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Effective landslide disaster risk management contributes to sustainable
development. A useful method for emergency management and landslide
avoidance is Landslide Susceptibility Mapping (LSM). The statistical landslide
susceptibility prediction model based on slope unit ignores the re-lationship
between landslide triggering factors and spatial characteristics. It disregards the
influence of adjacent image elements around the slope-unit element. Therefore,
this paper proposes a hardwired kernels-3DCNN approach to LSMs considering
spatial-factor features. This method effectively solved the problem of low
dimensionality of 3D convolution in the hazard factor layer by combining
Prewitt operators to enhance the generation of multi-level 3D cube input data
sets. The susceptibility value of the target area was then calculated using a 3D
convolution to extract spatial and multi-factor features between them. A
geospatial dataset of 402 landslides in Xiangxi Tujia and Miao Autonomous
Prefecture, Hunan Province, China, was created for this study. Nine landslide
trigger factors, including topography and geomorphology, stratigraphic lithology,
rainfall, and human influences, were employed in the LSM. The research area’s
pixel points’ landslide probabilities were then estimated by the training model,
yielding the sensitivity maps. According to the results of this study, the 3DCNN
model performs better when spatial information are included and trigger variables
are taken into account, as shown by the high values of the area under the receiver
operating characteristic curve (AUC) and other quantitative metrics. The proposed
model outperforms CNN and SVM in AUC by 4.3% and 5.9%, respectively. Thus,
the 3DCNN model, with the addition of spatial attributes, effectively improves the
prediction accuracy of LSM. At the same time, this paper found that the model
performance of the proposed method is related to the actual space size of the
landslide body by comparing the impact of input data of different scales on the
proposed method.
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1 Introduction

Geological disasters have constantly threatened human life and
properties and caused damage to the ecological environment, which
seriously restricts the sustainable development of human society (Xu
et al., 2020). In China, 4,772 geological disasters occurred in 2021,
with 3.2 billion yuan worth of direct economic damage, including
2,335 landslides, accounting for 49% of all geological disasters
(Ministry of Natural Resources of the People’s Republic of China,
2021). As a result, the monitoring and early warning of landslide
disasters has taken center stage in geological disaster prevention and
risk mitigation. Especially in recent years, due to environmental and
climate changes, the frequency and intensity of landslide disasters
have increased rapidly (Liu., 2020). Therefore, quick and accurate
analysis and evaluation of Landslide Susceptibility Mapping (LSM)
and identification of high susceptibility areas are critical for
effectively preventing and managing geological disasters caused
by landslides.

The analysis of landslide susceptibility based on big geospatial
data quickly inverts the regional landslide risk level by
constructing the relationship between landslide hazard points
and trigger factors. There are two main categories of landslide
susceptibility models: those based on statistical analysis and those
based on machine learning (ML) methods. Statistical analysis
methods include the information quantity method (Wang et al.,
2017), coefficient of determination method, etc. (LUO et al., 2021;
Zhao et al., 2021). ML methods mainly include logistic regression
(Sun et al., 2021), artificial neural network (Bragagnolo et al.,
2020), random forest (Gao and Ding, 2022) and support vector
machine (Nhu et al., 2020; Balogun et al., 2021; Wei et al., 2022a;
Sajadi et al., 2022), etc. The MLmethods have a higher accuracy in
landslide susceptibility evaluation than the statistical analysis
method. Furthermore, the ML methods can deal with the non-
linear correlation between landslide trigger factors and landslide
disaster points and avoid the difficulty of obtaining model
parameters (Zhu et al., 2017).

