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Accurate detection of landslide spatial patterns is vital in susceptibility, hazard, and
risk disaster mapping. Geographic Information System (GIS)-based quantitative
approaches provide a rigorous procedure for gaining deep insight into natural and
anthropogenic landslides from different scales. This study aims to implement a
comprehensive solution for retrieving the landslide susceptibility index. For that
purpose, a landslide inventory was performed in a tropical monsoon climate
region, with a magnitude of elevation spanning from −65 m to 1,900 m above the
sea, considering 15 fundamental causative factors belonging to the groups of
topography, hydrology, geology, land cover conditions and anthropogenic
activities, and weather. The frequency ratio (FR) was implemented to rank
subclasses in each causative factor. For factor weight estimation, different
approaches were applied, including the subjective-based analytic hierarchy
process (AHP), objective-based Shannon entropy (SE), and a synergy of both
methods (AHP–SE), built on these two approaches. Out of the 271 identified
landslide locations, 70% (196 points) were used for training and the remaining 30%
(71 points) were applied for validation. The results showed that the integrated
AHP–SE outperformed the two individual approaches, with the area under the
receiver operating characteristic curve (AUC) reaching 0.876, following SE (AUC =
0.848) and AHP (AUC = 0.818). In the synergy approach, the climate pattern under
tropical monsoons was confirmed as the most crucial landslide-predisposing
factor. The research contributes to a novel discussion by integrating knowledge-
based consultation and statistical data analysis of accurate geospatial data,
incorporating significant explanatory factors toward a reliable landslide-prone
zonation over space and time dimensions.
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1 Introduction

Landslides, caused by the rapid movement of rock and soil,
represent one of the most hazardous geological phenomena, with
significant impacts on both natural systems and human societies
(Highland and Bobrowsky, 2008). In natural environments,
landslides can alter the landscape, disrupt ecosystems, and affect
wildlife habitats. Furthermore, they can trigger other natural
disasters, such as flash floods, and increase soil erosion and
sediment deposits in rivers and streams (Lombardo et al., 2020).
In populated areas, landslides can cause damage to infrastructure,
resulting in significant financial losses and loss of life. The number of
people killed by landslides has increased significantly in the 20th
century due to the growing population density and accompanying
economic activities in areas with a high risk of landslides, and this
trend appears to be continuing in the 21st century (Froude and
Petley, 2018). Moreover, most landslides normally occur in high
mountain areas, and the destruction of landmass has more negative
impacts on sustainable livelihood in rural communities (Mirdda
et al., 2022).

The study of landslide probability has become a mature science,
with various approaches applied at regional (Guo et al., 2023),
continental (Van Den Eeckhaut and Hervás, 2012), and global
scales (Stanley et al., 2021), while also considering the diverse
landscapes of homogeneity (Sbroglia et al., 2018) or heterogeneity
(Wang et al., 2020) in specific areas. The research topic has
contributed to a broader scientific understanding of the Earth’
surface processes, providing a basis for future research and
innovation. Along with landslide inventories and hazard
mapping, landslide susceptibility zonation indicates the
probability or likelihood of a landslide occurring in a specific
area based on different conditioning factors such as geology,
topography, climate, land use, and human activities (Guzzetti
et al., 2006). The fundamental science of landslide sensitivity has
a long heritage since the pioneering research conducted in the late
1960s (Yong et al., 2022). Since the 19th century, geologists and
engineers started to recognize the relationship between geology,
topography, and the likelihood of landslides and then began using
quantitative assessments for landslide probability zonation based on
past landslide event observations (Reichenbach et al., 2018). The
capabilities of the Geographic Information System (GIS) provided a
promising opportunity to determine explicitly landslide-prone
areas, while considering spatial relationships between both
intrinsic and extrinsic factors (Nicu, 2017). Furthermore, the
remote sensing data available in recent years resulted in big
geospatial sources in order to construct a landslide-related
geodatabase, a key point to form different GIS-based approaches
for landslide-prone mapping (Scaioni et al., 2014).

Broadly speaking, predictive models of landslide predisposition
can be distinguished by 1) qualitative, 2) quantitative, 3) hybrid or
semi-qualitative approaches. Generally, quantitative strategies
include a certain degree of objectivity compared to qualitative
strategies. For quantification, there was a broad spectrum of
data-driven methods, including statistics and machine learning
techniques. In statistical analysis, numerous methods were
applied to landslide susceptibility, mostly by frequency ratio (FR)
(Nicu and Asăndulesei, 2018), Weight of Evidence (WoE)
(Razavizadeh et al., 2017), Shannon entropy (SE) (Roodposhti

et al., 2016), and logistic regression (LR) (Budimir et al., 2015).
The technological era of artificial intelligence has witnessed a variety
of machine learning-based methods, such as the traditional
algorithms support vector machine (SVM), random forest (RF),
and recent innovations in deep learning models (Zhang et al., 2022;
Ma et al., 2023). On the other hand, semi-qualitative approaches,
such as the analytic hierarchy process (AHP) (Kayastha et al., 2013),
fuzzy logic (Bui et al., 2015), and weighted linear combination
(WLC) (Li et al., 2022), were also recognized for their significant
applications in landslide probability zonation (Tyagi et al., 2022).

