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The vulnerability and flood risk assessment of Bhitarkanika National Park in Odisha,
India, was conducted using a data-driven approachand amachine-based embedded
decision support system. The park, located in the estuaries of the Brahmani, Baitarani,
Dharma, and Mahanadi river systems, is home to India’s second-largest mangrove
environment and the world’s most active and diverse saline wetland. To evaluate its
vulnerability and risk, various threatswere considered,with a focus onfloods. Satellite
imageries, such as Landsat 8 OLI, SRTM digital elevation model, open street map,
Google pro image, referencemap, field survey, and other ancillary data, were utilized
to develop vulnerability and risk indicators. These indicators were then reclassified
into ‘Cost’ and ‘Benefit’ categories for better understanding. The factors were
standardized using the max-min standardization method before being fed into
the vulnerability and risk model. Initially, an analytical hierarchy approach was
used to develop the model, which was later compared with machine learning
algorithms (e.g., SVM) and uncertainty analysis indices (e.g., overall accuracy,
kappa, map quality, etc.). The results showed that the SVM-RBF machine learning
algorithm outperformed the traditional geostatistical model (AHP), with an overall
accuracy of 99.54% for flood risk mapping compared to AHP’s 91.12%. The final
output reveals that a large areaof BhitarkanikaNational park falls under high flood risk
zone. The Eastern coastal regions ofGovindapur, Kanhupur, Chinchri, Gobardhanpur
and Barunei fall under high risk zone of tidal floods, The Northern and western
regions of Ramachandrapur, Jaganathpur, Kamalpur, Subarnapur, Paramanandapur,
etc., Fall under high risk region of riverine floods. The study also revealed that the
areas coveredwithmangroves have a higher elevation and hence are repellent to any
kind of flood. In the event of a flood high priority conservation measures should be
taken along all high flood risk areas. This study is helpful for decision-making and
carrying out programs for the conservation of natural resources and flood
management in the national park and reserve forest for ecological sustainability
to support sustainable development goals (e.g., SDGs-14, 15).
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1 Introduction

In countries with subtropical climates like India, flash floods
are a common occurrence, especially during the monsoon
season. This particular sort of flood happens quickly, setting
it apart from other natural disasters that result in significant
economic loss and human casualties (Ruidas et al., 2022).
National Parks play a vital role in conserving the world’s
biodiversity, food security, and human health (Fernández and
Lutz, 2010; Li et al., 2012; Heidari, 2014; Wang et al., 2019). The
values of National Parks range from protecting natural habitats
and associated flora and fauna to maintaining the
environmental stability of its surrounding regions (Taylor
et al., 2011; Dawod et al., 2012; Schumann et al., 2018;
Yadollahie, 2019; Ullah and Zhang, 2020). The vulnerability
assessment has been one of the most discussed topics in recent
eras for the physical, biological, and social systems(Ouma and
Tateishi, 2014; Pourali et al., 2016; Bandi et al., 2019;
Langlentombi and Kumar, 2021). The vulnerability of a
system can be defined as the susceptibility to disturbances
determined by exposure to perturbations, sensitivity to
concerns, and the capacity to adapt (Nelson et al., 2010).
Bhitarkanika National Park is a Ramsar site with India’s
second-largest mangrove forest. It is known for its
mangroves, migratory birds, turtles, estuarine crocodiles, and
innumerable creeks and is one of Odisha’s best biodiversity
hotspots. This unique habitat consists of 62 mangrove species,
28 species of mammals, 280 species of birds, and 47 species of
amphibians and reptiles. It also includes the largest population
of saltwater crocodiles in India(Khan et al., 2020).

Excess water allocation for industries has become a
significant cause of concern for Bhitarkanika national park.
This extra allocation reduces freshwater discharge to the sea
(Hallegatte et al., 2013). The lack of normal freshwater flow in
the area has led to increased saline ingression upstream,
negatively impacting the local flora, fauna, and the livelihoods
of fishermen and farmers who depend on the Brahmani river.
Additionally, the region faces recurring challenges such as
floods, forest fires, and overfishing. Overfishing, in particular,
creates a food shortage for estuarine crocodiles and other species
in the area. The reduction in water discharge also has a direct
impact on the mangroves, which in turn affects the Gahirmatha
marine sanctuary within the national park. The increased water
salinity may prompt saltwater crocodiles to migrate from the
core sanctuary area to upstream regions, leading to conflicts
between humans and animals and causing disruptions for local
residents.

According to the Census data, in 1991, there were
311 villages with a population of 118,951 inhabitants in the
area. However, by 2011, the number of villages had increased to
312, with a population of 145,320. The total area covered by
these villages was 672 square kilometers, resulting in a
population density of 216 people per square kilometre. This
level of population density is relatively high for a National Park.
The flood hazards not only impact the ecosystem and natural
landscape of the area but also have adverse effects on human

settlements and their occupations (Dewan et al., 2007; Hallegatte
et al., 2013; Stefanidis and Stathis, 2013; Rahmati et al., 2016;
Farhadi and Najafzadeh, 2021; Parsian et al., 2021; SAMI et al.,
2021). The delicate ecosystem is under extreme pressure because
of the population increase.

Bhitarkanika National Park is situated between the
Brahmani and Baitarani rivers, which experience annual
flooding due to heavy rainfall in the area and the discharge
of floodwater from the Rengali Dam. Being located on the east
coast of Odisha, the park is highly susceptible to cyclones,
which result in storm surges and subsequent flooding of the
shorelines. During Cyclone Yaas in 2021, coastal fishing
villages in BNP were severely affected by tidal floods caused
by storm surges, resulting in significant damage to houses. The
majority of the population in the area relies on fishing,
agriculture, and apiculture for their livelihoods. Fishing
communities have settled near riverbanks and congregated
in fishing villages along the coast, putting themselves at
immediate risk during flooding events.

