
GIS-based flood susceptibility
mapping using bivariate statistical
model in Swat River Basin, Eastern
Hindukush region, Pakistan

Zahid Ur Rahman1,2, Waheed Ullah3*, Shibiao Bai4*, Safi Ullah5,6,
Mushtaq Ahmad Jan7, Mohsin Khan8 and Muhammad Tayyab9

1Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing, China, 2University of Chinese Academy of Sciences, Beijing, China, 3Defense and
Security, Rabdan Academy, AbuDhabi, United Arab Emirates, 4College ofMarine Science and Engineering,
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and
Application, Nanjing Normal University, Nanjing, China, 5Environmental Science and Engineering
Program, Biological and Environmental Science and Engineering Division, King Abdullah University of
Science and Technology (KAUST), Thuwal, Saudi Arabia, 6Climate and Livability Initiative (CLI), King
Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 7Centre for Disaster
Preparedness and Management (CDPM), University of Peshawar, Peshawar, Pakistan, 8Department of
Biological Sciences, Ohio University, Athens, OH, United States, 9Institute of Natural Disaster Research,
School of Environment, Northeast Normal University, Changchun, China

Frequent flooding can greatly jeopardize local people’s lives, properties,
agriculture, economy, etc. The Swat River Basin (SRB), in the eastern
Hindukush region of Pakistan, is a major flood-prone basin with a long history
of devastating floods and substantial socioeconomic and physical damages. Here
we produced a flood susceptibility map of the SRB, using the frequency ratio (FR)
bivariate statistical model. A database was created that comprised flood inventory
as a dependent variable and causative factors of the flood (slope, elevation,
curvature, drainage density, topographic wetness index, stream power index,
land use land cover, normalized difference vegetation index, and rainfall) as
independent variables and the association between them were quantified. Data
were collected using remote sensing sources, field surveys, and available
literature, and all the studied variables were resampled to 30m resolution and
spatially distributed. The results show that about 26% of areas are very high and
highly susceptible to flooding, 19% are moderate, whereas 55% are low and very
low susceptible to flood in the SRB. Overall, the southern areas of the SRB were
highly susceptible compared to their northern counterparts, while slope,
elevation, and curvature were vital factors in flood susceptibility. Our model’s
success and prediction rates were 91.6% and 90.3%, respectively, based on the
ROC (receiver operating characteristic) curve. The findings of this study will lead to
better management and control of flood risk in the SRB region. The study’s
findings can assist the decision-makers to make appropriate sustainable
management strategies for the mitigation of future damage in the study region.

KEYWORDS

flood susceptibility map, frequency ratio (FR) model, Swat River Basin (SRB), eastern
Hindu Kush region, Pakistan

OPEN ACCESS

EDITED BY

Sandipan Das,
Symbiosis International University, India

REVIEWED BY

Zerouali Bilel,
University of Chlef, Algeria
Sajjad Hussain,
COMSATS Institute of Information
Technology, Pakistan

*CORRESPONDENCE

Waheed Ullah,
wullah@ra.ac.ae,

Shibiao Bai,
shibiaobai@njnu.edu.cn

RECEIVED 02 March 2023
ACCEPTED 27 June 2023
PUBLISHED 06 July 2023

CITATION

Rahman ZU, Ullah W, Bai S, Ullah S,
Jan MA, Khan M and Tayyab M (2023),
GIS-based flood susceptibility mapping
using bivariate statistical model in Swat
River Basin, Eastern Hindukush
region, Pakistan.
Front. Environ. Sci. 11:1178540.
doi: 10.3389/fenvs.2023.1178540

COPYRIGHT

© 2023 Rahman, Ullah, Bai, Ullah, Jan,
Khan and Tayyab. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 06 July 2023
DOI 10.3389/fenvs.2023.1178540

https://www.frontiersin.org/articles/10.3389/fenvs.2023.1178540/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1178540/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1178540/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1178540/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2023.1178540&domain=pdf&date_stamp=2023-07-06
mailto:wullah@ra.ac.ae
mailto:wullah@ra.ac.ae
mailto:shibiaobai@njnu.edu.cn
mailto:shibiaobai@njnu.edu.cn
https://doi.org/10.3389/fenvs.2023.1178540
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2023.1178540


1 Introduction

Floods are considered the major natural disasters globally,
posing significant threats to human lives, livelihoods, properties
as well as socio-cultural heritage (Billa et al., 2006; Samanta S. et al.,
2018b; Rentschler et al., 2022; Shen et al., 2022; Liu et al., 2023). The
number of major flood disasters in the last three decades was more
pronounced indicating climate change (Sarkar and Mondal, 2020;
Tariq et al., 2023). Flooding causes more than 2,000 deaths annually
and affects over 75 million people worldwide in different ways (Zou
et al., 2013; Rentschler et al., 2022; Abbas et al., 2023).

Pakistan is among the worst climate change-affected countries,
experiencing extreme hydrometeorological events (Bhatti et al.,
2020; Abbas et al., 2022; Baqa et al., 2022). The recent
catastrophic flooding events are the eye-witness of climate change
in Pakistan (Khan I. et al., 2022a; Shah et al., 2023). The country has
witnessed approximately 25 devastating floods between 1950 and
2020 that killed more than 9,088 people with a total estimated loss of
20 billion USD (Khan et al., 2021; Ahmed et al., 2023). Pakistan was
struck by one of the most devastating floods in its history in
2010 due to brutal monsoon precipitation that caused substantial
damages across the country (Gaurav et al., 2011; Khan et al., 2016;
Farooq et al., 2019), affecting around 20 million people in
78 districts, and killed 1,985 people causing an estimated
9.7 billion USD loss to Pakistan’s economy (F. Ullah et al., 2021;
Ahmed et al., 2023).

In 2012, heavy monsoon rains triggered floods in major parts of
the country, including the Khyber Pakhtunkhwa, Upper Sindh,
Southern Punjab, and Balochistan provinces (Saeed et al., 2021;
Shah et al., 2023). Following these devastating flooding events, the
country was struck by catastrophic flash flooding in August 2013
(Butt et al., 2020). In the recent monsoon floods of 28 August 2022,
Pakistan suffered 1,033 deaths, 949,858 people were affected, over
450,000 residential structures were damaged, 149 bridges were
destroyed, and 110 districts were affected (Crisis24, 2022;
NDMA, 2022; PMD, 2022; ReliefWeb, 2022). Overall, Pakistan
faced about 6 major floods in the last 12 years, i.e., 2010, 2011,
2012, 2013, 2020, and 2022, highlighting Pakistan’s vulnerability to
climate extremes (Ahmed et al., 2023; Majeed et al., 2023).