As mentioned previously, for the state-of-the-art machine and
deep learning models, these advanced computational intelligence
methods seem to outperform conventional models. Nevertheless,
there is no standard benchmark for the best modeling due to the
dominant uncertainty in landslide disasters. Updated studies
continued to compare the performance of different landslide
sensitivity models, for instance, knowledge-based versus data-
driven methods (Zhu et al., 2018), multi-criteria decision analysis
(MCDA) against machine learning (Khalil et al., 2022), statistical
analysis and machine learning (Ling et al., 2022), traditional
machine learning and deep learning (Zhang et al., 2022), and
machine learning combined with optimization algorithms (Wang
et al., 2022). Apart from that, the evaluation and selection of
landslide-controlling factors was also an engaging subject.
Unfortunately, there was no widespread guideline for the
selection of landslide conditioning factors. The challenge is each
factor also contributes to landslide risk and different natural
conditions in a specific area, leading to the choice of appropriate
factors to comprehensively describe the study area. In general, these
factors are divided into two main groups: conditioning and
triggering factors (Pourghasemi et al., 2018). Taking the
comparison help to identify the most informative landslide
explanatory factors as well as improve the accuracy landslide
susceptibility model (Gaidzik and Ramírez-Herrera, 2021; Liao
et al., 2022).

One of the major challenges in the procedure of landslide
probability is assigning weights to conditioning factors and
subclasses inside these factors. Weighting is a process used in
landslide susceptibility mapping to determine the relative
importance of different components that contribute to landslide
occurrence (Hodasová and Bednarik, 2021). The two main
approaches for weighting are subjective and objective. Subjective
weighting is mainly based on expert judgment. The approach relies
on the experience and knowledge of consultants to attach weights to
different factors based on their perceived importance. Objective
weighting, on the other hand, is followed by mathematical
calculation. Statistical models are used to determine the weights
of causative factors based on their correlation with landslide
occurrences. Objective estimations are generally considered more
reliable than subjective approaches due to their reliance on scientific
evidence while avoiding personal biases. Despite that, it is common
to use a combination of both subjective and objective methods to
ensure the best results (Wang et al., 2012; Zhou et al., 2016).

Located in southeast Asia, Vietnam is a region with a high
frequency of landslides (Shahabi and Hashim, 2015). As a coastal
country, Vietnam is directly affected by annual devastating
hurricanes originating from the Pacific Ocean. Landslides are
often triggered by heavy rainfall, which is primarily influenced by
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the tropical monsoon climate. This meteorological conditions is
characterized by high temperatures and humidity throughout the
year, with heavy seasonal rainfall occurring mostly from May to
November, transitioning to the dry season from December to April
with a high evaporation rate. With the continuous increasing trend
of climate change, the frequency and magnitude of typhoons have
significantly increased, leading to epic destruction caused by
landslides (Gariano and Guzzetti, 2016). Therefore, landslide
susceptibility zonation is one of the most crucial tasks to reduce
damage to human life and property, while also supporting decision-
making for future planning. Moreover, as a developing country with
a remarkable increase in human population and urbanization in
recent years, Vietnam faces an exacerbation of the risk of landslides
and their consequences.

The literature on landslide susceptibility in Vietnam has
explored various methods, including statistical techniques (Bui
et al., 2015; Kieu and Ngo, 2022; Thanh et al., 2022), machine
learning (Phong et al., 2021), and deep learning (Bui et al., 2020; Dao
et al., 2020; Nhu et al., 2020), which have mostly been applied in the
mountainous regions of the country. Unusual weather patterns have
caused an increase in natural hazards that not only occur more
frequently but also have greater magnitude and are expanding into
coastal mountainous areas. Due to its unique geography, the
Vietnamese Central region’s mainland is usually the first area
affected by tropical cyclones originating in the Pacific Ocean.
Among coastal provinces in Central Vietnam, Quang Nam

(Pham et al., 2022), Quang Ngai (Cong et al., 2020; Long et al.,
2022), and Hue (Long and De Smedt, 2018) were recently in focus
for landslide-prone occurrences. Quang Binh has recently emerged
as a region characterized by significant occurrence of landslides and
flash floods, attributed to heavy precipitation during the rainy
season, complex topography, and unstable geological features.
Despite the frequency of these natural disasters, no systematic
scientific investigation has yet been conducted to elucidate their
underlying causes.

Based on the aforementioned perspectives, we utilized different
techniques to generate landslide susceptibility maps in the coastal
mountainous province Quang Binh, Vietnam. Compared to prior
research, our methodology involved the integration of both the
AHP and SE to reveal the better performance of the predictive
model, emphasizing an underexplored approach by the synergy of
both subjective and objective approaches in the landslide
probability research domain. Formed by comprehensive data
collections of topography, hydrology, geology, land cover
conditions and anthropogenic activities, and weather,
15 independent landslide causative factors were adopted with a
focus on the climate-specific spatial layer. This implies a significant
impact of tropical monsoon climate on landslide events. From the
exemplary area, we identified and analyzed the most influential
factors, along with their respective subcategories. Our study results
have significant scientific and practical implications, serving as a
basis for scientific discourse and development of hazard

FIGURE 1
Location of the study area (A), including distribution of landslide inventory points over Sentinel-2 satellites images’ true color composite (B), and
chart of mean total monthly rainfall from 2018–2021 (C).
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prevention and mitigation plans focused on complex coastal
mountainous regions.

2 Study area

Quang Binh is a coastal mountainous province located in North
Central Vietnam, covering an area of approximately 8,000 km2

(Figure 1). Its geographic coordinates lie between 17°05′02″N to
18°05′12″N latitude and 105°03′55″E to 106°05′37″E longitude. The
topography of Quang Binh is characterized by a narrow, west-to-east
sloping landform, with hills and mountains accounting for 85% of the
total natural area. The province experiences an annual rainfall of
approximately 2,300 mm, with specific monthly precipitation
patterns that mark seasonal transitions between dry and rainy
periods. During the dry season (normally from April to August),
rainfall is typically low, with the lowest value of around 44 mm in
June. Conversely, in the rainy season (normally from September to
March), the total amount of precipitation increases markedly, peaking
at nearly 800 mm in October. Notably, based on our experience, the
excessive intensity of precipitation during September and October may
be a primary condition for triggering flash floods and landslides.