It is not only the human population that is affected by these
calamities; the wildlife in the area is also impacted. The estuaries in
the main mangrove area of BNP are home to approximately
1,700 estuarine crocodiles. During floods, their feeding grounds
become submerged, leading them to migrate outside the estuaries
and into river channels that pass through nearby villages. This
migration poses a significant risk to both the crocodiles and the
villagers.

Given the exponential increase in the number of flash flood
events, identifying flood-prone areas has become a top priority.
Mapping flash flood susceptibility can help mitigate the worst
impacts of such risk phenomena. Therefore, there is an urgent
need to develop accurate models for predicting flood susceptibility,
which can aid in the creation of more effective flood management
measures (Ruidas et al., 2022).

The main objective of this study is to compare traditional
decision support models like AHP with machine learning
algorithms for flood vulnerability and risk assessment in the
Bhitarkanika National park. This study studied data-driven
approaches (e.g., Sentinel 2A Multispectral, SRTM digital
elevation model, open street map, Google Pro image,
reference map, field survey, and other ancillary data and
machine-based data approaches. The study is divided into
seven sections, e.g., introduction, study area, datasets and
software, methods, results and discussion, conclusion and
recommendation, and references.

2 Selection of the study area

The Bhitarkanika National Park is situated between 86°46′to
87°01′East longitude and 20° 30′to 20° 48′North latitude in
Brahmani and Baitarani deltaic region of the district of
Kendrapara, Odisha, in the east coast of India (Figure 1). This
area has been declared a proposed sanctuary since 1975 because of
its ecological, faunal, floral, geomorphologic and biological
association and importance. On its eastern side lies the Bay
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of Bengal; to its north is the river Dhamara; to its west is the land
mass of Kendrapada District and to its south lies the Mahanadi
river.

The rich alluvial deposits and gently sloping topography
of Bhitarkanika support rich flora and fauna and are well known
for their ecological and biological diversity. Mangroves cover a
core area of 145 sq. km. This core area was declared a National
Park in 1998 (Kumar et al., 2015). In 2002, Bhitarkanika was
designated as a “Ramsar site,” recognizing its status as a
Wetland of International Importance due to its abundant
biodiversity and ecological significance. The park can be
accessed via two entry points: Rajnagar and Chandbali.
Rajnagar is approximately 130 km away from the state
capital, Bhubaneswar, while Chandbali is about 150 km away.

Bhubaneswar is well-connected by rail and air to other cities in
India, making it convenient for visitors to reach Bhitarkanika
National Park.

3 Methodology

3.1 Datasets and software

In this study, Landsat TM5 and Landsat8 OLI satellite data
were obtained from Google Earth Engine using JavaScript
codes. The Shuttle Radar Topography Mission (SRTM) Void
filled Digital Elevation Model was obtained from the USGS Earth
Explorer portal (Table 1). Digital Elevation Model (DEM) is the

FIGURE 1
Study area map.

TABLE 1 Datasets used.

S. No. Satellite/Digital elevation model Resolution (meter) Spectral bands Date of acquisition

1 Landsat 8 OLI 30 9 2021-05-18

2 Landsat TM 30 7 2000-01-10

3 SRTM DEM 30 1 2000-02-11

This study used QGIS, 3.16, ArcGIS, 10.8, google earth engine, Google Earth Pro, Open Street map, android-based GPS, microsoft office, etc.
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digital representation of the land surface elevation and hydro-
geomorphic parameters with respect to any reference datum
widely used in flood disaster and risk modeling (Li et al.,
2012; Stefanidis and Stathis, 2013; Balasubramanian, 2017;
Ullah and Zhang, 2020). The SRTM DEM of the year
2000 was used for generating various flood vulnerability and
risk indicators like elevation, slope, and water depth, etc., and
further processing these to form the vulnerability and risk map
(Ouma and Tateishi, 2014; Pourali et al., 2016; Rahmati et al.,
2016; Schumann et al., 2018; Bandi et al., 2019; Zhang et al.,
2019). In addition, google earth image, open street map, and field
survey (2022) were used to assess the models accurately.

3.2 Methods

The following methods were employed to achieve the main
objective of this study (Figure 2). The main objective of this study is
to compare traditional decision support models like AHP with the
machine learning algorithm for flood vulnerability and risk
assessment in the Bhitarkanika National Park (BNP). The
methods are explained below as follows.

3.2.1 Background of machine learning algorithms
Machine Learning Algorithms like SVM, RF, Decision Tree,

etc., have turned out to be efficient methods for research
in today’s date due to their impeccable accuracy and
reliability. Support Vector Machine (SVM) is a type of
supervised machine learning that can effectively identify
intricate patterns in noisy and complex datasets, and due to
their simplicity and adaptability, they can achieve balanced
predictive accuracy even in situations where there are limited
samples (Hongmao, 2016). Random Forests (RF) improve
prediction accuracy and efficiency by randomly selecting
features for each decision split, reducing correlation between
trees, and increasing the diversity of the model(Breiman, 2001).
Decision Tree (DT) is an inductive algorithm used for
classification and prediction, where classification rules are
represented as decision trees derived from a set of disorderly
and irregular instances, and the tree is constructed in a top-
down recursive manner by comparing attributes between
internal nodes and making decisions based on different
attributes, ultimately leading to a conclusion at the leaf nodes
(Dai et al., 2016). The significant advancements in machine
learning and artificial intelligence, including logistic regression,

FIGURE 2
Methodology flowchart.
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decision trees, artificial neural networks, random forests, and
support vector machines, have gained immense importance due
to their ability to handle large datasets and deliver high levels of
accuracy (Ruidas et al., 2021).