The ML methods require constructing a data format that
converts the original data of landslide trigger factors into slope
units suitable for input (Xu et al., 2020; Liu and Liang, 2022).
According to the first law of geography, there is a correlation
between any location, and that correlation gradually decreases
with distance (Tobler, 1970). Therefore, as a regional natural
disaster closely affected by the surrounding environment,
landslide disasters only take points or landslide units as the
research object, ignoring the correlation with the surrounding
geographical space units (Wu et al., 2015; Zhu et al., 2019).
Therefore, it is of practical significance to consider how to
combine spatial features with improving the accuracy of landslide
risk assessment. Some researchers have noticed the influence
characteristics of spatial features on LSM. Hong et al. divided the
research focus area into two smaller areas according to the Shannon
entropy equation, and the prediction accuracy of the regression
model increased by 10% (Hong et al., 2017). Huang et al. found that
the landslide susceptibility index (LSI) distribution was affected by
different landslide boundary manifestations (Huang et al., 2022).
Concurrently, Li et al. significantly increased the value of the
Receiver Operating Characteristic (ROC) of the LSM. The slope
unit’s landslide susceptibility value is determined by combining the

estimated likelihood of a landslide occurring (spatial probability)
with the anticipated area of the slope units where a landslide may
occur (Li and Lan, 2020). The structure of the convolutional neural
network (CNN) is inspired by the perception of spatial features in
the biological visual system. It can identify objects with specific
spatial features by using convolutional and pooling layers (Liu et al.,
2022). Wang et al. revealed that by rebuilding the input data and
confirming the efficacy of the CNN model for spatial feature
extraction, they have turned the landslide trigger factors into 2-
dimensional and 3-dimensional data. According to Yang et al., the
CNN model performs better than the ML model in predicting LSM,
and the suggested model produces the most precise and smooth
LSM (Yang et al., 2022). Wei et al. used a depthwise separable
convolution to extract spatial features and spatial pyramid pooling
to extract features at different scales, fusing them into machine
learning classifiers to train LSM (Wei et al., 2022b).

The above research on CNN models verifies the influence of
spatial features on LSM. However, these studies are limited by the
spatial constraints of the CNN model’s two-dimensional
convolution, which can only take into account the spatial
correlation of a single trigger factor but cannot combine the
correlation between trigger factors (Wang et al., 2019). The
three-dimensional convolution kernel neural network (3DCNN)
model can improve image classification accuracy by extracting
deep features in layers and has been effectively employed in
action recognition and hyperspectral image classification (Li
et al., 2017; Shi and Pun, 2017; Li et al., 2022). The intuitive idea
is to use the landslide trigger factors and spatial information to
design classifiers, incorporating converting spatial structures into
slope-unit classifiers. Spatial information contains valuable
distinguishing details pertaining to the shape and size of distinct
structures, which, when utilized appropriately, can result in more
precise classification maps (Fauvel et al., 2013). Essentially, the
spatial dependence is initially derived through a variety of spatial
filters, such as directional gradients, morphological profiles, and
entropies (Plaza et al., 2004; Ghamisi et al., 2015). To perform pixel-
level landslide susceptibility classification, these altered spatial
features are paired with landslide triggers and historical landslide
spatial locations.

This paper proposed the 3DCNN landslide susceptibility
mapping model that integrated the landslide trigger factors and
spatial features. First, we reconstruct spatial features and the
landslide trigger factors as three-dimensional input data. Next,
we apply a 3D convolution to explore the relationship between
the spatial features and the trigger factors. Ultimately, the 3DCNN
model, once trained, will predict landslide susceptibility. Because the
CNN model shows better spatial feature extraction performance in
the study of LSM, the three-dimensional convolution kernel can
perform the correlation calculation between the landslide trigger
factors (Ghorbanzadeh et al., 2019; Liu et al., 2022). A case study in
Xiangxi Tujia and Miao Autonomous Prefecture, China was used to
exemplify the practicality of the proposed model. For comparison
with the suggested method, the CNN and SVM model were utilized
as reference models. The various models were evaluated and
compared using performance criteria, such as statistical
indicators and receiver operating characteristic curves (ROC). At
the same time, this paper also examined the impact of input data
spatial scale on the calculation of LSM using the 3DCNN model.
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2 Study area and data sources