Although flooding is inevitable and hard to avoid, appropriate
analysis and susceptibility mapping techniques can assess and
manage future floods (Hussain et al., 2021; Henao and Nájera,
2022). Depending upon the flood’s nature, different information and
techniques are required for its assessment and management. These
include information from hydrological, meteorological, geo-
morphological, and socioeconomic sectors. Consequently, flood
susceptibility maps are drawn that greatly assist in flood
mitigation and planning by providing regional planners and
decision-makers with a better understanding of flood attributes
thus, ensuring a sustainable and safe future (Youssef et al., 2016;
Mahmood and Rahman, 2019; Hussain et al., 2021). Identifying
flood-prone locations and mapping the flood hazard areas is key to
its management and/or timely prevention (Hussain et al., 2023b).
Alternatively, selecting areas that have less exposure to flooding may
be an indication of ideal regions for residency and operation
development (Hizbaron et al., 2021).

A plethora of research has been done, which indicates that
accurate flood risk assessment and modeling can help decision-

makers in the development of sustainable risk reduction strategies
(Arnell and Gosling, 2016; Dawood et al., 2021; Malik et al., 2021)
and used both qualitative and quantitative techniques for flood
susceptibility assessment and mapping. Likewise, Saeed et al. (2021)
used Artificial Neural Network (ANN) algorithm to effectively
determine flood-inundated areas in Peshawar Vale with nine
geospatial flood causative factors. A study conducted by
Khoirunisa et al. (2021) used a GIS-based artificial neural
network (GANN) model based on a Back-Propagation Neural
Network (BPNN) to provide flood susceptibility; the proposed
method provided good accuracy in predicting flood susceptibility
of Keelung City, Taiwan. To model and simulate flood-prone
regions of the Johor River Basin, Malaysia, Kia et al. (2012) also
attempted to construct a flood model considering seven flood
causative factors utilizing ANN approaches and geographic
information systems (GIS). Similarly, Ahmadlou et al. (2019)
utilized an adaptive neuro-fuzzy interface system (ANFIS) for
flood susceptibility assessment in contrast with biogeography-
based optimization (BBO) and BAT algorithms. McGrath and
Gohl, (2022) also stressed the impact of meteorological variables
on flood vulnerability mapping using machine learning approaches.
Moreover; Liu et al. (2021) proposed a hybrid model by integrating
fuzzy membership value (FMV) and three machine learning models
of convolutional neural network (CNN), classification and
regression trees (CART), and support vector machine (SVM) for
flood assessment. In another study, Ha et al. (2022) combined
machine learning (ML) and analytical hierarchy process (AHP)
techniques to analyze and map flood hazards, vulnerabilities, and
risks in Quang Binh province, Vietnam. Recently, Liu et al. (2023)
utilized a hybrid approach, combining ResNet-18 and a hydrological
model based on remote sensing data, to create a map of global flood
susceptibility; Majeed et al. (2023) applied an integrated algorithm,
combining the AHP technique and frequency ratio (FR) model to
predict susceptibility to flash floods. The AHP, relative frequency
ratio (RFR), ANFIS, fuzzy variable theory, logistic regression, ANN,
Shannon’s entropy, and others are notable among them. Irrespective
of their inherent pros and cons, the performance of each technique is
dependent on the selected variables as well as the case study
(Tehrany et al., 2014; Hong et al., 2018; Kadam et al., 2018;
Ahmed et al., 2023). In addition, advanced GIS and remote
sensing (RS) techniques are prominently used for flood hazard
calculation and risk analysis modeling (Ali et al., 2016;
Khoirunisa et al., 2021; Tayyab et al., 2021).

GIS and RS are emerging tools that provide various types of
advanced data access and manipulation tools for flood susceptibility
mapping and its forecast with proper justification (Vojtek and
Vojteková, 2019; Rehman et al., 2022). Both GIS and RS images
can assist in assessing flood regions and are effective tools for
creating land use/land cover (LULC) maps and detecting their
changes (Feloni et al., 2020). This technology makes an
incredibly wonderful environment in which various models can
run and modify data to assess the impacts of flooding with coherent
and logical outcomes (Khosravi et al., 2016a). Moreover, these
techniques provide an authentic and simple way to prepare flood
susceptibility maps using the FR model (Sarkar and Mondal, 2020;
Islam et al., 2022). The FRmodel is a profoundly satisfactorymethod
for highly precise hazard evaluation (Althuwaynee et al., 2014; Ullah
and Zhang, 2020; Majeed et al., 2023). Rehman et al. (2022) and Shu
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et al. (2021) define FR as the probability of occurrence of a
phenomenon concerning the absence of a phenomenon. The FR
model is a bivariate statistical model that gives weightage to every
factor class of each variable and assesses its effects on flood
occurrence (Jebur et al., 2014; Ullah and Zhang, 2020; Shah
et al., 2023). It is a foremost well-known bivariate statistical
approach to determine the flood hazard zones (Ullah and Zhang,
2020; Rehman et al., 2022) and potential landslide zones (Wang
et al., 2020; Islam et al., 2022) based on the relationship between
their inventory (dependent) and causative factors (independent). As
a simple and widespread bivariate statistical method, the FRmodel is
commonly used in many research fields, including geosciences,
hazards and disaster management, physical sciences,
environmental sciences, etc., (Althuwaynee et al., 2014;
Arabameri et al., 2019; Rehman et al., 2022; Majeed et al., 2023).
Therefore, it is imperative to assess the degree of vulnerability to
flood hazards and develop a flood susceptibility map to reduce the
potential risks of floods in the future. It is worth mentioning that
flood susceptibility maps are also useful for policymakers and
planners to formulate flood risk management plans (Kia et al.,
2012; Esteves, 2013; Haghizadeh et al., 2017).

Swat River Basin (SRB) is experiencing frequent and intense
floods due to climatic variations and diverse topography. Over the
past few decades, this region has witnessed several catastrophic
flooding events, including the historic 2010 and 2022 floods (Figure
1). However, it is worth stating that a very limited number of studies
on flood susceptibility assessment and/or flood management have
been conducted in the SRB. Considering the SRB’s vulnerability and
exposure to flood hazards, there is an urgent need for flood
susceptibility mapping using advanced techniques and models.