Several researchers have used ML algorithms to create
remarkable research projects in variety of sectors such as
(Ruidas et al., 2022) in Hydrogeochemical Evaluation of
Groundwater Aquifers (Ruidas et al., 2022), in water
resources vulnerability assessment (Ruidas et al., 2022), in
flood-susceptibility assessment (Ruidas et al., 2021), in
Characterization of groundwater potential zones (Jaydhar
et al., 2022), in Hydrogeochemical evaluation and health
risk from arsenic and fluoride, etc.

The use of ML algorithms in disaster prediction,
Vulnerability and risk assessment, mitigation has become a
sought-after procedure in the current scenario and this
research has used the same to generate comprehensive risk
and vulnerability zones of the fragile Bhitarkanika National
Park region. Pham et al. (2019) in their research used hybrid
machine learning models, including bagging (BA), random
subspace (RS), and rotation forest (RF), with alternating
decision tree (ADTree) as base classifier for the spatial
prediction of Landslides (Parvin et al., 2022). in their study
used 3 ML models, namely, Bayesian logistic regression (BLR),
the artificial neural networks (ANN), and the deep learning
neural networks (DLNNs) for flood vulnerability assessment in a
densely urbanized city. Opella and Hernandez (2019) in their
study generated flood susceptibility and probability map using
SVM and obtained a robust flood map that clearly outperforms
the traditional methods. Xiong et al. (2019) in their study
adopted SVM model for flash flood vulnerability assessment
and mapping in China.This study uses the SVM-RBF model
to generate a robust vulnerability and risk Map of the
Bhitarkanika National Park region taking in view previous
studies, which have used the same model for its impeccable
accuracy. The map generated using SVM-RBF exhibits an
accuracy of 99.54% with a complementing Kappa Index of
99.18% compared to the 91.12% accuracy using traditional
AHP, thus solidifying the SVM-RBF model as a formidable
classification ML classification.

3.2.2 Pre-processing
Pre-processing of data, such as satellite imagery and digital

elevation models (DEM), is crucial for the processing,
analysis, and modeling in this study. In order to map the land
use and land cover (LULC) of Bhitarkanika National Park,
satellite imagery underwent pre-processing steps including
band stacking, clipping, mosaicking, and normalization using
the min-max scaler. These pre-processing tasks were performed
using QGIS. Similarly, the SRTM DEM was pre-processed using
both ArcGIS and QGIS. The DEM was initially clipped to the
study area by applying a mask. Auto co-registration and filling
techniques were then employed using the hydrology toolbox
in ArcGIS and QGIS to ensure alignment with the LULC data
and to address sinkholes, which are often not captured by
satellites. The DEM was further reclassified to generate an
elevation map, and the slope was calculated using the Arc
Toolbox.

These pre-processing steps were undertaken to ensure the data
was appropriately prepared for subsequent analysis and modeling in
the study.

3.2.3 Land use/land cover classification
Land use and land cover change have become central to

current strategies for managing natural resources and
monitoring environmental changes(Kaul and Sopan, 2012).
The standard land use and land cover (LULC) classes
(Table 2) were selected based on the literature review and
local LULC classification scheme. Based on the previous
literature it was observed that uniform LULC classification
scheme is missing in disaster study (Hao et al., 2022).
Landsat 8 Operational Land Imager (OLI) and Landsat
5 Thematic Mapper (TM) images of 2021 and 2000,
respectively, with cloud cover of less than 2%, were obtained
from the google earth engine using JavaScript codes. Further
processing was done in QGIS, including feature extraction(e.g.,
NDVI, NDBI, etc.), classification, post-processing, accuracy
assessment, and change analysis.

The Normalized difference Vegetation Index (NDVI) is widely
used in classifying land use/cover which was calculated using
following formula (Ruidas et al., 2021):

NDVI � NIR − RED

NIR + RED
(1)

The value of the NDVI varies in between +1 and −1. NDVI is
equal to +1 shows healthy vegetation while −1 shows waterbodies. In
addition, Normalized Difference Built-up Index provide vivid
information of the built-up which was calculated using following
formula (He et al., 2010).

NDBI � Band5 − Band4
Band5 + Band4

(2)

Higher the value of NDVI shows more the built-up
information which lower values shows vegetation and other
land use classes.

Table 2 shows the training and test samples used for the training
and validation of the classification model.

There are various types of classifiers in machine learning (ML).
This study uses the SVM classifier with Radial Basis Function
(SVM-RBF) via the OTB toolbox to generate LULC maps
and the flood risk map (Deroliya et al., 2022). This is because
machine learning algorithms outperform any complex decision-
making compared to other traditional algorithms(Farhadi and

TABLE 2 Training and test samples.

LULC_ID LULC_CLASS Training samples Test samples

1 Built-up 50 50

2 Mangroves 50 50

3 Agriculture 50 50

4 Water Bodies 50 50

5 Barren Land 50 50
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Najafzadeh, 2021; Deroliya et al., 2022). This study selected SVM-
RBF because this algorithm is robust for complex problems
compared to the other machine learning algorithms such as
Random Forest, Decision Tree, etc (Ruidas et al., 2021; Ruidas
et al., 2022). Two LULC maps (e.g., 2021 and 2000) were generated
using the image classifier function in the OTB tool. The accuracy
assessment of all the maps generated using ML was done by
computing their confusion matrix using the OTB tool. Change
detection analysis, one of the import approaches, is incorporated
with the flood risk analysis (Gharagozlou et al., 2011; Lawal et al.,
2014) carried out between the 2000 and 2021 LULC maps using the
post-processing algorithm and Raster Unique Values Report
function in QGIS.