The evolution of landscapes and geological characteristics in
Quang Binh through thousands of centuries resulted in the largest
cave in the world, Son Doong (Limbert et al., 2016). Moreover, the
national park Phong Nha-Ke Bang was recognized by UNESCO as a
World Natural Heritage site for geology and geomorphology,
ecology, and biodiversity (https://whc.unesco.org/en/list/951/).
Under the major land cover of tropical forests, the diversity of
geological features and prevalent escarpments are also recognized as
the main motivation leading to incredible landform-related hazards.

3 Materials and methods

An overview of the landslide susceptibility mapping procedure is
depicted in Figure 2. The mainly practiced steps are 1) landslide
inventory; 2) spatial database construction of landslide conditioning
factors; 3) layer reclassification and ranking the subclasses of
corresponding factors using the FR method; 4) factor weighting
by AHP, SE, and AHP–SE; 5) preparing landslide susceptibility
mapping; and 6) model evaluation. The details of each step are
further described in the following sections.

3.1 Landslide inventory

The landslide inventory is an essential commission for GIS-
based landslide susceptibility modeling (Titti et al., 2021). The
quality and quantity of landslide locations have an impact on the
outcome and accuracy assessment of the predictive model. Satellite
images are valuable sources that support the landslide inventory,
especially in mountainous regions that are difficult to access.
However, dense tropical forests may present challenges and
uncertainty in detecting landslide occurrences based on these
remotely sensed data. Hence, taking advantage of satellite images
for landslide remote detection and ground true validation is essential
for enhancing the truthfulness of the landslide inventory database.
In the present study, we identified 271 landslide points over the
examined area, including historical destructive geological events and
field investigation. The points were first sampled based on numerous
geospatial resources, including high-resolution Earth Engine images,
optical satellite images from Sentinel-2, and thematic maps, which
were then verified in field campaigns during the rainstorm season in

FIGURE 2
Workflow diagram for landslide susceptibility mapping.
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FIGURE 3
Maps of conditioning factors considered in landslide susceptibility models including (A) elevation, (B) slope, (C) aspect, (D) plan curvature, (E)
distance to river, (F) drainage density, (G) TWI, (H) distance to fault, (I) soil, (J) geomorphology, (K) land cover, (L) distance to road, (M) NDVI, (N)
precipitation, and (O) climate.
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2022. As illustrated in Figure 1, the dataset was split into 70%
(196 points) for the training phase and 30% for validation
(71 points).

3.2 Spatial database construction of
landslide causative factors

In the domain of GIS-based landslide susceptibility,
preparing conditioning factors in a consistent spatial database
required outstanding knowledge of not only geographic accuracy
but also of the various types of features to fully reflect the interest
domain. To date, to select landslide-related model variables, it
should be noted that there are no standard guidelines or
regulations for choosing optimal factors, as these are well-
defined based on the specific case and research areas. Among
a plethora of causative factors relating to landslide susceptibility,
we recognized 15 significant factors through state-of-the-art
literature reviews (Pourghasemi et al., 2018; Reichenbach
et al., 2018; Yong et al., 2022). We categorized all factors into
five fundamental groups, 1) topography, 2) hydrology, 3)
geology, 4) land cover conditions and anthropogenic activities,
and 5) weather, as an effort to exhaustively consider the
contribution of related datasets to the disaster. Continuous
data layers were reclassified using Jenks natural breaks
optimization, while discrete data layers were stored in unique
values for further analyses. For the post-processing, the final
raster layers were geometrically corrected according to the World
Geodetic System (WGS), 1984, and the UTM (Universal
Transverse Mercator) Zone 48°N (North), which then
transformed into a 10-m resolution. Figure 3 displays the
maps of all 15 factors after standardization, as mentioned
previously. Detailed descriptions of each group-based
conditioning factor are provided in the following sections.

3.2.1 Group of topography
Topography-based components are one of the most decided

characteristics related to landslide susceptibility. In this respect,
we selected four remarkable factors to describe the terrain of the
research area, i.e., 1) elevation, 2) slope, 3) aspect, and 4) plan
curvature. To generate these topography-based factors, a digital
elevation model (DEM) with an original resolution of 12.5 m
was downloaded from https://asf.alaska.edu/. The DEM was
generated based on products of Phased Array type L-band
Synthetic Aperture Radar (PALSAR) instruments onboard
the Advanced Land Observing Satellite (ALOS).

The distribution of elevation across the considered area offers an
encompassing illustration of the terrain shape. Over the research
area, height values extracted from the DEM ranged from −55 m
under the sea level to 1,971 m above sea level due to the geographical
location of the coastal mountainous region. The Jenks natural breaks
optimization was applied to classify the elevation into five types. The
result strongly indicates that the area is predominantly hilly, and the
very high-altitude domain (>1000 m) only appears in the southeast
(Figure 3A).

Slope is a crucial factor that relates to landslide triggering.
Literature reviews have shown that slope is the most commonly
used parameter in the field of landslide sensitivity spatial modeling

(Pourghasemi et al., 2018). Although a slope of over 30° has been
identified as leading to instability and an increased risk of landslides,
different slope domains also require comprehensive consideration
due to the unique characteristics of the specific region (Moragues
et al., 2021). In the present study, spatial analysis functions were
applied with input from the DEM to derive the slope. Based on the
thematic map shown in Figure 3B, the slope is complex in the west
and becomes flatter while transitioning to the east. It should be
noted that steep slope features (>38°) only cover a small percentage
(4.77%) of the total area.