Here we aimed to construct the first-ever flood susceptibility
mapping of the SRB, in the eastern Hindu Kush region of
Pakistan through a GIS-based FR model. Moreover, the study
determined the relative contributions of the selected flood-
causing factors in exacerbating the susceptibility of the region to
flooding. The study also evaluated the efficiency of the FR bivariate
statistical model in mapping the flood susceptibility of the SRB. We
believe that our study could provide valuable information to the
relevant stakeholders for effective flood risk management and
sustainable development.

2 Materials and methods

An integrated approach is adopted to construct a flood
susceptibility map for the SRB, eastern Hindu Kush region,
Pakistan. The flood susceptibility map was developed by
integrating remote sensing and field data on flood causal factors.
The overall methodology consists of seven main steps (Figure 2).
These include; 1) study area, 2) data collection and analysis, 3) flood
inventory map, 4) flood-causing factors, 5) frequency ratio (FR)
model, 6) flood susceptibility mapping, and 7) receiver operating
characteristic (ROC) technique. All these steps are discussed in
detail in the following sections.

2.1 Study area

This study covers the SRB, located in the eastern Hindu Kush
region of Pakistan, with geographical coordinates of 34° 35′60″and

FIGURE 1
Location map of the Swat River Basin (SRB) with elevation.
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35° 43′52″north latitudes and 72° 08′53″and 72° 30′50″east
longitudes (Khan W. et al., 2022; Islam et al., 2022). The region
covers a total area of 5,065.28 km2 (Nasir et al., 2020; Islam et al.,
2022). Across the basin, the northern parts contain high snow-
covered mountains featuring rough territory, while the southern
parts are rather plain having farmland along the riverbank. The
precipitation pattern in the high-altitude northern region is
influenced by winter precipitation received from the
Mediterranean Sea mainly in the form of snow (Ullah et al.,
2018; Rebi et al., 2023), whereas, the lower southern region is
dominated by summer monsoon rainfall (Khan et al., 2020; W;
Ullah et al., 2021). Extremely low winter temperatures facilitate
snow and glacier accumulation while the melting of snow and
glaciers is triggered by high summer temperatures (Hussain et al.,
2023a; Rahman et al., 2019; S; Ullah et al., 2019a; b, 2023).

River Swat originates from the Hindu Kush Mountains and
generally flows from the northern high-elevated areas to the
southern plains (Ahmad et al., 2018; Farooq et al., 2019; Dawood
et al., 2021; Islam et al., 2022). At Kalam, the river Ushu and river
Gabral converge into river Swat, which flows down through the
entire Swat District, joining River Panjkora in District Dir Lower,
and finally outflows into the River Kabul at Nisatta, District
Charsadda. Geomorphologically, the river channel is steep in the
northern area and gentle in the southern part. Due to the physical
terrain, flash floods dominate the upstream areas, and river floods in

the gently sloping low-lying areas of the basin (Mahmood and
Rahman, 2019; Rahman et al., 2019; Nasir et al., 2020) such as
(Figure 1).

The approximate altitude of the basin in the northern area is
5800 m which gradually decreases up to 710 m downstream at
Shamozai valley. Swat River is a natural living space for fish and
birds and a wellspring of irrigation and electric power generation.
Currently, three hydroelectric power plants with a total 123 MW
capacity are operational on water from the river Swat and one more
hydroelectric power plant with a capacity of 740 MW of electricity is
under construction (Dawood et al., 2021). The region experiences
disastrous floods almost yearly, especially in the monsoon season
between June and September. Climate change, complex topography,
and socioeconomic vulnerability in the region intensify the risk of
flooding in the study area (Rahman et al., 2019; Dawood et al., 2021).

SRB is one of the major flood-prone basins in Pakistan (Ahmad
et al., 2015; Nasir et al., 2020). The diverse climatic conditions, complex
topography, and fragile socioeconomic conditions have exacerbated the
risk of flooding in the region (Mahmood and Rahman, 2019). The
region has a long history of devastating floods, which caused substantial
socioeconomic and physical damages (Khan et al., 2021). In 2010, the
monsoon system caused heavy rainfalls, leading to disastrous floods in
various tributaries of the Swat, ultimately destroying whatever stood in
its path (Butt et al., 2020; Hussain et al., 2021). The deadly water surge
started in the mountainous region, while the peculiar terrain of the

FIGURE 2
Flow chart showing steps adopted for the construction of flood susceptibility map in the SRB.

Frontiers in Environmental Science frontiersin.org04

Rahman et al. 10.3389/fenvs.2023.1178540

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1178540


valley gave this surge an enormous force that destroyed infrastructure,
human settlements, buildings, cropped lands, irrigation networks
highways, and bridges, and made communication inaccessible
(Tehrany et al., 2014; Farooq et al., 2019). It has been reported that
in the 2010 floods, a total of 2,751 families were displaced, 988 houses
and 26 water channels were completely or partially damaged in the
region (Butt et al., 2020). Similarly, on 29 August 2020, a heavy rainfall-
induced flash flood in the Shagram torrent of the SRB, resulted in the
deaths of at least 14 people coupled with complete or partial damages to
45 houses, and over 3 bridges (Nasir et al., 2020). Despite the frequent
and intense occurrence of flooding in the SRB, no suitable measures
have been taken in the region so far to hinder or reduce the losses from
flood hazards.

2.2 Data collection and analysis

To develop a flood susceptibility map of the SRB, various types of
data were collected from several government agencies and official web
sources, as outlined in Table 1. Literature and historical flood data
were collected from the National Disaster Management Authority
(NDMA), Pakistan, Provincial Disaster Management Authority
(PDMA), Khyber Pakhtunkhwa, and Regional Irrigation
Department Swat. The Advanced Spaceborne Thermal Emission
and Reflection Radiometer Digital Elevation Model (ASTER DEM)
with a 30 m spatial resolution was obtained from the official website of
the National Aeronautics and Space Administration (NASA) (www.
search.earthdata.nasa.gov.us). Land use/land cover (LULC) imagery
was downloaded from the Environmental Systems Research Institute
(ESRI) 2020 LULC data. Landsat 8 (OLI) imagery was obtained from
the official website of the United States Geological Survey (USGS)
(https://earthexplorer.usgs.gov), and the average annual rainfall of the
case study was obtained using the Tropical Rainfall Measuring
Mission (TRMM) data, which were retrieved from the NASA
official website (https://gpm.nasa.gov/data) (S. Ullah et al., 2018;
W; Ullah et al., 2019; Arshad et al., 2021). The amalgamation and
analysis of these multiple data sources facilitated the creation of the
flood susceptibility map of the SRB.