2.1 Study area

The Xiangxi Tujia and Miao Autonomous Prefecture is
situated in the northwest of Hunan Province, with coordinates
of 109°10′-110°22.5′E and 27°44.5′-29°38′N (Figure 1). It is
located in the intermediary region between the Wuling
Mountains and the Yunnan-Guizhou Plateau, with small
basins and valleys along the rivers between the mountains.
The central vein of the Wuling Mountains stretches in the
middle, with a northeast-southwest trend. In comparison, the
southeastern part belongs to the low hilly area of the Yuan River
valley. Wushui and Youshui, tributaries of the Yuan River, are the
main rivers. The total area of the state is 15,462 km2. The terrain
slopes from northwest to southeast, with an average altitude of
800–1,200 m. The east and west are mountainous areas of low
hills with an average altitude of 200–500 m. Streams and rivers
crisscross the area, and there are many alluvial plains on both
banks. The general outline of the geomorphological form is
dominated by mountain plains, with hills and small plains,
and the arc-shaped mountainous landform is prominent to the
north and west. The annual precipitation is 1,300–1,500 mm and

is concentrated during spring and summer. Xiangxi Prefecture
mainly experiences geological hazards such as landslides,
followed by mudslides and sinkholes. These are small and
medium in scale, mainly distributed in areas with high rainfall
intensity and vigorous human engineering activities. During this
period of heavy rainfall, a high incidence of geological hazards is
eminent .

2.2 Data sources

The information regarding landslide occurrences and geological
lithology in Xiangxi Prefecture was collected from the Xiangxi
Guoditong integrated spatial and temporal service platform. The
data structure is in geographic vector format, including 402 landslide
points and 356 geologic lithology units. The Digital Elevation Model
(DEM) data were obtained from “ASTERGDEM DEM 30 m
resolution digital elevation data” (https://search.earthdata.nasa.
gov/search). NDVI data from “Landsat8OLI_TIRS Satellite
Digital Product Data at 30 m Spatial Resolution” from the
2018 Geospatial Data Cloud (https://search.earthdata.nasa.gov/
search). The annual precipitation data were acquired from
“Global Precipitation Measurement Data level 3" (https://pmm.

FIGURE 1
The study area and historical landslide hazard points.
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nasa.gov/precipitation -measurement-missions) of NASA for the
year 2018, with annual precipitation. The unit is 1 mm, and the data
with road, river and distance data with residential areas are from the
first national geographic census re-sults data. For the convenience of

statistics and analysis, combined with the resolution of DEM and
remote sensing image data, The study area in Xiangxi Prefecture was
par-titioned based on a raster resolution of 30 m × 30 m with a total
of 31,374,840 raster units.

FIGURE 2
Diagrams of the landslide triggering factors.
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2.3 Trigger factors

The reasons behind landslide disasters are complex. The
influencing factors are mainly divided into two classes: internal
pregnancy factor (terrain landform, geological structure,
transportation water system, etc.) and external induced factors
(rainfall, earthquake, human engineering activities, etc.). LinJeng-
Wen et al. analyzed the correlation between the factors, and the
study’s results proved that the distinguishing factors are
independent and can be used as factor variables (Li et al., 2022).
This paper chooses 9 factors related to landslide disasters, including
DEM, slope, aspect, lithology, distance to faults, distance to roads,
rainfall, distance to rivers, and normalized difference vegetation
index (NDVI), as illustrated in Supplementary Table S1 and
Figure 2. The selection of these factors was based on the
reliability of model prediction and the ease of calculating the
three-dimensional convolution.

3 Methodology

Figure 3 illustrates the method flowchart used for LSM in this
study. First, this paper prepared landslide point data and landslide
trigger factors to construct training and validation sets. Second, the
SVMmodels were trained using 2D data format while the CNN and
3DCNN was trained using 3D data format. Then, the ROC curves
were used for quantitative evaluation of the prediction results

obtained by the three methods. Finally, the landslide
susceptibility mapping is carried out with three trained models.