We also considered the aspect of slope, which indicates the
direction of each slope form. The slope aspect affects solar radiation,
wind exposure, and moisture availability, resulting in different
vegetation growth, soil characteristics, and local microclimates
(Cellek, 2021). Understanding the slope aspect in landslide
susceptibility measurements provides professional knowledge for
tackling natural disasters and further planning. The visual
representation of the slope aspect with a continuous range of
values from 0° to 360° was divided into 10 unique classes,
including north, northeast, east, southeast, south, southwest, west,
northwest, and flat direction (Figure 3C).

The function of the curvature is utilized to showcase the shape of
the slope, where a segment of a surface can exhibit either concavity
or convexity. There are two distinct types of curvature, i.e., planform
and profile. In general, the planform curvature focuses on the lateral
movement of fluid flow, while the profile curvature pertains to the
vertical changes in fluid flow. Here, we only focus on planform
curvature as this was used more than profile curvature in detecting
the probability of landslide occurrences (Pourghasemi et al., 2018).
The range of values obtained by planform curvature analysis is
divided into classes of concave (<−0.05), convex (>0.05), or flat
(−0.05–0.05) across the surface of the study area (Figure 3D).

3.2.2 Group of hydrology
Hydrology plays a required role in landslide susceptibility

prediction. Hydrological elements can influence the stability of
the terrain and trigger landslides. Understanding the interaction
between these hydrological factors and environmental
characteristics can provide valuable information for landslide
hazard management. By incorporating hydrological data into the
landslide model and considering the dynamic nature of these factors,
researchers can improve the accuracy and reliability of landslide
predictive models. Therefore, different variables related to
hydrology are considered in this present research, including 1)
distance to river, 2) drainage density, and 3) Topographic
Wetness Index (TWI).

Distance to river can affect the water content in the soil and
accumulation flow. Landslide occurrences are more likely to happen
in areas located near rivers, especially in mountainous regions (Pal
et al., 2022). Here, Euclidean distance was applied to the river
network geospatial layer and buffered into five different zones
from below 100 m to more than 500 m (Figure 3E).

Apart from distance to river, drainage density refers to the amount
of water draining from a certain area, and a high drainage density can
indicate areas that are prone to landslides. Hydrologists recognized the
vital role of drainage density in relation to a range of factors, including
flash flood severity, sediment load, water concentration, and overall
water balance, within a specific drainage basin (Chapter VIII Stream
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and Drainage Densities, 1985). Consequently, drainage density also
contributed to the landslide process as one of the most significant
variables representing the hydrological group setting. Figure 3F showed
the distribution of six subcategories of drainage density built on the
hydrological network.

Topographic wetness index, also known as the compound
topographic index (CTI), was first introduced by Beven and
Kirkby (1979). The index implies the effects of the spatial
topographic scale on hydrological processes with the assumption
of uniform soil properties. A summary of the application of the TWI
was described in Sørensen et al. (2006); Pal et al. (2022) as proof of
its vital role in hydrological applications. The TWI is often used to
identify areas that are susceptible to landslides due to saturation-
induced soil instability. To obtain the index, we applied the
following equation:

TWI � ln α/ tan β( ), (1)
where α is the scaled flow accumulation and β is the local slope

transfer to the radian unit. Figure 3G showed the distribution of the
TWI values generated based on the DEM, with a range of continuous
values converted to six discrete classes.

3.2.3 Group of geology
Not paying attention to geological-related components would be

a significant limitation in the systematic assessment of landslide
hazards. Given the thematic layer analysis conducted over the study
area, three appropriate conditioning factors were adopted, i.e., 1)
distance to fault, 2) soil, and 3) geomorphology.

Geological lineaments are characterized as one of the main driving
forces leading to land movements, such as active faults, earthquakes, and
geomorphological formation. Particularly in landslide hazards, the
presence of faults can create deformation in the surrounding rock,
which can weaken the material and increase the likelihood of failure.
Additionally, faults can also create pathways for water to infiltrate the
rock, which can further degrade the material and increase its
susceptibility to landslides (Ramli et al., 2010). Thus, we extracted the
geological lineament distribution and performed Euclidean distance
functions with grades of 100-m intervals. The result was then
reclassified into six classes of thematic layers, as represented in Figure 3H.

The soil affects the stability of geological characteristics and, thus,
unequivocally relates to landslide sensitivity. We first prepared the soil
map according to the FAO/UNESCO classification. Moreover, our
national database provided the map representing the details of each soil
class in Acrisols due to the predominance of this group in the
considered area. The final soil map includes eleven units: Epi Lithi
Humic Acrisols (ACu-l1), Calcisols (CLs), Epi Lithi Ferralic Acrisols
(ACf-l1), Leptosols (LPs), Endolithi Ferralic Acrisols (ACf-d2), Hapli
Ferralic Acrisols (ACf-h), Ferric Acrisols (ACfe), other Acrisols (Arenic,
Albic, and Plinthic) (ACs), Fluvisols (FLs), Epi Skeletic Ferralic (ACf-
sk1), and other soil types (Figure 3I).

Geomorphology is also an indisputable factor influencing landslide
susceptibility. The geomorphological map with ten unique
characteristics was obtained from the national geodatabase. Figure 3J
showed the distribution of geomorphological units including slow
gravity slope (I), wash slope (II), landform with origin of stream
flow (III), corroded slope (IV), the remaining surface of pediment
basin (V), quick gravity slope (VI), deluvi–coluvi agglomerating slope

(VII), the remaining surface of peneplain (VIII), others (IX), and karst
landform (X).