2.3 Flood inventory map

To study the correlation between flood-causing factors and flood
occurrence, a database of historical floods and their damages is very

important (Kia et al., 2012; Liu et al., 2021). Appropriate data with
high accuracy are vital to constructing the flood inventory mapping
(Tehrany et al., 2015; Ullah and Zhang, 2020). In the current study, a
flood inventory map was prepared with a total of 170 flood-affected
locations identified in the whole SRB through a field survey using
handheld GPS and satellite imagery. The points of inundation were
validated with historical flood data and previous reports of NDMA
Pakistan, PDMA Khyber Pakhtunkhwa, and Regional Irrigation
Department Swat, Pakistan. The flood-affected locations were
divided into 51 (30%) testing points and 119 (70%) training
points using the geo-statistical tool in ArcGIS 10.2.2 (Figure 3).
The training points were randomly used for the development of the
model whereas; the efficiency of the model was validated with the
testing points.

2.4 Flood-causing factors

To build a comprehensive strategy for assessing flood
susceptibility, it is critical to determine the impact and linkage
between flood-causing factors and flood occurrence (Wang et al.,
2018; El-Magd, 2019; Khoirunisa et al., 2021; Ha et al., 2022). It
should be noted that various natural and anthropogenic factors,
which cause floods in a specific region and the same factors may
not be effective for another region. Therefore, to get reliable
results, the selection of relevant factors is extremely important
(Tehrany et al., 2015; Zhao et al., 2022). A total of nine flood-
causing factors were selected due to their critical roles in causing
flooding in the study region (Ullah and Zhang, 2020; Saeed et al.,
2021). These factors include; slope, elevation, curvature, drainage
density, topographic wetness index (TWI), stream power index
(SPI), LULC, normalized difference vegetation index (NDVI),
and rainfall. These selected factors have been used by various
studies to assess the relationship between flood-causing factors
and flood occurrence in the study area and other regions
(Samanta S. et al., 2018; Sarkar and Mondal, 2020; Thongley
and Vansarochana, 2021). All flood-causing variables were
changed into raster maps and resampled with 30 m × 30 m
resolution (pixel) (Jensen, 2005; Sabatakakis et al., 2013). The
selected factors were reclassified for FR analysis using the popular
natural breaks (Jenks) method by reclassifying (spatial analyst)
tools in ArcGIS 10.2 (Ullah and Zhang, 2020; Majeed et al., 2023).
The selected flood-causing factors are discussed one by one
below.

TABLE 1 Types of data and their sources.

S. No Type of data Source of extracted data Extracted data

I Flood historical data NDMA, PDMA, and Irrigation Department Literature

II ASTER DEM (Grid) 30 m × 30 m
resolution

NASA’s official website https://search.earthdata.
nasa.gov

Hillshade, Slope, Elevation, Curvature, Drainage Density,
and TWI

III LULC data (Grid) 10 m × 10 m resolution ESRI 2020 data, https://livingatlas.arcgis.com/landcover/ Land use/land cover map

IV Landsat8 Imagery (band5, band4) USGS official website https://earthexplorer.usgs.gov NDVI map

V Precipitation (TRMM data) NASA’s official website https://giovanni.gsfc.nasa.gov/
giovanni/

Rainfall map
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2.4.1 Slope
The slope is one of the most important factors in hydrological

studies because it controls surface runoff and water flow intensity
that incites soil erosion and vertical infiltration process (Tehrany
et al., 2015; Khosravi et al., 2016b). The area with a higher slope
gradient has low exposure to flooding while the area with a low slope
gradient is highly exposed to flooding (Liuzzo et al., 2019). We
derived a slope map from the ASTER DEM of 30 m resolution
utilizing the slope tool in ArcGIS and categorized it into five sub-
classes ranging from 0o–75.74o (Figure 4A).

2.4.2 Elevation
The elevation is a prime factor in flood vulnerability assessment

(Rahmati et al., 2016; Das, 2019; Shen et al., 2021). Usually, water
flow is from high-altitude areas towards low-altitude areas, so low-
lying areas may get flooded rapidly. The probability of flooding is
higher in low-elevated areas as compared to the areas of high
elevation (Das, 2018; Liuzzo et al., 2019; Elkhrachy, 2022). The
elevation map of the SRB was prepared from the ASTER DEM using
spatial analyst tools in the ArcGIS environment and split into five
categories. As shown in Figure 4B, the altitude of the study area
ranges from 709 to 5,847 m above mean sea level.

2.4.3 Curvature
Curvature is another extremely necessary factor for flood

mapping. Curvature is the rate at which gradients change in a
specific direction, and the values indicate the morphological feature

of topography (Wang et al., 2015; M Amen et al., 2023). The
curvature map of the SRB was prepared from the ASTER DEM
and divided into three classes; concave, flat, and convex (Figure 4C).
A negative value is allocated to upward concave curvature, a zero
value is allocated to the flat surface whereas, a positive value
indicates a convex curvature (Charlton et al., 2006; Ullah and
Zhang, 2020). Areas of zero values (flat surface) are most
exposed to flooding as compared to the convex and concave
curvature (Nachappa et al., 2020).

2.4.4 Drainage density
Drainage density is characterized as the entire length of the

waterways and streams in a river basin divided by the whole area of
the basin (Rahmati et al., 2016). Areas of higher drainage density
have greater chances of flooding whereas; areas of lower drainage
density have fewer chances of flooding (Paul et al., 2019). Drainage
density measures how well and how poorly the basin is drained by
streams. To calculate the drainage density of the SRB, the stream
order was taken from the ASTER DEM through the line density tool
in the ArcGIS environment and classified into five classes utilizing
the natural break (Jenks) tool (Figure 4D). The following equation
(Eq. (1)) was used to calculate the drainage of the SRB.

Dd � ∑n
1L

A
(1)

Where drainage density is denoted by Dd, the length of
waterways is signified by L, and the total area of the basin is
signified with symbol A.

2.4.5 Topographic wetness index (TWI)
The topographic wetness index (TWI) is another important

factor for flood susceptibility mapping. TWI has a direct relationship
with flood vulnerability (Chapi et al., 2017; Costache, 2019). The
region with high TWI is more vulnerable to flooding whereas, the
region with low TWI is less vulnerable to flooding (Paul et al., 2019).
The TWI was calculated from the ASTER DEM with the following
formula (Eq. 2).