3.2.4 Flood depth calculation
When floods hit inhabited areas, significant losses are usually

registered in terms of both impacts on people (i.e., fatalities
and injuries) and economic impacts on urban areas,
commercial and productive sites, infrastructures, and
agriculture. To properly assess these, several parameters are
needed, among which flood depth is one of the most
important as it governs the models used to compute damages
in economic terms(Cian et al., 2018). In this study, the Raster
calculator was used in ArcGIS to analyze flood/water depth
manually. The inundation depth is estimated to be 2.5 m
through multiple literature reviews and field surveys. Based on
the last 20 years’ flood inundation information, the binary mask
was created as one and none flooded area as zero.

Output Raster � DEMxBinaryMask (3)
The result gave the elevation values of DEM for areas, which are

flooded, and zeros for non-flooded areas. Consequently, the highest
elevation value represents the water table.

WaterDepth � Value water table x BinaryMask (4)
Where, value water table � 2.5m

The resultant raster thus obtained represents the Water/Flood
depth of the study area.

3.2.5 Euclidean distance from the coast and river
The shortest straight-line distance connects all sites or the

Euclidean distance (Zhang, 2019). Geoprocessing analysis is
performed to fill sinks (pits) and to generate data on flow
direction, flow accumulation, catchments, streams, stream
segments, and watersheds. These data are then used to develop a
vector representation of catchments and drainage lines from selected
points that can then be used in network analysis (Soni, 2012). To
calculate the Euclidean distance from the river, the process begins
with stream delineation using the hydrology toolbox in ArcGIS. This
involves using the fill tool followed by the flow direction tool, which
determines the downslope direction of each cell and helps identify
the flow paths of the streams. The flow accumulation tool is then
applied to estimate cumulative flow, representing the total weight of
cells flowing into each downslope cell. By setting a threshold value,
the number of streams included in the final layer can be controlled.
Lower threshold values result in more streams, while higher values
reduce the number of streams.

Once the streams are delineated, the Euclidean distance tool is
used to calculate the distance from the stream. Similarly, the
coastline of BNP is manually digitized, and the Euclidean
distance tool is applied to determine the distance from the
coast. These steps enable the calculation of the Euclidean
distance from both the river and the coastline, providing
valuable information for further analysis and modeling in the
study.

3.2.6 Flood hazard mapping
The goal of flood hazard assessment is to understand the

probability that a flood of a particular intensity will occur over
an extended period of time. Hazard assessment aims to estimate this
probability over periods of years to decades to support risk
management activities(Wright, 2015). Intensity is typically
defined as the sum of flood depth and horizontal flood extent.
However, depending on the circumstance, other intensity
parameters like flow velocity and flood duration may also be
significant (Stefanidis and Stathis, 2013; Farhadi and Najafzadeh,
2021; Deroliya et al., 2022). Hydrological models like water depth
and other factors like frequency and area of Impact were used to
estimate the flood hazard.

HS � FS xAIS x IS (5)Where,
HS = Hazard Score
FS = Frequency Score
AIS = Area of Impact Score
IS = Intensity Score

3.2.7 Vulnerability mapping
Aside from flood danger, another critical factor in flood risk

is flood vulnerability. Understanding a system’s vulnerability
will help you predict how floods may damage it. Examples of
potential systems include physical structures like homes or
bridges that might sustain damage or destruction, a company
or service whose supply chain might be disrupted, or a
community that might experience fatalities, property losses,
and detrimental health effects following a flood(Wright, 2015).

TABLE 3 Indicators.

Cost indicator Benefit indicators

Water Depth Elevation, Slope, Distance from Coast, Distance from River

TABLE 4 Normalised weight.

Indicators Normalized weight

Elevation (F1) 0.30

Distance from River (F2) 0.30

Distance from coast(F3) 0.15

Water Depth(F4) 0.15

Slope (F5) 0.10

Total 1.00
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Various indicators are used to estimate the vulnerability of
BNP. The indicators used are elevation, slope, water depth,
distance from the coast, and distance from the river (Stefanidis
and Stathis, 2013; Farhadi and Najafzadeh, 2021). The
indicators have been reclassified into ‘Cost’ and ‘Benefit’ to
better understand the assessment (Table 3).

Further, all the cost and benefits indicators are normalised, and
the AHP model was applied to achieve flood vulnerability of BNP
using formula 6-7 in the raster calculator tool in ArcGIS.

1. Normalisation

The practice of making specific data that are separated by time
periods identical, such as atmospheric correction or pixel
resampling, so that an acceptable change may be observed
without being impacted by other factors is referred to as
normalisation.

Cost indicator:

Normalisation � 1 − Indicator − indicator min

indicator max – indicator min
(6)

Benefit Indicator:

Normalisation � Indicator − indicator min

indicator max – indicator min
(7)

2. Analytic Hierarchy Process- Weight Overlay Analysis

Analytic Hierarchy Process (AHP) is a robust multi-criteria
decision-making (MCDM) was used to achieve the weight of the
factors for the overall decision-making (Ouma and Tateishi, 2014;
Rahmati et al., 2016; Kumar et al., 2021; Parsian et al., 2021). This
model is widely used in raster-based GIS overlay analysis in several
applications such as land suitability analysis, flood risk and
vulnerability analysis, zoning, and site suitability analysis
(Mustak et al., 2018). In AHP, the following sub-processes were
employed to derive the weight of the indicators (Stefanidis and

FIGURE 3
LULC maps, 2000 and 2021.