3.2.4 Group of land cover conditions and
anthropogenic activities

For selecting candidates related to landslides, the contribution of
the landcover environment and built-up infrastructures should be
emphasized. Accordingly, we adopted three sensitivity factors
belonging to the group of land cover conditions and
anthropogenic activities, namely, 1) land cover; 2) distance to
road; and 3) Normalized Difference Vegetation Index (NDVI).

A land cover map was obtained using the product of ESA
WorldCover version 2.0. The classification procedure was based
on both Synthetic Aperture Radar Sentinel-1 data and Sentinel-2
optical images with a resolution of 10 m globally (Zanaga et al.,
2022). In our examined area, six unique classes were identified with
the largest land cover class, the tree cover (84.63%), following
cropland (6.22%), grassland (3.54%), water bodies (1.95%), built-
up land (1.83%), and bare soil and sparse vegetation (1.83%).
Figure 3K showed the distribution of land cover as mainly forest
cover in hilly and mountainous areas.

Anthropogenic activities, i.e., road construction, can indeed
have a significant impact on the geological structure of a large
basin. With the spatial modeling of landslide sensitivity, it is
necessary to consider the distribution of road networks as one of
the most man-made influenced factors. Compared to plain regions
with stable slopes, the pressure from concrete road constructions can
be particularly intense in mountainous regions. Moreover, the
presence of roadways can also imply other human activities,
leading to further impact on the surrounding landscape (Pal
et al., 2022). Therefore, we applied Euclidean distance estimation
with an interval of 100 m. The resulting map is shown in Figure 3L.

The NDVI is also one of the indicators used to assess the density
of vegetation in tropical climates. Here, we calculated the index
based on the MultiSpectral Instrument (MSI) onboard Sentinel-2, as
shown in Figure 3M. It should be noted that the sensor includes
12 spectral bands with resolutions ranging from 10 m to 60 m. The
red and near-infrared bands (10 m) were used to obtain the NDVI
using the following equation:

NDVI � NIR − RED
NIR + RED

� B8 − B4
B8 + B4

. (2)

3.2.5 Group of weather
Two spatial layers of weather datasets related to landslide

probability are 1) precipitation and 2) climate. Related to the
previously mentioned factor, triggering of landslides in the tropical
monsoon climate zone is often due to heavy rainfall (Funk et al., 2015).
Therefore, remote sensing products of precipitation were processed
through the cloud spatial computing platform Google Earth Engine
using the catalog of ClimateHazards Group InfraRed Precipitation with
Station Data (CHIRPS). These datasets provide daily gridded rainfall
with a resolution of 0.05°. In order to focus on landslide susceptibility in
rainy season, a monthly rainfall map was generated with themean of all
images collected in September 2022, the rainiest period over the
research area (Figure 3N).

Climate is a long-term pattern of weather in a specific region.
Furthermore, climate patterns are the main controlling parameters for
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the amount of precipitation. Aiming to understand the relationship
between typical climates and landslides, we provided a thematic map to
present the main climate patterns in detail. A description of specific
climate patterns is provided in Table 1, and the map is shown in
Figure 3O.

3.3 Frequency ratio

The bivariate statistical FR method was applied to estimate the
landslide densities in all subclasses in each factor. The goal of this
method is to compute the percentage of landslide pixels located in
subcategories of all factors, correcting the associated raters to the
propensity of landslide occurrences (Lee and Talib, 2005). To
perform the estimation, the landslide inventory training dataset
and factor maps were used for obtaining the following equations:

FRi,j �
LSi,j /∑LSi,j
Ni,j /∑Ni,j

, (3)

RFi,j � FRi,j∑FRi,j
× 100, (4)

where i is the subclass of the considered factor j; LSi,j is the
number of landslide pixels in each class; Ni,j is the number of class
pixels; FRi,j is the frequency ratio; RFi,j is the relative frequency (%).

3.4 Analytic hierarchy process

The subjective approach, AHP, was first introduced in Saaty, 1977
(1980), known as a widely used multi-criteria decision analysis that
allows decision-makers to prioritize and evaluate alternative options

based on multiple criteria. In the field of critical landslide area
assessment, this method provides a robust, yet simple to handle,
complex decision-making problems. It is based on the principle of
pairwise comparison, where the relative importance of a criterion is
assessed in relation to others. Here, the AHP was implemented by a
subjective hierarchical structure that contains 15 landslide causative
factors. Based on judgments of multidisciplinary experts who
collaborated with local officers, pairwise comparisons are then made
to determine their relative importance. These comparisons are repeated
at each level of the hierarchy until an acceptance consistency ratio is
obtained, indicating that the criteria are consistent with others. The final
step involves combining the pairwise comparisons to calculate the
overall weight of individual factors. The metrics in the process,
including Consistency Index (CI) and Consistency Ratio (CR), were
estimated according to the following equation:

CI � λ max − n
n − 1

, (5)

CR � CI
RI
, (6)

where λmax is the maximum eigenvalue of the matrix, n is the
number of considered criteria (n = 15); the random consistency
index (RI) is 1.59, which was used for 15 criteria (Saaty, 1980). The
obtained CR less than 0.1 implies the consistency and acceptance of
the decision-makers’ pairwise comparison matrix.

3.5 Shannon entropy

Initially proposed by Shannon (1948), SE is a well-established
information theory-based method. The basic idea is to give more
weight to events that have higher entropy, as they contain more

TABLE 1 Description of the climate components.