TWI � ln
AS

tan β( )( ) (2)

Where the upstream contributing area is denoted by AS and the
gradient of the slope is denoted by β. The final TWImap was divided
into five classes ranging from 1.96 to 19.73 (Figure 4E).

2.4.6 Stream power index (SPI)
The stream power index (SPI) refers to an estimate of the

erosional power of water flows in a catchment area (Jebur et al.,
2014;Wang et al., 2023). A greater distance to the stream and a lower
SPI increases the chances of flood occurrence (Tehrany et al., 2014;
Wang et al., 2023). The SPI map was constructed with the given
equation (Eq. 3).

SPI � AS tan β (3)
Similar to TWI, the upstream drainage area is denoted by AS,

and the slope gradient (in degrees) is denoted with β. The SPI map of
the case study was prepared in the ArcGIS environment and split
into five classes ranging from −13.82 to 14.54 (Figure 4F).

FIGURE 3
Flood inventory map, showing the training and testing points in
the SRB.
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2.4.7 Land use/land cover (LULC)
Land use/land cover (LULC) is vital in producing water runoff

and causing floods in a catchment area (Khosravi et al., 2016b; Das,
2019; Riazi et al., 2023). The strong nexus between LULC and
flooding is unquestionable since land use and land cover have their
influence on increasing or reducing the flow of water (Samanta S.
et al., 2018; Hussain et al., 2021). The LULC data were collected from
the ESRI 2020 data source of global land use and land cover
published in July 2021 (Areu-Rangel et al., 2019; Karra et al.,

2021; Tariq and Mumtaz, 2022). The LULC data were classified
into ten classes, namely, water bodies, wood trees, grassland, flooded
vegetation, agriculture, scrub/shrub, built-up area, barren land,
snow cover, and clouds (Figure 4G).

2.4.8 Normalized difference vegetation index
(NDVI)

Normalized difference vegetation index (NDVI) is another main
ecological flood-causing factor. The normal value of the NDVI is

FIGURE 4
Spatial distributions of the flood-causing factors in the SRB; (A) Slope, (B) Elevation, (C)Curvature, (D)Drainage density, (E) TWI, (F) SPI, (G) LULC, (H)
NDVI, and (I) Rainfall.
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ranging from −1 to +1 (Khosravi et al., 2016b; Riazi et al., 2023). The
positive NDVI value is considered active vegetation coverage like
dense forest, the value close to zero represents barren areas, while the
negative values are referred to the water body (Wang et al., 2020;
Ziwei et al., 2023). For the preparation of the NDVI map, satellite
data were collected from the Landsat 8 collection 1, of the USGS
department, and the value was calculated with the following formula
(Eq. 4).

NDVI � NIR − Red

NIR + Red
(4)

Where the NIR represents near-infrared light and the Red is the
visible light. The NDVI map of the SRB was categorized into five
sub-categories ranging from −0.26 to 0.62 using the natural break
tool (Figure 4H).

2.4.9 Rainfall
`Heavy rainfall is a common flood-triggering factor. According to

Liuzzo et al. (2019) and Paul et al. (2019), rainfall has a direct
relationship with flood hazards. For rainfall map preparation, the
TRMM data were downloaded for the period 2000–2020 (Arshad
et al., 2021; W; Ullah et al., 2021). The rainfall map of the SRB was
classified into five sub-classes (Figure 4I). Since the TRMM data have
performed well over different climatic regions of Pakistan, including the
study region (Arshad et al., 2021); therefore, we preferred the use of this
dataset over other gridded precipitation products.

2.5 Frequency ratio (FR) model

Flood susceptibility mapping is the foremost important method to
identify the high-risk zone and the factors-affecting floods in a river
basin. Flood is triggered by natural and socioeconomic factors and it is
usual to assume that future floods will be caused by the same causative
factors as the previous floods (Tehrany et al., 2013; Kadam et al., 2018;
Moazzam et al., 2018). The FR model is a quantitative bivariate
statistical analysis technique commonly used for flood and landslide
susceptibility mapping (Tehrany et al., 2015; Islam et al., 2022). The FR
model shows the spatial relationship between flood inventory
(dependent factors) and flood-causing factors (independent factors).
In the current study, the FR bivariate statistical model was used to
prepare the flood susceptibility map of the SRB. The FR value of each
factor was calculated by determining the quantitative relationship
of independent factors with respect to flood occurrence (Pradhan
and Lee, 2010; Khosravi et al., 2016a; Ahmadlou et al., 2019). When
the FR weightage is more than 1, it indicates a strong correlation
whereas, when the weightage is below 1, it shows a weak correlation
between dependent and independent factors (Pradhan and Lee, 2010;
Akgun et al., 2012; Rehman et al., 2022). The FR is characterized as the
percent of the flood locations within the factor class divided by the
percentage of individual class areas. The FR model was calculated with
the following Eq. 5.

FR � FP/P

FA/A (5)

Where FP is the flood point in factor class, P is the total flood
Points, FA is the factor class area, and A is the total area.

After that, the RF was calculated to normalize the FR in
probability ranges (0, 1) using the following Eq. 6.

RF � FRoffactor class

∑FR offactor classes
(6)

After the calculation of RF, the prediction rate (PR) was also
calculated to find the interrelationship between flood-causing
factors and the training data set using the given Eq. 7.

PR � RFmax − RFmin( )
RFmax − RFmin( )Min

(7)

2.6 Flood susceptibility mapping

The flood susceptibility map of the SRB was developed by
calculating and classifying the flood susceptibility index (FSI).
The FSI indicates the degree of susceptibility of the area to flood
occurrences. Areas with greater FSI indicate high susceptibility to
flooding occurrence and vice versa. The FSI was calculated based on
the RF values and PR values, which were determined in the above
Eqs 6, 7, respectively. The calculation of FSI is shown in Eq. 8.

FSI � ∑9

i�1PRi × RFi (8)

In the above equation, 9 indicates flood-causing factors (slope,
elevation, curvature, drainage density, TWI, SPI, LULC, NDVI, and
rainfall). The final flood susceptibility map was categorized into five
categories: very high, high, moderate, low, and very low (Figure 5).

2.7 Receiver operating characteristic (ROC)
technique

The performance and efficiency of the flood susceptibility map
were validated with the ROC technique. The ROC curve is one of the
most effective techniques used for susceptibility map validation
(Chung and Fabbri, 2003; Tehrany et al., 2013; Liuzzo et al.,
2019). The ROC curve was developed with the ArcSDM tool in
ArcGIS 10.2. The training points were used to check the success rate
whereas, the testing points were used for the prediction rate of the
flood (Zhao et al., 2019; Tayyab et al., 2021). The area under the
curve (AUC) for the success and the prediction rates were 0.916 and
0.903, respectively, which are significant and greatly acceptable in
hydrometeorological studies (Sharif et al., 2016; Wang et al., 2023).