3.1 SVM model

The SVMmodel is a binary classifier based on statistical learning
theory that finds the maximum margin hyperplane. This model is
effective in addressing various classification problems (Cherkassky
and Yunqian, 2004). In the study of LSM, the j-th trigger factor of
the i-th position in the layer is expressed as vij, i∈{1,2. . .,n},
j∈{1,2. . .,9}. Among them, the variable n represents the total
number of samples, while j represents the number of categories
of the landslide trigger factors. Then, the SVMmodel maps the input
vector v into u and classifies it, using a non-linear mapping ϕ(v), to a
high-dimensional feature space. as shown in Eq. 1.

f v( ) � wϕ v( ) + b (1)
The regression function of SVM, denoted by f(v), can be

expressed as the inner product of a weight vector w and the
input vector v, plus a bias term b. Alternatively, the optimization
problem can be formulated with Lagrangian transformation and
optimality constraints, allowing for the use of Eq. 2 to obtain f(x)
(Cremmer et al., 1983).

f v( ) � ∑n
i�1

ai − a*i( ) × K v, vi( ) + b (2)

FIGURE 3
Flowchart of the present study.
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where αi and αi* are the Lagrange multipliers, K (v, vi) is a kernel
function. This article uses the RBF kernel (Bugmann, 1998).

3.2 CNN model

The CNNmodel requires two-dimensional images as input, and
the slope-unit or landslide unit is not suitable for cooperation as the
input of the CNNmodel (as shown in Figure 4 left part). In order to
solve this problem, the original data needs to be reconstructed. As
shown in Figure 4 right part, the proposed method expands outward
from the centre of the landslide slope unit in each layer of the
landslide trigger factors layer to obtain the spatial characteristics of
the sample data (Li and Lan, 2020). After that, the multi-layer grid
data is brought into the CNN model for training.

In the convolutional layers, the CNN model runs a 2D
convolution kernel that collects features from a nearby
neighborhood on feature maps from the previous layer. The
result is then passed through a sigmoid function with an additive
bias. The value of the unit at position (x, y) in the jth feature map in
the ith layer is denoted as vij

xy and can be expressed as follows:

vxyij � tanh bij + ∑Pi−1

m�0
∑Pi−1

j�0
∑pi−1
j�0

wjvi
x + p

ri
( )⎛⎝ ⎞⎠ (3)

the expression for vij
xy, the value of the unit at position (x, y) in the

jth feature map in the ith layer in the CNN model, is given by the
hyperbolic tangent function tanh (), where bij is the bias for this
feature map, m indexes over the set of feature maps in the (i-1)th
layer connected to the current feature map, wijk

pq is the value at the
position (p, q) of the kernel connected to the kth feature map, andQi

and Pi are the width and height of the kernel, respectively.

The subsampling layers reduce the feature map resolution by
pooling over the local neighbourhood in the previous layer, which
increases the invariance to input distortions. To construct the CNN
architecture, multiple convolution layers and subsampling are
stacked alternately. The CNN parameters, including the bias bij
and the kernel weight w, are typically trained using supervised or
unsupervised approaches. The backpropagation algorithm is
employed to optimize all parameters in the CNN layer, with the
objective of minimizing the loss function (LeCun et al., 1998). The
formula is defined as follows:

Loss � − 1
m
∑m
i�1

li log l′i( ) + 1 − li( )log 1 − l′i( )[ ] (4)

The CNN model architecture, as shown in Figure 5, involves
optimizing all parameters in the CNN layer using the
backpropagation algorithm and minimizing the loss function,
where the two variables li and li’ represent the actual label and
tag of the i-th input sample, respectively. The parameters are
updated iteratively until the loss value reaches convergence.