No. Climate components Description

1 Temperature I: 22–24o

II: 20–22o

III: 18–20o

IV: 15–18o

2 Rainfall A: 2,500–2,800 mm

B: 2,000–2,500 mm

C: 1,500–2,000 mm

3 Cold time 0: non winter time

1: 1–3 winter months

2: 4–5 winter months

3: 6–7 winter months

4 Drought condition a: dry season during December to April with slight drought

b: dry season during December to April with moderate drought

c: dry season during January to July with moderate drought

d: dry season during January to July with drought
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uncertainty and information, and less weight to events with lower
entropy. Mainly based on ready-to-use data, the SE formula
measures the average amount of information contained in a
dataset, and the weights are derived from these entropy values.
In risk assessment, the entropy of a hazard event can be used to
determine its likelihood and potential impact. Events with higher
entropy carry more uncertainty and, therefore, have a higher risk
associated with them. Here, we computed the entropy of landslide
susceptibility based on the distribution of detected landslides in the
training dataset to the contributing factors. SE weighting was
estimated using the following equations (Roodposhti et al., 2016;
Agrawal and Dixit, 2022):

Pi,j � FRi,j ÷ ∑m

i�1FRij, (7)

Ej � −1
log2 mj( )⎛⎝ ⎞⎠ × ∑m

i�1Pijlog2Pij, (8)

Wj
SE � 1 − Ej( )∑n

j�1 1 − Ej( ), (9)

where i is the subclass of the considered factor j, m is the number
of subclasses in each conditioning factor, n is the number of
conditioning factors (n = 15), Pij is the probability density, FRij is
the frequency ratio, Ej is the entropy value, and Wj

SE is the entropy
weight.

3.6 The synergy of subjective and objective
weighting approaches

The synergy of both objective and subjective approaches may
enhance the performance of the model and mitigate issues related to
the ill-posedness. Therefore, the data-driven method SE and
knowledge-based method AHP were integrated to derive the
combined weights for each of 15 conditioning factors, as seen in
the following equation (Wang and Zhang, 2018):

Wj
SE−AHP � Wj

SE × Wj
AHP

∑n
j�1
(Wj

SE × Wj
AHP) (10)

where Wj
SE and Wj

AHP are derived from the objective-based SE and
the subjective-based AHP, respectively; j is the considered factor; n is
the total number of conditioning factors of the landslide
susceptibility model (n = 15).

3.7 Landslide susceptibility mapping

To retrieve the landslide susceptibility index, a summation of the
product of rating subclasses and respective weights of each
conditioning factor is given by the following equation:

LSI � ∑n

j�1Wj × RFR
j , (11)

where n is the number of landslide conditioning factors (n = 15);
Wj is the factor weight obtained by the corresponding methods of
AHP, SE, and AHP–SE; and Rj is the two-dimensional matrix of
factor j that has been reassigned to the RF. The continuous range
value of the landslide susceptibility index is divided into five

probability categories, namely, very low, low, moderate, high, and
very high, using the natural breaks Jenks function.

3.8 Model evaluation

The performance of various models was evaluated using the
receiver operating characteristic (ROC) curve. The primary statistical
metrics employed to measure the model accuracy are true positive rate
(TPR), false positive rate (FPR), and AUC. The TPR, also referred to as
sensitivity, reflects the proportion of correctly classified positive cases
among all positive cases, while the FPR, also known as specificity,
measures the likelihood of a true negative case being classified as
negative. The AUC spans from 0 to 1. A retrieval value of the AUC
closer to 1 results in the better performance of the model:

TPR � TP
TP + FN

� TP
P
, (12)

FPR � TN
TN + FP

� TN
N

, (13)

AUC � ∑TP +∑TN
P +N

, (14)

where true positive (TP) and true negative (TN) are the values of
correct landslide and non-landslide pixels, respectively; true
negative and false positive (FP) are the values of incorrect
landslide and non-landslide pixels, respectively; P and N are the
corresponding total number of landslide and non-landslide pixels.

We also estimate the relative landslide density index to evaluate
the performance of different models in each landslide-sensitive zone,
using the following equation:

R � ni

Ni
( )/∑ ni

Ni
( ) × 100, (15)

where ni and Ni are the numbers of landslide pixels and total pixels
in each susceptibility class, respectively.

4 Results

4.1 Weighting of subclasses and
corresponding conditioning factors

Table 2 showed the FR and RF calculated for subclasses in
landslide-controlling factors. By considering the quantity relationship
between training points (196 points) that appeared in each subcategory
(total of 79,865,948 pixels), higher FR values indicate higher sensitivity
of a class to landslide occurrence compared to the remaining classes
within a predisposing factor. It should be noted that even if a particular
subclass has a small number of landslide inventory points, the FR value
may still be high. This can occur when the percentage of pixels in the
subclass is low relative to the total number of pixels in the thematic
layer. The calculated RF (%) values were then assigned to reclassify
thematic maps of all 15 causative factors as input for the landslide
susceptibility model.

Regarding topographical groups, the highest elevation ranging
from 1,019 m to 1,971 m, slope degree of 17.5–26.8o, east slope
aspect, and convex plan curvature (>0.05) were determined as the
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TABLE 2 Results of the frequency ratio for subclass weighting for the 15 causative factors used in the model.