3 Results

3.1 Relationship of flood-causing factors and
flood occurrence

We developed a flood susceptibility map of the SRB by
employing FR bivariate statistical model. As shown in Table 2,
the relationship between flood-causing factors and flood occurrence
was assessed using FR values. The slope was classified into five
classes: 0°–12°, 13°–23°, 24°–33°, 34°–44°, and 45°–76°. Overall, FR
weightage had a negative relationship with slope. For example, the
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lower slope class (0°–12°) has a greater FR weightage (4.64). In
contrast, as the slope increased, the FR weightage decreased
gradually until the highest degree slope class (45°–76°) had a zero
FR value. This means that locations with a steep slope are less likely
to flood, and vice versa. In terms of slope spatial pattern, the
northern part of the SRB has a higher slope than the southern
part (Figure 4A). In a nutshell, the northern areas of the SRB are less
prone to flooding than the southern parts.

Furthermore, when the elevation of the area increased, the FR
value declined steadily, resulting in a negative relationship between
the two variables. The first two classes of lowest elevated places
(709–1,577 m and 1,578–2,401 m) have greater FR values (3.42 and
1.07) than the next three higher elevation classes, according to
Table 2. Recent studies show that areas with the highest
elevations are less prone to flooding than those with lower
elevations (Yu et al., 2022; Majeed et al., 2023; Wang et al.,
2023). The regional elevation pattern of the SRB (Figure 4B)

verifies the findings that the high-altitude areas are less
susceptible to flooding. In addition, the curvature map has been
divided into three categories: concave, flat, and convex. Concave,
flat, and convex surfaces had FR values of 0.43, 1.34, and 0.11,
respectively. Floods are more likely to occur in flat areas than in
concave or convex areas, as shown by the FR values and consistent
with the curvature map (Figure 4C).

We further analyzed our data based on drainage density values
and have classified SRB into five major categories (i.e., 0–44, 45–96,
97–158, 159–235, and 236–377). Our analysis indicated a positive
correlation between drainage density and FR values. As an example,
the highest FR value was assigned to class 5 (8.26) followed by class 4
(4.32), class 3 (0.81), class 2 (0.34), and class 1 (0.00). These results
can be confirmed by the spatial distribution of the drainage density
in the study area (Figure 4D). On the other hand, data on the TWI
were obtained and then divided into five classes for analysis. Class
1 had the lowest FR value (0.09) and class 5 had the highest (6.23),

FIGURE 5
Flood susceptibility map, showing susceptible areas in the SRB.
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TABLE 2 Details of the flood-causing factors and their FR values.

Factor Class Points % points Class area % class area FR value RF

Slope 1 81,900 77.12 994,742 16.64 4.64 0.82

2 19,800 18.64 1,292,383 21.62 0.86 0.15

3 2,700 2.54 1,614,896 27.01 0.09 0.02

4 1800 1.69 1,452,839 24.30 0.07 0.01

5 0 0.00 624,220 10.44 0.00 0.00

Elevation 1 81,900 77.12 1,347,456 22.54 3.42 0.74

2 21,600 20.34 1,138,231 19.04 1.07 0.23

3 2,700 2.54 1,021,585 17.09 0.15 0.03

4 0 0.00 1,298,419 21.72 0.00 0.00

5 0 0.00 1,173,389 19.62 0.00 0.00

curvature 1 7,200 6.78 936,437 15.66 0.43 0.23

2 97,200 91.53 4,090,702 68.42 1.34 0.71

3 1800 1.69 951,941 15.92 0.11 0.06

Drainage density 1 0 0.00 2,240,618 37.48 0.00 0.00

2 10,800 10.08 1,786,244 29.88 0.34 0.02

3 16,200 15.13 1,121,793 18.76 0.81 0.06

4 46,800 43.70 605,173 10.12 4.32 0.31

5 33,300 31.09 225,106 3.76 8.26 0.60

TWI 1 2,700 2.54 1,760,650 29.45 0.09 0.01

2 28,800 27.12 2,172,288 36.33 0.75 0.07

3 36,000 33.90 1,306,215 21.85 1.55 0.15

4 17,100 16.10 544,893 9.11 1.77 0.17

5 21,600 20.34 195,076 3.26 6.23 0.60

SPI 1 37,800 35.59 1,612,021 26.96 1.32 0.17

2 26,100 24.58 1,290,763 21.59 1.14 0.15

3 18,900 17.80 1,810,364 30.28 0.59 0.08

4 6,300 5.93 1,038,671 17.37 0.34 0.04

5 17,100 16.10 227,212 3.80 4.24 0.56

LULC 1 7,200 6.78 45,772 0.77 8.86 0.49

2 4,500 4.24 1,198,919 20.05 0.21 0.01

3 0 0.00 36,961 0.62 0.00 0.00

4 0 0.00 9 0.00 0.00 0.00

5 10,800 10.17 219,664 3.67 2.77 0.15

6 16,200 15.25 2,599,766 43.48 0.35 0.02

7 63,000 59.32 638,677 10.68 5.55 0.31

8 4,500 4.24 728,735 12.19 0.35 0.02

9 0 0.00 510,691 8.54 0.00 0.00

10 0 0.00 10 0.00 0.00 0.00

(Continued on following page)
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showing that class 5 is very susceptible to flooding and vice versa
(Figure 4E). In the case of SPI, the map was divided into five classes:
Class 1 (−13.82 to −4.48), class 2 (−4.47 to −0.08), class 3
(0.09–1.86), class 4 (1.87–4.42), and class 5 (4.43–14.54). The
highest FR value (4.24) was allocated to class 5, thus indicating a
direct relationship between the SPI value and the FR weightage.
Interestingly, lower flat areas situated on the southern belt of the
SRB have the lowest SPI, whereas the mountainous and steep slope
areas situated on the northern side of the SRB have higher SPI
(Figure 4F).