3.3 3DCNN model

The CNNmodel applies 2D convolution kernels solely to the 2D
feature maps, enabling the computation of features solely from the
spatial dimensions of the single channel. Convolutional stages of
CNNs must perform 3D data augmentation in order to
simultaneously capture important features contained in several
contiguous layers of 3D feature data. By convolving a 3D kernel
into the cube created by stacking several trigger factors together, this
method computes features from both the spatial and trigger factor

FIGURE 4
Reconstruction of two-dimensional input data.
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dimensions. As a result of their connections to various trigger factors
in the former layer, the feature maps in the cnn model are able to
capture the pertinent features between landslide trigger factors. The
value of the unit at position (x, y, z) on the j-th feature map in the
i-th layer can be expressed as follows:

vxyzij � tanh bij +∑
m

∑Pi−1

p�0
∑Qi−1

q�0
∑Ri−1

r�0
wpqr

ijmv
x+p( ) y+q( ) z+r( )
i−1( )m⎛⎝ ⎞⎠ (5)

where Ri is the size of the 3D kernel along the landslide trigger
factors dimensionwijm

pqr and is the (p, q, r)-th value connected to the
m-th feature map in the previous layer. Here, the value at position (x,
y, z) on the jth feature map in the ith layer is determined by the (p, q,
r)-th value connected to the m-th feature map in the previous layer,
represented by wijm

pqr. The size of the 3D kernel along the landslide
trigger factors dimension is denoted by Ri. Figure 6 depicts the
architecture of the 3D convolutional kernel neural network.

The 3D cube that was recreated using the technique in Figure 4 is
also used as input data for the 3DCNN model in the architecture
depicted in Figure 6. We initially use a set of hardwired kernels to
generate various information channels from the input frame, like H1 in
Figure 6, in order to improve the feature amount in the vertical
direction. The four directional Prewitt operators used by the feature
hardwired kernel provide 45 feature maps in the second layer that are
divided into five separate channels known as raw, horizontal gradient,

vertical gradient, and two diagonal gradients. The attribute values of the
input frames from the nine landslide trigger factors are contained in the
original channel. By calculating the gradients along the horizontal,
vertical, and two diagonal gradients on the nine landslide hazard factors,
respectively, through the Prewitt operator, the feature maps in the
horizontal gradient, vertical gradient, and two diagonal gradient
channels are generated. Our prior knowledge of the characteristics is
encoded in this hardwired layer, and this method typically provides
greater performance than random initialization (Ji et al., 2012).

Then, we independently perform 3D convolutions to each of the
5 channels with a kernel size of 4 × 4×3 (3 in the trigger factor
dimension, 4 × 4 in the spatial dimension). Using two sets of various
solutions at each site, the number of feature maps is increased, yielding
two sets of extracted features in the C2 layer, each with 35 feature maps.
There are 490 trainable parameters in this layer. Each of the feature
maps in the C2 layer is subjected to 2 × 2 subsampling in the subsequent
subsampling layer S3, resulting in the same amount of feature maps
with lower spatial resolution. This layer contains 140 trainable
parameters. Applying 3D convolution with a kernel size of 3 ×
3×3 on each of the five channels in the two sets of feature maps
individually yields the next convolution layer, C4. We perform three
convolutions with various kernels at each position to increase the
number of feature layers, resulting in six separate sets of feature
maps in the C4 layer, each of which has 25 feature maps. There are
840 trainable parameters in this layer. Each feature map in the C4 layer

FIGURE 5
The structure of the CNN model.

FIGURE 6
The architecture of the 3D augmented convolution kernel neural network.
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is subjected to 2 × 2 subsampling to produce the same amount of feature
maps with lower spatial resolution in the subsequent layer S5. This layer
contains 300 trainable parameters. We only do convolution in the
spatial dimension at this layer because the temporal dimension’s size is
already quite tiny at this point. The size of the output feature maps is
reduced to 1 × 1 due to the convolution kernel size 2 × 2. All of the
150 1×1-sized feature maps in the C6 layer is connected to all
150 feature maps in the S5 layer.

