277.96

Phosphate kg 11.17 0 250 275.70

Manure Ton 32.19 10 90 53.20

Manpower hour 972.56 227 3,024 45.59

Electricity kWh 22,383.01 8,384 39,300 18.38

High-Polluting Nitrogen kg 62.37 0 350 79.87

Fungicides kg 1.72 0 3 48.80

Machinery MJ 41.96 8.67 93.33 39.04

Fuel Liter 535.16 94 1,535 42.37

Independent Seed kg 5,682.74 500 50,000 78.51

Water Cubic meter 4,901.33 3,000 6,500 23.55

Outputs Desirable Yield (stigma) kg 8.39 5 12 18.42

Undesirable Carbon dioxide equivalent kg 7,714.53 0 17,300.23 62.01
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conversion coefficient greater than 1 kg/unit are selected as high
pollutant inputs and inputs with a conversion coefficient of less than
1 are low pollutant inputs. This classification enables the model to
replace high-polluting with low-polluting inputs, in addition to
minimizing the consumption of inputs (product maximization).

According to Table 2, among the inputs, the highest coefficient
of variation is assigned to chemical fertilizers of potassium (277.96),
phosphate (275.70) and nitrogen (79.78), and after seed input,
animal manure has the highest variation coefficient. This can be
due to the replacement of chemical fertilizers with each other and
with animal manure in different farms. It is worth to mention that
the carbon dioxide equivalent, which is considered as the potential of
each unit in environmental pollution, also has a high coefficient of
variation, which indicates the difference between the use of units of
different inputs and with different polluting percentage. Therefore, it
can be concluded that modifying the method by which units use
different inputs and considering environmental factors, can have a
significant effect on reducing environmental pollution.

3 Results

In this section, the results of estimating the EEE based on the
model of Arabi et al. (2017) and also, the results of technical
efficiency (TE) by non-radial SBM method are depicted in
Table 3. According to the results, the average TE of saffron
growers in Ghaen is equal to 86%, but by considering
environmental pollution, their TE is reduced to 74%. In other
words, neglecting environmental issues causes the efficiency of
saffron producers to be calculated 12% higher than its actual
value. The number of efficient units in the estimation of EEE and
TE are 97 and 51 units, respectively. The efficiency of 46 additional
units (97–51 = 46) in EEE shows that although these producers are
inefficient considering only technical efficiency factors, when
environmental issues are also considered, these units are efficient
in terms of EEE. This means that even though these units have lower
output production or higher input consumption, they have lower
GHG emissions than the other units. In other words, the reduction
in environmental pressure has compensated for the lack of product
production or excess consumption of inputs. However, the average

value of TE is higher than EEE, and the reason is that the number of
units with an efficiency score below 50% is 0 and 49 units for TE and
EEE, respectively. In other words, about 22% of the units have an
efficiency score of less than 50% in EEE, which has caused a sharp
decrease in this type of efficiency.

Then, the average of the actual and desired amount of
consumption IOs produced was calculated using the deficits
and excesses extracted from the models and the results are
presented in Table 4. The percentage change of the average
optimal consumption compared to the actual consumption of
low-polluting inputs in the EEE model is positive. In other words,
inefficient units should increase the consumption of these inputs
in order to achieve efficiency. As expected, the percentage change
in polluting inputs is negative and consumption of these inputs in
inefficient units should be decreased. Among polluting inputs,
nitrogen fertilizer has the highest change percentage, and
inefficient units should reduce their nitrate fertilizer
consumption by about 42% to achieve EEE.

Given that the slack-based models are not radial and calculate
efficiency from both the maximization of outputs and the
minimization of inputs, the excess or deficient amount of outputs
can also be observed. In the SBM model, inefficient producers have
the maximum production of saffron due to the consumption of
inputs and the percentage of changes in the optimal production of
saffron output is zero compared to the current production of
producers. In the EEE model, the percentage of changes in
saffron output is very small and indicates that the production of
saffron is optimal, but in order to achieve this efficiency, Ghaen
saffron growers should reconsider the consumption of input and, on
average, reduce their carbon dioxide emissions by 7.27 percent. The
percentage of changes in the consumption of inputs compared to the
actual value obtained from the TE model indicates that the highest
percentage of changes is assigned to the three inputs of phosphate,
potassium, and nitrogen. The percentage change of the average
optimal consumption was −91, −74 and −67 percent, respectively, in
relation to their value for these three inputs. Therefore, without
considering the amount of environmental pollution, farmers can
greatly increase their TE by reducing the consumption of these three
inputs. The lowest percentage of changes is assigned to three inputs
of water (−22), fungicide (−26) and animal manure (−27).