No. Factor Class Pixel (%) Landslide pixel (%) FR RF

1 Elevation (m) −55–98 33.84 19.39 0.57 7

98–268 25.13 30.61 1.22 15

268–459 17.51 27.04 1.54 19

459–667 13.59 16.33 1.20 15

667–1,019 9.29 4.59 0.49 6

1,019–1,971 0.64 2.04 3.20 39

2 Slope (o) 0–8.29 33.00 5.61 0.17 3

8.29–17.50 23.50 26.02 1.11 20

17.50–26.76 23.16 42.86 1.85 33

26.76–38.71 15.57 19.90 1.28 23

38.71–82.02 4.77 5.61 1.18 21

3 Aspect Flat (−1) 4.14 0.51 0.12 1

North (0–22.5; 337.5–360) 13.08 14.80 1.13 14

Northeast (22.5–67.5) 12.84 17.86 1.39 17

East (67.5–112.5) 11.81 18.88 1.60 19

Southeast (112.5–157.5) 12.30 7.65 0.62 7

South (157.5–202.5) 11.94 13.78 1.15 14

Southwest (202.5–247.5) 12.05 10.20 0.85 10

West (247.5–292.5) 10.32 7.14 0.69 8

Northwest (292.5–337.5) 11.52 9.18 0.80 10

4 Plan curvature Concave (<−0.05) 36.37 34.69 0.95 32

Flat (−0.05–0.05) 25.41 20.92 0.82 28

Convex (>0.05) 38.22 44.39 1.16 40

5 Distance to river (m) <100 21.44 21.94 1.02 16

100–200 15.64 16.84 1.08 17

200–300 11.64 17.35 1.49 24

300–400 8.59 8.67 1.01 16

400–500 6.34 5.61 0.89 14

>500 36.35 29.59 0.81 13

6 Drainage density (km2/km) 0–0.58 42.86 35.71 0.83 14

0.58–1.58 20.41 23.47 1.15 20

1.58–2.68 17.35 21.43 1.24 21

2.68–3.89 11.58 13.27 1.15 20

3.89–5.47 6.09 5.10 0.84 14

5.47–13.48 1.71 1.02 0.60 10

7 TWI 0.64–4.68 25.22 32.65 1.29 29

4.68–6.26 36.02 43.37 1.20 27

6.26–8.37 17.45 18.37 1.05 24

(Continued on following page)
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TABLE 2 (Continued) Results of the frequency ratio for subclass weighting for the 15 causative factors used in the model.

No. Factor Class Pixel (%) Landslide pixel (%) FR RF

8.37–10.74 10.94 2.04 0.19 4

10.74–13.90 9.08 3.06 0.34 8

13.90–23.12 1.29 0.51 0.40 9

8 Distance to fault (m) <100 6.83 6.12 0.90 14

100–200 6.43 5.10 0.79 12

200–300 6.25 9.18 1.47 23

300–400 6.04 8.16 1.35 21

400–500 5.76 5.10 0.89 14

>500 68.69 66.33 0.97 15

9 Soil Other 8.48 0.51 0.06 1

Epi Lithi Humic Acrisols (ACu-l1) 1.21 3.57 2.95 27

Calcisols (CLs) 21.54 9.18 0.43 4

Epi Lithi Ferralic Acrisols (ACf-l1) 40.11 51.02 1.27 12

Leptosols (LPs) 3.10 4.08 1.32 12

Endolithi Ferralic Acrisols (ACf-d2) 9.81 22.96 2.34 21

Hapli Ferralic Acrisols (ACf-h) 3.80 4.08 1.07 10

Ferric Acrisols (ACfe) 2.66 1.02 0.38 3

Other Acrisols (Arenic, Albic, and Plinthic) (ACs) 2.51 0.51 0.20 2

Fluvisols (FLs) 5.04 2.04 0.41 4

Epi Skeletic Ferralic (ACf-sk1) 1.74 1.02 0.59 5

10 Geomorphology Slow gravity slope (I) 22.89 31.12 1.36 12

Wash slope (II) 9.97 18.88 1.89 17

Landform with origin of stream flow (III) 12.40 10.71 0.86 8

Corroded slope (IV) 3.56 6.63 1.86 17

Remaining surface of the pediment basin (V) 2.17 3.57 1.65 15

Quick gravity slope (VI) 7.69 12.76 1.66 15

Deluvi–coluvi agglomerating slope (VII) 2.79 2.04 0.73 7

Remaining surface of the peneplain (VIII) 1.68 0.51 0.30 3

Others (IX) 14.40 0.00 0.00 0

Karst landform (X) 22.45 13.78 0.61 6

11 Land cover Tree cover 84.63 93.88 1.11 33

Grassland 3.54 3.06 0.87 25

Cropland 6.22 0.51 0.08 2

Built-up 1.83 0.51 0.28 8

Bare/sparse vegetation 1.83 0.51 0.28 8

Water bodies 1.95 1.53 0.78 23

12 Distance to road (m) <100 14.63 9.18 0.63 11

100–200 8.04 5.61 0.70 13

(Continued on following page)

Frontiers in Environmental Science frontiersin.org11

Hoa et al. 10.3389/fenvs.2023.1175567

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1175567


most influential subclasses. In case of the group set by hydrological
variables, distance to rive spanning 200–300 m, drainage density
between 1.6 and 2.7 km2/km, and the range of the TWI of
0.6–4.7 become more sensitive compared to other corresponding
subcategories. The soil of Epi Lithi Humic Acrisols (ACu-l1), wash
slope and corroded slope, and 400–500 m proximity to the fault gave
the most pressure in the geological group. The group of land cover
conditions and anthropogenic activities witnessed the most
significant susceptibility in subclasses of tree cover, distance to
road of 400–500 m, and a range value of the NDVI,
approximately 0.7 – 0.8. Last, weather-based components
estimated the rainfall amount on average of 15.6–23.3 mm/day,
and two climate patterns (IB1a and IIA2a) are the most impact
subcategories contributing to the landslide probability.