TABLE 5 LULC statistics.

LULC ID LULC
class

Area in sq. Km
(2000)

Percentage of area
(2000) (%)

Area in sq. Km
(2021)

Percentage of area
(2021) (%)

Change
in (%)

1 Built-Up 1.94 0.3 13.84 2.8 2.5

2 Mangroves 139.49 28.40 165.74 33.75 5.3

3 Agriculture 183.60 37.39 136.00 27.69 9.7

4 Waterbodies 88.31 17.9 67.50 13.74 4.2

5 Barren land 77.89 15.86 108.22 22.04 6.1
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Stathis, 2013), e.g., 1) selection of indicators and arrange in the
square-matrix, 2) indicators were compared, and relative
importance given based on the Saaty’s nine-point scale of
absolute number, 3) normalized weight of the individual
indicator was derived using the geometric mean method
(Table 4). The weighted overlay analysis is one of the most
used methods to address multi-criteria issues like site selection,
land suitability analysis, and assessing model appropriateness
(Kumar et al., 2021).

The sum of the normalized weight is 1. After the calculation of
weights, raster calculator was used to derive the final vulnerability index
VI), which varies from 0 to 1 using the following Formula 6. The VI,
equal to 0, shows low vulnerability, while 1 shows high vulnerability.

Vulnerability � F1 x 0.3( ) + F2x 0.3( ) + F3x 0.15( )(
+ F4 x 0.15( ) + F5x 0.1( )) (8)

The final output raster is symbolised using the quartile method,
and the resultant raster is the vulnerability map.

FIGURE 4
Water/flood depth map.

TABLE 6 Water depth statistics.

ID Class (m) Flood hazard Area in sq. km Percentage (%)

1 0 No Hazard 383.92 78.00

2 0.5 Low 47.00 9.5

3 1.5 Medium 5.18 1.05

4 2.5 High 55.14 11.23
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3.2.8 Flood risk mapping
The most common approach to define flood risk is that it is the

product of hazard, i.e., the physical and statistical aspects of the
actual flooding (e.g., the return period of the flood, extent, and depth
of inundation, and flow velocity), and the vulnerability, i.e., the
exposure of people and assets to floods and the susceptibility of the
elements at risk to suffer from flood damage(Serda et al., 2002). After

calculating the Flood Hazard and flood vulnerability, it becomes
relatively simpler to calculate the Flood Risk.

FloodRisk � FloodHazard xFloodVulnerability (9)
The hazard and vulnerability maps produced before are

normalised first and then multiplied using the raster
calculator tool. The resultant raster gives us the flood risk

FIGURE 5
Elevation Map.

TABLE 7 Elevation statistics.

Elevation in meter Flood hazard Area sq. km Percentage (%)

0-4 High 233.37 47.5

4-6 Medium 148.58 30.14

6-23 Low 109.27 22.36
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map of BNP, which is further classified into High, Medium, and
low based on the corresponding intensity value.

4 Results and discussions

4.1 Land use land cover

The below figures show the Land Use Land Cover of BNP in
2000 and 2021, respectively. A stark difference can be seen in the
LULC maps of 2000 and 2021. The difference is explained in detail in
Figure 3 and Table 5.

Over the years, significant changes have been observed in the
areal extent of various classes. The built-up area has experienced
exponential growth, expanding from 1.94 Sq. km in 2000 to nearly
14 Sq. km in 2021. This alarming trend highlights the

encroachment of human settlements and related activities into
this biosphere reserve. The increase in built-up areas not only
signifies a rise in population but also amplifies the vulnerability to
floods by intensifying the hazard factor. However, it is worth
noting that the area covered by mangroves has seen a positive
development, expanding by 26.25 Sq. km. This growth can be
attributed to the conservation efforts of the Government of Odisha,
as well as the active involvement of local forest dwellers and
naturalists.

The area under agriculture has significantly decreased due to
salinity ingress, leading to an increase in barren land. This
decline in agricultural activities is a result of the rapid growth
of aquaculture activities in BNP and salinity ingress. The
number of aquaculture ponds in BNP has been increasing at
an alarming rate. The maps above illustrate the significant
expansion of aquaculture ponds in just 20 years, primarily
concentrated in the north-eastern areas of the national park.
Interestingly, as the number of artificial aquaculture ponds has
risen, the area covered by water bodies has decreased by
approximately 20 sq. km. This reduction is attributed to the
drying up of estuaries on the eastern coast near the Gahirmatha
Marine Sanctuary, which can be attributed to anthropogenic
activities and climate change.

4.2 Cost indicators

4.2.1 Flood/water depth
As observed from the resultant map, a substantial area of

BNP has a water depth of 0 m constituting to 383.92 sq. km and
78% of the total area (Figure 4). This area represents
minimal flood hazard. An area of 47 sq. km or 9.5% of the
total area has a water depth of 1 m representing low flood
hazard. A water depth of 1.5 m is observed across 5.18 sq. km
or 1.05% of the area representing a medium flood hazard.
The Brahmani and Dharma river systems, as well as the
areas of Ramchandrapur, Jagannathpur, Padmanavpur,
Narayanpur, Saradaprasad, Paramanandpur, and Mohanpur,
exhibit a water depth of more than 2.5 m covering an area
of 55.14 sq. km or 11.23% of the total area (Table 6).
These areas are most prone to flooding and have a high flood
hazard.