TABLE 3 Results of TE and EEE of saffron producers in Ghaen County.

TE EEE

Statistical description of efficiency Average 0.862 0.744

Minimum 0.689 0.011

Maximum 1 1

Coefficient of variation 44.1 0.1738

Fully efficient units 51 (22.60%)a 97 (42.90%)

Categorized efficiency <0.2 0 14 (6.2%)

0.2–0.5 0 35 (15.5%)

0.5–0.8 61 (27%) 60 (26.5%)

0.8–1 165 (73%) 117 (51.8%)

aThe numbers in parentheses indicate the percentage of the DMUs.
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According to the results in Table 4, the highest percentage of
changes in the average optimal consumption compared to the actual
value was obtained from the EEE model regarding phosphate input.
However, it should be mentioned that the average optimal amount
of phosphate consumption in this model is higher than the average

actual value. Thus, in order to increase their EEE, farmers should
increase their consumption of the low-polluting input by 64%.
However, for nitrogen fertilizer, which is a highly polluting input,
farmers should reduce their consumption by 42% to achieve full
efficiency. The third eco-inefficiency factor of input is seed, and

TABLE 4 The average optimal consumption of inputs and the percentage of their changes to the actual consumption.

TE EEE

Actual value Optimal value Changes (%) Optimal value Changes (%)

Inputs Low-Polluting Potassium 5.67 1.46 −74.25 6.22 9.71

Phosphate 11.17 1.02 −90.89 18.34 64.23

Manure 32.19 23.51 −26.95 32.38 0.61

Manpower 972 488 −49.77 981 0.91

Electricity 22,383 12,278 −45.14 22,383 0.003

High-Polluting Nitrogen 62.37 20.89 −66.51 36.18 −41.99

Fungicides 1.72 1.27 −26.24 1.32 −23.23

Machinery 41.96 27.87 −33.59 30.74 −26.75

Fuel 535.16 323.57 −39.54 359.66 −32.79

Independent Seed 5,682 2,349 −58.66 2,937 −48.30

Water 4,901 3,816 −22.13 3,948 −19.43

Outputs Desirable Yield (stigma) 8.38 8.38 0 8.39 0.09

Undesirable Carbon dioxide equivalent 7,714 - - 7,153 −7.27

FIGURE 3
Percentage of changes in the optimal average of IOs relative to their actual value.

Frontiers in Environmental Science frontiersin.org09

Mardani Najafabadi et al. 10.3389/fenvs.2023.1184458

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1184458


farmers should reduce seed consumption by 48% to achieve
efficiency. The optimal consumption of this input in the TE
model was on average 58% lower than the average actual
consumption. Also, the lowest percentage of changes was related
to electricity, animal manure and labor inputs, and farmers had to
increase the amount of these inputs as small 0.003, 0.61, and 0.91,
respectively.

For better indication of the eco-inefficiency factors of inefficient
units, the percentage change of pollutant inputs and undesirable
output is shown in Figure 3. According to this figure, the most
important factor of inefficiency of saffron producers in Ghaen
Country is the shortage of phosphate fertilizer consumption and
then the excess consumption of nitrogen fertilizer, diesel fuel and
machinery. Also, on average, inefficient producers should reduce
their carbon dioxide equivalent output by 7.27 percent. Among these
inputs, electricity with a percentage change of 0.003%, manure
(0.61), and labor (0.91), had the least effect on inefficiency of
producers and should slightly increase the consumption of these
inputs.

4 Discussion

In this study, the EEE was evaluated according to the GHG
emission from agricultural activities in saffron cultivation. In this
section, the results obtained from this model are investigated and
compared with the results of studies performed in this field.
According to the results, the resulting EEE is 12% lower than the
TE of saffron growers and its average has reduced from 86% to 74%.
In other words, without considering the environmental issues and
GHG emissions associated with crop production, TE is estimated to
be 12% higher than actual value. In addition, the minimum
efficiency obtained in the TE model is 68% and is 1% in the EEE
model, and even 22% of the units in this model have an efficiency of

less than 50%. Also, the difference in indicating the number of units
with the efficiency higher than 80% is 22%. This means that 48 units
represent efficiencies above 80% by mistake, regardless of
environmental pressure. Absolute attention to producing the
maximum possible output using the minimum input may lead to
maximum technical efficiency for DMUs, but this action may
increase the amount of environmental pressure and lead to low
EEE. Therefore, in estimating EEE, inputs with less pollution are
replaced by inputs with high pollution.