The five input frames have been transformed into a 150D feature
vector that captures the motion information in the input frames
using many layers of convolution and subsampling. The number of
units in the output layer equals the number of actions. The 150 units
in the C6 layer are all fully connected to each unit. In this design, the
150D feature vector is subjected to a linear classifier in order to
classify actions. The number of trainable parameters at the output
layer for an action recognition issue with two classes (one class is a
landslide, and the other is non-landslide) is 300.

4 Experimental results

4.1 Factors analysis andmodels construction

Based on the study area’s actual circumstances and an
examination of topography, geomorphology, stratigraphic
lithology, geological structure, rainfall, surface water, and human
variables influencing the occurrence of landslides (Lin et al., 2019),
as shown in Supplementary Table S2 the selected landslide trigger
factors were tested for multiple covariances by stepwise regression
method (Jiping et al., 2022). The correlation between each
characteristic factor was tested by tolerance and variance
inflation factor (VIF) is shown in Supplementary Table S2
(Kalantar et al., 2019). The findings demonstrate that the
identified landslide trigger parameters have a tolerance greater
than 0.1, and the variance inflation factor is less than 10, which
indicates that each trigger factor has a low degree of co-linearity and
good independence.

To create the model’s architecture, 804 samples (402 positive
and 402 negative) from the entire dataset were used. Using these
samples, databases for the Xiangxi Prefecture were created based
on the number and distribution of landslide points. Next they
were randomly divided into validation groups, which made up
30% of the total, and training groups, which comprised 70% of the
total. Finally, each model was tested using both the validation
dataset and the complete dataset. The parameters for the CNN
and 3DCNN models are randomly initialized, and they are
trained via online error backpropagation. The learn-ing rate
was set to 0.0005 for the Xiangxi dataset, batch size, dropout
rate, and epoch were set to 32, 0.5, and 150 in order to find the
ideal hyperparameter.

Also, the weights were updated using SGD as the optimizer, and
mean square error (MSE) was chosen as the loss function. The
activation function was set to Tanh. The PSO approach is used to
identify the ideal parameters for the SVM model by the penalty
coefficient C and the RBF kernel function gamma (Fathi and
Montazer, 2013). Our tests were run on Windows 10, 64-bit, an
Intel i7-10700K processor running at 3.8 GHz with eight cores,
32 GB of RAM, and an NVIDIA GeForce RTX 2060Ti GPU (8 GB).

4.2 Validation and comparison methods

The evaluation of the three models’ effects in this paper was
undertaken using the “ReceiverOperatingCharacteristic” curve for
validation (Park and Kim, 2019). It is the relationship between
specificity and sensitivity; it s a g. The logic behind this is that if a test
is non-diagnostic, it is just as likely to produce a true positive or a
false positive. Specificity, actual positive rate, true positive rate, and
false positive rate all rise along with diagnostic competence. The
accuracy of the evaluation model is shown by the area under the
ROC curve (Area Under Curve, AUC). The evaluation model’s
prediction effect is stronger the closer the area value is near 1. The
area value, on the other hand, has no application value when it
equals 0.5. Figure 7 displays the ROC curves and AUC values for the
two models.

The 3DCNN model, CNN model, and SVM model all have
AUC values of 0.835, 0.816, and 0.794, respectively, as shown in
Figure 7. The three models may all have a higher prediction of
LSM since the AUC regions of their ROC curves are all greater
than 0.5. According to the specifics, the 3DCNN model’s ROC
curve is situated in the upper-most left corner, which means that
its AUC area is the largest and the point in the distance is farther
from the reference line, indicating that the 3DCNN model is, in
some ways, superior to the other two models. In other words, the
3DCNN of LSM model in Xiangxi Prefecture is more precise and
reliable.