4.3 Benefit indicators

4.3.1 Elevation
BNP has a maximum elevation of 23 m. The lower the

elevation higher is the risk of getting affected by flood and

FIGURE 6
Slope Map.

TABLE 8 Slope statistics.

Slope class (degree) Flood hazard Area sq. km Percentage (%)

0-1.39 High 131.15 26.71

1.39-2.09 Medium 188.14 38.31

2.09-19.72 Low 171.71 34.97
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vice versa. As observed in the elevation map, all the areas under
mangrove vegetation have a medium to high elevation, which
makes these areas resilient to flooding (Figure 5; Table 7). The
areas surrounding the mangroves and the riverbanks
subsequently have lower elevations. The areas near the coast
also have a lower elevation, excluding those covered by
mangroves.

4.3.2 Slope
The slope is the most crucial aspect of hydrology since

it directly affects surface runoff and floods. Since low-
elevation locations often have a gentle or low-level slope (0-
1.39 m), they are more susceptible to flooding and waterlogging
because steep slopes generate more incredible velocity than
flat or gentle slopes and may dispose of runoff more quickly.
Runoff from a level or gently sloping land is collected and released
gradually. In contrast to high-gradient slopes, low-gradient slopes

at lower reaches are more susceptible to flooding (Ramesh and
Iqbal, 2022).

The BNP area has varied slope values and is unevenly distributed
(Figure 6; Table 8). A large area of the national park appears to have
low-medium slope values (1.39-2.09°). High slope values (2.09-
19.72 m) appear to be scarce and scattered.

4.3.3 Distance from the river
The result was obtained using the Euclidean distance tool in

ArcGIS. The BNP area is bordered by three rivers: Brahmani,
Baitarani, and Dharma. The Dharma River is formed at the
confluence of the Brahmani and Baitarani Rivers. The Brahmani
River covers a significant portion of the riverine area within BNP. It
both surrounds and cuts through the national park, eventually
flowing into the Bay of Bengal. As a result, many areas in BNP
are located near the riverbanks and are susceptible to flooding. The
geography of BNP is characterized by its surrounded by rivers and
the ocean on all sides.

.The map produced is classified into three classes: High
Proximity (<956.4 m), Medium Proximity (956.40-2646.30 m),
and Low Proximity (>2646.30 m) (Figure 7; Table 9). The map
displays the surrounding areas of Praharajpur, Gobardhanpur,
Raj Nagar, Ramchandrapur, Govindpur, Subarnapur, as well as
the central villages of Balabhdrapur, Purushottampur, Gupti,
Padmanavpur, Jaganaathpur, and others. These areas are
situated along the riverbanks of the Brahmani and Dharma
rivers, making them highly proximate to these water bodies.

4.3.4 Distance from the coast
The Bay of Bengal lines the whole eastern area of BNP.

This Proximity to the sea makes the coastal areas of BNP
extremely vulnerable to tidal floods, especially during
storm surges and tsunamis. Added to that, the Bay of Bengal is
very prone to cyclones. The Gahirmatha Marine Sanctuary
is shielded from such degradation due to the presence
of mangroves. The map produced is classified into three classes:
High Proximity (<4418.60 m), Medium Proximity(4418.60-
8764.90 m), and Low Proximity (>8764.90 m). The coastal
areas of Paramanandapur, Karanjia, Kanhupur, Gupti, Barunei,
Satabhaya, Pentha, Jamboo, Batighar, Suniti, Kansarbadadandua,
Ramanagar, and Baulakani all fall under the high proximity
class and are highly vulnerable to tidal floods (Figure 8; Table 10).

4.4 Flood hazard

Thismap indicates all areas with a high flood hazard and those with
a low flood hazard. The higher the flood hazard greater the probability
of flood and vice versa. This map is classified into five classes—Streams,

FIGURE 7
Distance from river.

TABLE 9 Distance from the river statistics.

Distance class (metre) Flood hazard Area in sq. km Percentage (%)

High Proximity High 159.85 32.4

Medium Proximity Medium 164.95 33.4

Low Proximity Low 166.24 34.2
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High, Medium, Low, and no hazard. As can be seen from the resulting
image, an area of 55.18 sq. km (11.23% of the total area) is covered by
the Brahmani and Dharma river systems, as well as the localities of
Ramchandrapur, Jagannathpur, Padmanavpur, Narayanpur,
Saradaprasad, Paramanandpur, and Mohanpur, these regions have a
high flood hazard hence are the most flood-prone regions (Figure 9;
Table 11). An area of 4.11 sq. km or 0.8% of the total area falls under the
medium hazard region and exhibits a moderate threat of floods. Low
flood hazard areas include the localities of Sailendra Nagar, Baghamari,
Birabhanjapur, Govindapur, Kanhupur, etc., covering an area of
34.08 sq. km and 6.9% of the total area. A sizeable portion of the
BNP is 383.39 Sq. km or 78% of the entire area has no flood hazard.

4.5 Flood vulnerability

The above map represents the area of BNP classified in
terms of vulnerability to flooding. It is classified into four

classes: waterbodies, high, medium, and low, represented by
blue, Red, Yellow, and Green, respectively. As the map
indicates, a substantial part of BNP is under a high
vulnerability zone. The eastern coast along the Bay of Bengal
and the northern and eastern regions of BNP is the most
vulnerable zones of BNP.