Similarly, the data obtained on land use/land cover (LULC) was
classified into ten distinct classes: water bodies, wood trees,
grassland, flooded vegetation, agriculture, scrub/shrub, build-up
area, bare land, snow cover, and cloud (Figure 4E). According to
our findings, the highest FR value was assigned to water bodies
(8.86), followed by build-up areas (5.55) and agriculture areas (2.77).
We further retrieved and analyzed data regarding the normalized
difference vegetation index (NDVI) of the SRB. Of the total 5 NDVI
classes, excluding the first class, the FR value was positive for the
remaining four classes. The highest FR values were allocated to class
2, and class 3 (2.35, and 1.19, respectively). Besides, the rainfall data
were divided into five classes, the highest FR values were calculated
to be 1.62, 1.83, and 1.02, for classes 1, 2, and 3, respectively
(Figure 4I).

3.2 Flood susceptibility index (FSI)

Overall, the FSI values in our study revealed a broad range,
ranging from 2,896 to 97,44. The map was categorized into five
classes based on the natural break technique, namely, very low
(2,896 to 16,996), low (16,997 to 27,581), moderate (27,582 to
39,280), high (39,281 to 59,142), and very high (59,143 to
97,440) (Figure 5). Our findings generally indicate that very high
and high flood-susceptible areas are those situated in the southern
plain areas along the river banks. In contrast, the northern parts of
the SRB have a relatively steep slope, high elevation, convex
curvature, high SPI and NDVI, vegetation land cover, low
drainage density, and TWI with a minimum tendency of rainfall,

which can be attributed to their lower susceptibility to flood hazards.
Furthermore, our findings indicate that approximately 26% of the
study area is characterized as being at a very high or high
susceptibility to flooding, 19% as moderate, while the remaining
55% is classified as having low or very low susceptibility to flooding
in the SRB. (Figure 6).

3.3 Validation of flood susceptibility map

The validity of the flood susceptibility model was assessed
through a rigorous process of comparing the flood inventory
data, which represents past flood occurrences, with the newly
developed flood susceptibility map. In the validation process,
flood testing points (30%) that have not been used for the
preparation of the FR model are generally considered as the

TABLE 2 (Continued) Details of the flood-causing factors and their FR values.

Factor Class Points % points Class area % class area FR value RF

NDVI 1 3,600 3.39 1,225,636 20.50 0.17 0.03

2 37,800 35.59 907,311 15.17 2.35 0.44

3 26,100 24.58 1,232,992 20.62 1.19 0.22

4 26,100 24.58 1,470,790 24.60 1.00 0.19

5 12,600 11.86 1,142,460 19.11 0.62 0.12

Rainfall 1 57,600 53.78 1,978,334 33.23 1.62 0.29

2 18,000 16.81 545,959 9.17 1.83 0.33

3 9,900 9.24 540,975 9.09 1.02 0.18

4 8,100 7.56 624,725 10.49 0.72 0.13

5 13,500 12.61 2,264,041 38.03 0.33 0.06

FIGURE 6
Percentage of the flood susceptible area in the SRB.
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future flood location. It is noteworthy that the AUC value of the
success rate was 91.6% and the prediction rate was 90.3%,
respectively (Figure 7). These results demonstrate the
effectiveness of the flood susceptibility model in predicting the
likelihood of future floods and provide valuable insights for flood
risk management and mitigation.

3.4 Contributions of flood-causing factors in
flood susceptibility

Overall, the study provides valuable insights into the factors that
contribute to flood susceptibility in the SRB. As shown in Table 3,
the slope with the highest PR value (3.01) has emerged as the
foremost contributor to flood susceptibility in the study area.
Moreover, elevation and curvature have the second and third
highest PR values at the rate of 2.71 and 2.41, respectively,
suggesting their prominent roles in flood susceptibility. In
contrast, rainfall is considered the least flood-contributing factor
bearing 1 PR value. The overall results infer that the susceptibility of
the SRB in general, and low-lying southern flat areas in particular,
are more dependent on the topographic and meteorological
conditions in northern mountainous regions. The spatial pattern

of flood susceptibility indicates that the areas located in the southern
plain along the river banks are highly susceptible to floods.

4 Discussion

In this work, we created a flood susceptibility map of the SRB in
the Eastern Hindukush region of Pakistan by applying a GIS-based
bivariate statistical model, and further leveraged the correlation
between various flood-causing variables and the occurrence of
floods in the area. To achieve our desired goals, data were
obtained and analyzed on a total of nine independent variables
(slope, elevation, curvature, drainage density, TWI, SPI, LULC,
NDVI, and rainfall).

Consistent with several previous reports by Sarkar and
Mondal, (2020) and Ullah and Zhang, (2020), our analysis
showed a negative correlation between slope and flood
occurrence, highlighting the fact that low-lying areas in the
southern parts of the SRB are highly susceptible to floods.
Similarly, elevation was found inversely proportional to flood
susceptibility, indicating that elevated areas with steep slopes are
relatively less susceptible to flood hazards compared to their
counterparts. These findings are largely concordant with similar
previous reports (Samanta R. K. et al., 2018; Majeed et al., 2023).
Based on our curvature map, we have found that floods are more
likely to hit flat areas in contrast to concave or convex areas. For
example, we have seen maximum areas in the SRB are flat
surfaces, especially the areas nearby the river and tributaries,
thus making them highly susceptible to flooding. This is
understandable as topography or curvature of the area plays
an important role in flood susceptibility. Our analysis together
with a set of literature (Khosravi et al., 2016b; Das, 2019; M Amen
et al., 2023) has confirmed that flat areas are relatively more
susceptible to floods than convex or concave areas. Our results
also support earlier studies, reporting about 83% of floods on flat
and/or convex surfaces (Ullah and Zhang, 2020; Amen et al.,
2023).

Drainage density is an important flood-causing factor and has a
direct relationship with flooding as it depends on surface runoff
(Tehrany et al., 2015; Kadam et al., 2018). The likelihood of flooding
is increasing as the drainage density increases and the likelihood of
flood is decreasing with decreasing drainage density (Ullah and
Zhang, 2020; Ha et al., 2022). Consistent with these findings and as
confirmed by our spatial distribution of the drainage density data,
we uncovered a direct relationship between floods and drainage
density, substantiating previous reports. TWI represents the soil
moisture status of an area and the saturated source of topography. It
is a very important factor for the prediction of future floods because
there is a direct relationship between TWI and flood occurrence
(Sarkar and Mondal, 2020). Our analysis found that TWI was
positively associated with floods in the SRB, thus supporting all
previous assertions (Khoirunisa et al., 2021). The designated
relationship between the SPI value and the FR weightage shows
that lower flat areas situated in the southern belt of SRB have low SPI
whereas, the mountainous and steep slope areas have high SPI. This
is in line with a previous study warranting that flooding is more
likely to occur in an area with a lower SPI (Arnell and Gosling, 2016;
Wang et al., 2023).