4.3 Landslide susceptibility mapping

To create the LSM for Xiangxi Tujia and Miao Autonomous
Prefecture, this study used the SVM, CNN, and 3DCNN models

FIGURE 7
The ROC curve of three models with the 15 × 15 size of input
data.
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(Figure 8). For the purpose of computing the landslide susceptibility
index, all pixels within the study area were supplied into these
trained models (LSI). The LSI was then separated into five
susceptibility levels using ArcMap10.6’s natural break approach:

very low (VLS), low (LS), moderate (MS), high (HS), and very high
(VHS). The landslide susceptibility zones, which show the
proportion of each susceptibility level to the entire study region,
were employed to qualitatively examine the LSM.

FIGURE 8
Evaluation results of landslide susceptibility mapping. (A) LSM of the SVM model; (B) LSM of the CNN model; (C) LSM of the 3DCNN model.
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As shown in Figure 8, the VHS zones are mostly found in
Xiangxi Prefecture’s southeast and northwest. Due to the long
gullies, steep slopes, complex geological structures, and two
major rivers running through the area, coupled with the
increasing human engineering activities (such as road projects),
the area is highly susceptible to landslide disasters.

The analysis and counting of non-landslide and landslide hazard
points in the training samples was done using ArcMap. After that,
we determine what percentages of landslide points and non-
landslide points are located in each of the five prone zones.

Supplementary Table S3 shows that themajority of landslide hazard
spots are anticipated to have high and extremely high susceptibility
zones. A relative association between historical landslide events and
susceptibility areas is demonstrated by the fact that few landslides occur
in places with relatively low susceptibility. Furthermore, more than 80%
of historical landslide events for all methods were located in high-
sensitivity areas, confirming the plausibility of landslide susceptibility
mapping. The percentage of hazard points in each zone likewise
gradually grew according to the 3DCNN, CNN, and SVM models.
The highest percentages were 47.51%, 39.30%, and 30.85% in the high-
prone area. Hence, the proportion of the number of disaster points is
more significant than that of other districts, and the proportions are
47.51%, 39.30%, and 35.57%. We found that all three model methods
can predict the susceptibility of landslide hazards very well. Compared
with the CNN and SVM models, the 3DCNN model has higher
accuracy.

4.4 Scale size and model performance

In order to research how the spatial scale of the data input affects
the LSM using the 3DCNN model, we compared the input data
structures at five different spatial scales of 9 × 9, 15 × 15, 21 × 21,
27 × 27, 33 × 33, and 39 × 39. Furthermore, we compared and
analyzed the ROC curve of the corresponding 3DCNN model. In

Figure 9, the experimental outcomes are displayed. The 3D CNN
model’s ROC curve varies depending on the input data scales. As the
spatial scale increases, the AUC value of 3DCNN gradually
increases. When the sample point range is expanded to 21 × 21,
the AUC value reaches the maximum value of 0.859. The AUC value
rapidly declines, reaching a minimum of 0.781, which is 0.078 lower
than the highest AUC value and even worse than the performance of
the CNNmodel and the SVMmodel, as the sample space size rises to
39 × 39. The above reasoning proves that scale does affect LSM
performance, but this effect varies with size. A further comparative
study of the relationship between area and scale in the landslide
samples found that the average length and width of the landslide
samples in Xiangxi Prefecture used in this paper are 281.5 m and
563.7 m, respectively, projected to a grid of 10 × 20 landslide units
(Supplementary Table S4).

5 Discussions

LSM is essential for creating a thematic map that shows where and
how likely landslides are to occur. A landslide list made up of landslide
points and the association between landslide trigger variables is the basis
of LSM. Landslides, as a regional geographic entity, are considered
incomplete only in terms of points, with no spatial characteristics or
correlation feature between the landslide trigger factors. This research
aims to convert point landslide data into three-dimensional data by
incorporating spatial and correlation features between landslide trigger
factors. To do this, the fundamental module that we deployed was a
convolutional neural network. In order to allow for synergy, we
suggested a 3DCNN model that incorporates spatial and fators
correlation features among landslide trigger components.