The High vulnerability areas include the villages of Karanjia,
Praharajpur, Pentha Beach, Jaudia Teisi Mauza, Nuagan,
Paramanandapur, Kanhupur, Satavaya, Bagapatia, Balunga
Patia, Gupti, Rajrajeshwaripur, Jagannathpur, Padmanavpur,
Balarampur, Junus Nagar, Sila pokhari, Purusottampur,
Narayanapur, Sir Rajendrapur, Banipal, Pravati, Ahirajpur,
Sailendra Sarai and Trilochanpur (Figure 10; Table 12). This
zone covers an area of 118.68 Sq. Km and 24.28% of the
total area. The medium vulnerability zone covers an area of
165.94 Sq. km and 33.9% of the entire area. This zone
includes villages like Subarnpur, Birabhanjapur, Badapal,
Bimisnagar, Chakradharpur, Balarampur, etc. The low
vulnerability region covers an area of 137.43 Sq. Km and
28.12% of the total area and mainly includes the mangrove
forests of BNP.

4.6 Flood risk

The study findings reveal that a significant portion of
the BNP area falls within a high flood-risk zone. The map
provided in Figure 13 classifies the area into four categories:
Waterbodies, High, Medium, and Low, represented by the
colours Blue, Red, Yellow, and Green, respectively. The
Bhitarkanika National Park region has a low elevation and a
gentle slope, with the Brahmani River and the Bay of Bengal
surrounding it on all sides. This geographical configuration puts
BNP at a heightened risk of floods and coastal areas being
submerged due to future sea-level rise. The study indicates
that the eastern regions of BNP, particularly those near the
riverbanks or the coast, are classified as high flood-risk zones.
The coastal villages of Govindapur, Kanhupur, Mohanpur,
Paramanandapur, Satavaya, Bankua, Nuagan, Baghadiya,
Jaudiya, Joginatha, and Sailendra Sarai are located within
these high-risk regions, susceptible to tidal floods and sea-
level rise. This is further proven in other studies that coastal
region of BNP are projected to be submerged due to sea-level rise
by the year 2050 (Mishra et al., 2021).

These villages, such as Saradaprasad, Trilochanpur,
Kamalpur, Badhadia, Subarnpur, Sailendra Nagar, Talchua,
Sourendrapur, Baghamari, Narayanpur, Sir Rajendrapur,
Pravati, Gopaljew Patana, Ajagar Patia, Purusottampur,
Junus Nagar, Panchu Palli, Ramachandrapur, Ghadiamal,
Padmanavpur, Jagannathpur, Balarampur, Jharpada,

FIGURE 8
Distance from coast.

TABLE 10 Distance from the coast statistics.

Class Flood hazard Area in sq. km Percentage (%)

High Proximity High 164.42 33.5

Medium Proximity Medium 161.44 32.94

Low Proximity Low 165.47 33.7
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Rajagarh, parts of Rajnagar, Praharajpur, and Kadalichua, are
all located along the banks of the Brahmani and Dharma Rivers.
These villages are situated within the high-risk zone for riverine
floods. Additionally, villages like Balarampur, Gajrajpur,
Mahinsasur, Gobindapur, Amanapari, Bhitargarh, Sribantapur,
Tikayat Nagar, Rabindrapur, and others fall within the medium

flood risk zone. This zone covers an area of 171.51 sq. km,
accounting for 35.10% of the total area. These areas have a
moderate risk of flooding, but they also have the potential to
transition into high-risk zones in the coming years.

The mangrove forests in BNP, located primarily along the
estuaries, have the highest elevation. These areas experience
daily fluctuations in water levels during high and low tides,
making them naturally resistant to floods. Instead, these
mangrove areas serve as a protective barrier, shielding the
nearby regions from storms and floods. As a result, the
majority of the low flood risk zone comprises mangrove
forests along BNP and Gahirmatha WLS. Other villages in
the area, such as Barunei, Kantia Khai, Rajendranarayanpur,
Krishnanagar, Kanaknagar, Baghua, Dighi, Madhupur, and
others, also fall within this low-risk zone and are not
immediately susceptible to floods. This low-risk zone covers
an area of 132.39 Sq. km and constitute 27.09% of the total area
(Figure 11; Table 13).

FIGURE 9
Flood hazard map.

TABLE 11 Flood hazard statistics.

Hazard level Area in sq. Km Percentage (%)

Streams 55.18 11.23

High 14.24 2.9

Medium 4.11 0.8

Low 34.08 6.9

No Hazard 383.39 78.08
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FIGURE 10
Vulnerability map using AHP-weight overlay analysis.

TABLE 12 Vulnerability statistics.

Vulnerability classes Flood risk Area in sq. km Percentage (%)

Waterbodies N/A 66.48 13.60

High High 118.68 24.28

Medium Medium 165.94 33.90

Low Low 137.43 28.12
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4.7 Flood risk mapping using machine
learning

Figure 12 has been generated using machine learning
algorithms (SVM-RBF). This output provides better results than
the results obtained using conventional methods. The risk zones
created using this method are more distinctive and easier
to interpret. The flood risk map developed by machine
learning algorithms provides accurate in terms of overall
accuracy and kappa value (Table 14). In addition, the
machine learning-based flood risk map shows better visual
quality regarding zoning, smoothness and aerial extent as
compared to conventional methods (Figure 11; Figure 12;
Figure 13; Table 13).

The below figure shows a side-by-side comparison of
both maps.

In today’s time machine-learning algorithms due to their
association with Artificial Intelligence (AI) are widely used for
vulnerability mapping as seen in a number of studies(Avand
et al., 2021; Liu et al., 2021; Ghosh et al., 2022). The result of the
present study shows that machine-learning algorithms
outperform Weight Overlay Analysis methods based on the
map’s precision, kappa index, and overall quality. This is clearly
showcased in the accuracy assessment conducted using the OTB
tool. It has been proved repeatedly in other studies too that SVM
is the most reliable ML algorithm for flood zonation(Wu et al.,
2019; Xiong et al., 2019).