According to the results of calculating the deficiency and
excess consumption of inputs and production of outputs from the
SBM-based models, in both models of TE and EEE, chemical
fertilizers were the most important factors of unit inefficiency.
However, in the first model, phosphate and potassium fertilizers
should be reduced and in the second model, they are increased.
This is logical as phosphate and potassium fertilizers produce less
GHG than highly polluting inputs such as nitrogen. In other
words, these inputs replace high-polluting inputs to reduce the
damage to the environment (undesirable output) by keeping or
increasing the economic value of the activity (desirable output).
In a study done by Picazo-Tadeo et al. (2011), Nitrogen has been
one of the most important causes of eco-inefficiency of the
studied farmers. It is worth to mention that considering
different indicators for measuring environmental pressure also
leads to different EEE outcomes (Grassauer et al., 2021). For
example, the present study emphasizes on reducing nitrogen
input and increasing the input of phosphate fertilizers in
order to reduce GHG emissions, but if the phenomenon of
Eutrophication is considered as an indicator of environmental
pressure, as phosphate fertilizers are effective on this index
(Khoshnevisan, Rafiee, et al., 2013b), different results may be
obtained. However, the amount of phosphate fertilizer in the
studied saffron farms (average, 11.7 kg/ha) is less than this
amount in studies on other areas (Feizi et al., 2015).

FIGURE 4
Relationship between TE and EEE.
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In the EEEmodel used in this study, it is attempted to change the
way of using inputs and replace high-polluting inputs with low-
polluting inputs, while maintaining the desirable output as possible,
the GHG emissions can be reduced. As shown in Table 4, the average
optimal amount of production by considering the environmental
pressure, has been approximately equal to this rate in the
conventional efficiency model. However, to achieve optimal
efficiency, inefficient units should, on average, reduce the carbon
dioxide equivalent produced from their GHG as 560.81 kg (27.7%).
This change is achieved by replacing high-polluting inputs with low-
polluting inputs. Therefore, in the conventional TE model, the
percentage change of the optimal average consumption value is
lower than the actual consumption value of all inputs, while in the
EEE model, this value is increasing for low-polluting inputs and
decreasing for high-polluting inputs. Therefore, in order to achieve
full efficiency, inefficient farmers should reduce their consumption
of polluting inputs such as nitrogen, diesel fuel machines and
fungicides, and instead increase the use of electricity, manpower,
animal manure, phosphate and potassium inputs.

The relationship between TE and EEE is depicted in Figure 4.
According to this figure, the correlation between TE and EEE has
been positive. Also, among the rankings obtained from the two
calculated efficiency criteria, Spearman coefficient was equal to
0.775 and significant at the level of 1%. Therefore, as mentioned
before, EEE only calculates and analyzes the relative pressure on the
environment, and the amount of reduction in polluting inputs
should be higher than the amount calculated. Indeed, this
criterion by considering economic issues along with
environmental issues, is an easier and more appropriate approach
to be used by policy makers. This is especially evident in third world
countries with lower levels of economic prosperity.

5 Conclusion

Considering the importance of the environmental sustainability
conservation, this study aimed to calculate the EEE of saffron growers in
Ghaen County in Iran. Given the importance of compliance with the
requirements of the MBP in estimating the EEE, the efficiency model
consistent with theMBP of Arabi et al. (2017) was used and the amount
of GHG emissions (carbon dioxide equivalent) was used as an
undesirable output in this model. Unlike the conventional DEA
model, in these models, farm efficiency is also affected by
environmental variables, besides the economic variables, and the
units have EEE that in addition to maximum production, and using
the minimum input, can create the least environmental pollution.
Comparing the results of the mentioned model with the
conventional SBM model showed that there is a difference of 12%
between the average EEE and TE. Therefore, not considering the
environmental issues in estimating efficiency presents incorrect
results and leads to the continuation of inefficient and unorganized
use of inputs. Another result of this study is that the inconsistent use of
chemical fertilizers of phosphate and nitrogenwith the environment has
been one of the most important eco-inefficiencies of saffron growers in

the study area. This indicates the importance of using fertilizers
correctly and replacing them with manure. In addition, high diesel
fuel consumption is the second cause of eco-inefficiency. The main
reason for this is the use of old machines, disproportionate to the
cultivation level in saffron farms in Iran, and in order to achieve
sustainable cultivation of this crop, we should modify the equipment
used in the cultivation of this product. Field, 1994.
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