By reducing variation and bias in prior related studies, the
hybrid model was considered to improve the ability to forecast
land slides. In our tests, the proposed 3DCNN model performed
better in terms of AUC than the other examined models. These

FIGURE 9
The ROC curve. (A) The ROC curve with different scale sizes of input data; (B) The 3DCNN model’s AUC and input data’s spatial resolution
connection.
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results met the hybrid model’s expectations to some extent and can
be considered promising. Meanwhile, the CNN-based models
outperformed conventional machine learning models regarding
overall performance (SVM). This is because the intricate design
of CNN-based models enhances their capacity to collect
representations of landslides at deep levels through convolution
and pooling procedures.

Aside from that, the suggested 3DCNN technique beat the other
two CNN-basedmodels, as shown in Figure 8 and Figure 9. This makes
sense because by extracting geographical data and correlation features
between landslide trigger components from the land-slide inventory,
the 3DCNN model improved landslide prediction accuracy. Using the
suggested 3DCNN model, more representations linked to landslides
were recovered from the limited datasets.

The contradiction between the complex structure and the scale
landslide samples necessitates avoiding overfitting despite CNN’s
outstanding feature extraction capabilities. We plot ROC curves on
training sets with varying scale sizes to further validate the models’
fit. According to Figure 9 and Supplementary Table S4, 3DCNN has
the maximum AUC value at a scale of 21 × 21, with a value of 0.859.
The ROC curves also vary depending on the geographic scale of the
data input. The model’s predictive performance gradually declines
as the spatial scale increases.When the size of the input data unit was
compared to the actual length and width of the landslide
(Supplementary Table S4), we discovered that the landslide is a
regional target with a limited spatial scale. Other noise effects are
amplified as the spatial scale is increased indefinitely. As a result, the
model’s accuracy in predicting landslide risk will decrease after
reaching the maximum spatial characteristic gain. To summarise,
the CNN landslide susceptibility model combined with spatial
features should consider the sample’s spatial scale.

The susceptibility maps can also show how plausible and reliable
the models are. Figure 8 illustrates how the majority of landslides in
the 3DCNN models occurred in the LSM’s VH susceptibility zone.
This indicates that the constructed models can accurately determine
the likelihood of a landslide occurring and provide acceptable
hazard mitigation methods to decision-makers, which is good
news from the perspective of disaster mitigation. Additionally,
scientists evaluate a susceptibility model’s dependability using the
Specificity and Sensitivity indices. By correctly categorizing non-
landslide zones as stable slopes and maximizing land usage, highly
accurate models can avoid financial losses. By precisely identifying
landslide-prone locations, high-sensitivity value models can also
offer safe mitigating advice. The suggested model in the current
study outperformed other baseline models in the validation set in
terms of specificity and sensitivity, highlighting the dependability of
disaster mitigation and land use planning.

6 Conclusion

We conducted our research in the Hunan Province’s Xiangxi
Prefecture for this paper. Experiments show that the relationship
between disaster-causing factors and spatial characteristics affects the
LSM prediction model’s accuracy. Under the same conditions as the
SVM and CNNmodels, increasing the spatial characteristics of landslide
hazard factors can improve LSM prediction accuracy. However, due to
the model’s complexity, the sample space scale limits this accuracy. The

experimental results confirmed this hypothesis as well. The model
performs best when the sample point range is expanded to
21 regions, i.e., when the input sample size covers the actual area of
the landslide. Because the sample LSM based on points ignores the
objective spatial attributes, expanding the factor or expanding the sample
area can improve the LSM’s prediction accuracy. However, due to data
constraints, this paper only considers the impact of a scale change in
30 m resolution sample data on LSM prediction accuracy. It does not
consider landslide hazard factors in different resolution scenarios, even if
the optimal scale value varies. We intend to investigate this step further
in our subsequent paper.
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