5 Mitigation strategies and conclusion

5.1 Mitigation for human settlement

Given the significant economic investment needed for
flood mitigation measures globally, as well as the unique
nature of floods requiring targeted strategies, it is crucial to
pay considerable attention to the performance of these
strategies and their optimal design under diverse and
complex environmental conditions. This emphasis on
performance evaluation and optimal design is of utmost
importance to ensure effective and efficient flood mitigation
efforts (Binns, 2020). It is fundamental to determine
which measures are the most effective in optimising the
response to floods in local communities(Genovese and
Thaler, 2020).

This study provides a comprehensive understanding of
the vulnerable and risk-prone regions within Bhitarkanika
National Park (BNP). It reveals that a significant portion of
BNP is classified as a high flood risk zone, necessitating
immediate actions and mitigation measures. Coastal villages
such as Govindapur, Kanhupur, Mohanpur, Paramanandapur,
Satavaya, Bankua, Nuagan, Baghadiya, Jaudiya, Joginatha,
Sailendra Sarai, Purusottampur, Junus Nagar, Panchu Palli,
Ramachandrapur, Ghadiamal, Padmanavpur, Jagannathpur,
Balarampur, Jharpada, Rajagarh, and Raj Nagar are located
in high-risk areas prone to tidal and riverine floods. These
areas have high population densities and require the
establishment of proper flood and storm centres. It is
essential to educate the residents about first aid and provide
them with training in disaster resilience. Additionally, these

FIGURE 11
Flood risk map using AHP-weight overlay analysis.

TABLE 13 Flood risk statistics.

Flood risk classes Flood risk Flood risk using AHP Flood risk using machine learning

Area in sq. km Percentage (%) Area in sq. km Percentage (%)

Waterbodies N/A 66.30 13.50% 62.01 12.60%

High High 118.40 24.23% 188.33 38.35%

Medium Medium 171.51 35.10% 107.41 21.87%

Low Low 132.39 27.09% 133.54 27.19%
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villages should have well-connected road networks to nearby
regional centres to ensure the timely arrival of emergency
supplies during floods. Considering the potential submergence
of coastal fishing villages due to rising sea levels in the
coming decades, proper resettlement planning must be
carried out in advance. Adequate relief and compensation
should be provided to the residents of these fishing
villages and nearby agricultural villages in the event of
flood damage.

5.2 Conservation of ecology

The mangrove forest area in Bhitarkanika National Park
has been steadily increasing thanks to the effective mitigation
measures implemented by the Odisha Forest Department.
Despite challenges such as illegal apiculture activities
leading to forest fires, the mangrove area has expanded
from 139.49 sq. km in 2000 to nearly 166 sq. km in 2021.

The forest department has been successful in addressing
threats such as overfishing, poaching, and shifting
cultivation, thereby stabilizing the mangrove ecosystem. On
the other hand, the area under agriculture has experienced a
significant decrease due to the expansion of aquaculture
activities and salinity ingress in agricultural areas.
Aquaculture has seen exponential growth in the past
2 decades due to its profitability. Numerous aquaculture
ponds are being established along the national park area,
posing a potential threat in the future. Salinity ingress from
nearby estuaries is also a major factor contributing to the
decline in agricultural activities as it negatively affects soil
fertility.

The saltwater crocodile population in the BNP area is
thriving, which is a positive sign for the biosphere reserve.
However, this has also resulted in an increase in human-animal
conflicts. During floods, crocodiles often venture out of the
main estuary area and into nearby rivers, posing a risk to local
villagers. It is crucial to implement measures to mitigate these
conflicts and ensure the safety of both humans and crocodiles.
Additionally, the study highlights the need to declare the
Gahirmatha WLS area as a no-fishing zone with strict
enforcement to protect the turtles. This will help preserve
the biodiversity and maintain the ecological balance in the
region. Furthermore, the study demonstrates that machine
learning techniques outperform Weight Overlay Analysis
techniques in terms of accuracy. The Weight Overlay
Analysis map achieved an accuracy of 91.12%, while the
machine learning map achieved an accuracy of 99.54%. This
indicates that the machine learning approach provides a clearer
and more accurate representation of the flood risk zones
in BNP.

The Bhitarkanika National Park area experiences annual
floods, yet there has been a lack of comprehensive studies that
intricately delineate the flood risk zones in this ecologically
important region. This study fills that gap by clearly identifying
the flood-prone areas within the fragile BNP region and
proposing potential mitigation measures aligned with the
Sustainable Development Goals (SDGs). Implementing
proper mitigation strategies in the high-risk zones identified
in the study can help minimize damage to both human lives and
wildlife. The National Disaster Management Authority
(NDMA) and the Government of Odisha can utilize this
study to make Bhitarkanika National Park more resilient to
flood-related damages and to promote harmonious coexistence
between humans and animals. Additionally, the study
demonstrates that the SVM-RBF algorithm is a superior
method for flood risk zoning, surpassing the traditional AHP
method. This finding encourages the widespread adoption of
the SVM-RBF algorithm in future studies, further enhancing
flood risk assessment and management efforts.

FIGURE 12
Risk map using machine learning.

TABLE 14 Flood risk comparison.

Methods used Kappa index (%) Overall accuracy (%)

Risk map using AHP-Weight Overlay Analysis 87.41 91.12

Risk Map using Machine Learning-SVM-RBF 99.19 99.54
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