FIGURE 7
ROC curve for validation of flood susceptibility map of the SRB;
(A) Success curve and (B) Prediction curve.
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There is a solid relationship between LULC and flood since land
use strongly influences decreasing and increasing surface runoff
(Ahmad et al., 2018; Ziwei et al., 2023). A LULC pattern determines
the type of land use by individuals and natural processes (Ullah et al.,
2019b). The area where there is no vegetation covers bear more
probability of flooding and soil erosion, and the areas are considered
highly vulnerable to floods. Consistently, we have found that areas,
such as agricultural land, and built-up areas were highly likely to face
flooding. This suggests that rapid urbanization in the southern flat
areas is greatly responsible for changes in hydrological processes and
disturbing drainage networks, ultimately resulting in flooding (Butt
et al., 2020). Likewise, ever-growing croplands along the river banks
are highly susceptible to flooding (Youssef et al., 2016).

The NDVI is another key flood-causing factor in the way that
lower NDVI weights indicate high flood susceptibility while higher
NDVI weights represent a lower risk of flooding (Ullah et al., 2019b;
Rehman et al., 2022). Alternatively, the lowest NDVI values
represent unhealthy vegetation, mostly occupying the elevated
snowcapped northern areas (Shrestha et al., 2020; Ziwei et al.,
2023). Based on the NDVI measurements, our analysis revealed
that all, except one, classes are highly flood susceptible. Rainfall is
undoubtedly the most common cause of floods in any area where
sudden and heavy rainfall can exceed the capability of an area and
thus lead to floods (Samanta R. K. et al., 2018). Using rainfall data
from NASA, we found that southern parts of the SRB were
comparatively more susceptible to floods than its northern
territories. This is because SRB has semi-arid climatic conditions
where the rainfall pattern in lower southern parts is influenced by
the summer monsoon, while in upper northern parts, the rainfall
pattern is dominated by the winter rainfall, occurring due to the
western disturbance of the Mediterranean Sea (Khan et al., 2020;
Wang et al., 2020; Hussain et al., 2021; Xu et al., 2022).

Furthermore, we calculated FSI by translating FR and PR values
for all variables under our investigation. Overall, the FSI value
ranged from 2,896 to 97,440. The resulting flood susceptibility
map showed that very high and high flood susceptible areas were
mostly situated in the southern plain areas and along the river banks.
Thus, people living in the low-lying southern parts and along the
river banks are more exposed to both riverine and flash floods. It
should be noted that the southern parts of the SRB have lower slope

angles, less elevation, flat curvature, lower SPI, and NDVI, improper
land use, high drainage density, and TWI with maximum rainfall
intensity, which could be the possible reasons for their higher
susceptibility to floods. On the other hand, the northern parts of
the SRB have a relatively steep slope, high elevation, convex
curvature, high SPI and NDVI, vegetation land cover, low
drainage density, and TWI with a minimum tendency of rainfall,
which can be attributed to their lower susceptibility to flooding
hazards. The results further show that about 26% of areas are very
high and highly susceptible to flooding, 19% are moderate whereas
55% are low and very low susceptible to flood in the SRB. The AUC
value of the prediction rate was 90.3% and that of the success rate
was 91.6%, which is highly acceptable and important in
hydrometeorological studies (Sharif et al., 2016; Tayyab et al.,
2021; Wang et al., 2023).

The prediction rate (PR) of every flood-causing factor was
calculated in order to find out the maximum and minimum
contribution of an individual factor in exacerbating flood
susceptibility in the SRB (Ullah and Zhang, 2020; Wang et al.,
2020; Hussain et al., 2021). Collectively, the slope has the highest PR
values (3.01), showing that the slope is the prime contributor to
exacerbating the susceptibility of the study area to flooding.
Moreover, elevation and curvature have the second and third-
highest PR values at the rate of 2.71 and 2.41, respectively. This
suggests that both elevation and curvature also significantly
contributed to flood susceptibility in the SRB. Rainfall, however,
emerged as the least flood-contributing factor bearing 1 PR value.
This is not surprising as a similar study by (Ullah and Zhang, 2020)
identified rainfall as the least contributor to flooding in the Panjkora
river basin.

5 Conclusion

The present work generated a GIS-based flood susceptibility
mapping of the SRB using the FR bivariate statistical model. The
results indicate that flood susceptibility of the SRB in general, and
low-lying southern flat areas in particular, are more dependent
on the topographic and meteorological conditions of the
northern mountainous regions. The spatial pattern of flood

TABLE 3 PR values of flood-causing factors, and their contributions to flood Susceptibility.

Factors Min RF Max RF Max-min RF (Max-min) Min RF PR value

Slope 0.00 0.82 0.82 0.27 3.01

Elevation 0.00 0.74 0.74 0.27 2.71

Curvature 0.06 0.71 0.66 0.27 2.41

Drainage Density 0.00 0.60 0.60 0.27 2.21

TWI 0.01 0.60 0.59 0.27 2.18

SPI 0.04 0.56 0.51 0.27 1.88

LULC 0.00 0.49 0.49 0.27 1.80

NDVI 0.03 0.44 0.41 0.27 1.51

Rainfall 0.06 0.33 0.27 0.27 1.00
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susceptibility shows that highly susceptible areas were primarily
located along the river banks and in the southern plain of the
SRB. Based on the ROC curve, the efficiency of the model was
found to be high with a success rate of 91.6% and a prediction rate
of 90.3%. Of the nine independent variables; slope, elevation, and
curvature played an intensifying role in increasing flood
susceptibility in the SRB. The findings of this study provide
useful information for land-use planners, engineers, decision-
makers, and relevant authorities to effectively manage flood
hazards in the SRB. The findings of this study could be used
as leverage for developing flood risk assessment plans, devising
mitigation measures, establishing early warning systems, etc., in
the study region. Based on the study findings, we recommend the
adaptation of a comprehensive approach that integrates multiple
flood management and mitigation strategies, including risk
assessment, evacuation plans, early warning systems, resilient
infrastructures, and construction of dams and levees, to minimize
flood risks in the study SRB. Although this study provides a
comprehensive and diligent assessment of flood susceptibility in
the SRB, future research should use high-resolution satellite
imagery and other cutting-edge analytical techniques like ML,
CNN, and ANN algorithms to enhance the effectiveness,
accuracy, and reliability of the model outputs.
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