Table 3 represented the AHP order matrix for 15 conditioning
factors, with a range of positive integer values from 1 to 7 applied for
comparison among these aforementioned criteria. The achieved
metrics λmax , CI, and CR are equal to 15.64, 0.045, and 0.028,
respectively, strongly confirmed for the consistency of the matrix.
Relative weights for all factors in the method of the AHP, SE, and
AHP–SE were determined and illustrated in Figure 4. From the
charts, subjective judgment strictly obeys the AHP process, with the
most important causative factors being precipitation and slope. In
contrast, data-based statistics SE accounting for soil and climate
affect much of the landslide susceptibility model. The final ranking,
which incorporated both AHP and SE, identified slope and soil as
the most crucial factors for detection of landslide-prone regions.
When considering all three methods, soil, climate, slope, and

TABLE 2 (Continued) Results of the frequency ratio for subclass weighting for the 15 causative factors used in the model.

No. Factor Class Pixel (%) Landslide pixel (%) FR RF

200–300 5.47 3.06 0.56 10

300–400 4.12 4.59 1.11 20

400–500 3.34 4.59 1.38 25

>500 64.40 72.96 1.13 21

13 NDVI −0.83–0.05 1.47 1.02 0.70 16

0.05–0.29 3.86 2.55 0.66 15

0.29–0.44 5.45 3.57 0.65 15

0.44–0.58 7.82 4.59 0.59 13

0.58–0.73 13.09 9.18 0.70 16

0.73–0.83 68.32 79.08 1.16 26

14 Precipitation (mm/day) 2.78–6.56 1.12 1.02 0.91 16

6.56–11.12 14.84 4.59 0.31 5

11.12–13.27 34.83 37.76 1.08 19

13.27–15.30 25.97 28.06 1.08 19

15.30–17.58 14.71 18.88 1.28 22

17.58–23.27 8.53 9.69 1.14 20

15 Climate IA1a 5.12 4.59 0.90 6

IA1b 20.15 27.04 1.34 9

IB0d 12.79 1.02 0.08 1

IB1a 5.42 8.67 1.60 11

IB1b 20.71 20.92 1.01 7

IB1d 1.53 1.02 0.67 5

IC0d 1.62 0.00 0.00 0

IC1c 2.21 1.53 0.69 5

IIA2a 13.70 21.94 1.60 11

IIB2b 13.65 9.18 0.67 5

IIIA2a 2.79 2.55 0.91 6

IVA3a 0.32 1.53 4.77 33
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precipitation were recognized as the top important factors, with
significantly higher weights than those of the rest. For example, the
lowest weight value for slope in SE was 0.138, while the highest
weight value for climate in AHP–SE was 0.194. The plan curvature
was found to contribute the least to the model, with the lowest
weight assigned to it in all three methods (AHP: 0.009, SE: 0.021, and
AHP–SE: 0.002). Notably, AHP–SE showed a significant difference
between the most crucial factor, climate, and the least important
one, plan curvature, with weight values ranging from 0.002 to 0.194.

4.2 Landslide susceptibility mapping

Figure 5 illustrated the distribution of landslide sensitivity using the
AHP, SE, and the synergy of these two methods. The maps clearly
demonstrated that the most sensitive landslides are located along the
Truong Son mountain range in Vietnam, stretching from the northwest
to the southeast. In contrast, coastal areas showed a very low to low
proportion of landslide occurrences. The polar chart (Figure 5D)
summarized the statistics area of the five levels of landslide
susceptibility based on AHP, SE, and the integrated approach. Overall,
the major landslide-prone areas belong to the high level in all three
methods, on average, accounting for nearly a quarter of the total study
area. In particular, the AHP method showed the highest percentage
(29.83%) of the high landslide-prone category, while the SE method
exhibited slightly different proportions for high and very high levels,
i.e., 28.76% and 26.05%, respectively. The combined approach AHP–SE
resulted in 28.97% for high risk and 21.93% for very high risk zones. The
figures for moderate risk of landslide trigger in the three methods
appeared to be similar, with negligible differences in area percentage,
ranging from the lowest 21.32% (AHP) to the highest 22.70% (SE).

Looking into the classes of low and very low susceptibility, it
is evident that these classes resulted in the smallest percentage of
the susceptibility area compared to the three remaining
categories. In the SE, approximately 11% of the natural area
was identified as having the least landslide probability, and the
number remains unchanged for the level of low sensitivity. Using
the AHP model, the proportions of very low and low levels were
found to be 11.71% and 15.65% of the total area, respectively,
whereas 14% and 13.30% of the area are shown in very low and
low landslide susceptibility degrees according to the combined
method AHP-SE. In comparison to categories of the high
landslide sensitivity class, the statistical data for the level of
very low susceptibility revealed significantly lower values,
i.e., only one-third of the values obtained through the AHP
and the SE method and half the number of the high landslide
sensitivity class identified through the AHP–SE method. By
comparing these three methods, the statistics strongly suggest
that the examined area exhibited landslide predisposition mostly
at high and very high levels.

4.3 Model performance

Figure 6 summarized the performance of the SE, AHP, and the
AHP–SEmethod for landslide susceptibility mapping based on ROC
curves with AUC values and R-index for landslide probability levels.
Overall, all three models were reliable, with the AUC higher than the
random guess (0.5) and classified as a very good prediction (AUC
ranging from 0.8–0.9). Interestingly, the integrated AHP–SEmethod
outperformed both the two individual methods, with the AUC
reaching the highest score of well over 0.87. Objective-based SE

TABLE 3 Pairwise comparison matrix built on AHP method (λmax is the maximum eigenvalue of the matrix, Consistency Index (CI), and Consistency Ratio (CR).

No Factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Elevation 1 1/2 1 3 2 2 2 1/2 1 1 2 2 3 1/2 1

2 Slope 1 2 6 3 3 3 2 2 2 5 3 3 1 3

3 Aspect 1 3 2 1/3 2 1/2 1/3 1 3 2 5 1/2 1/2

4 Plan curvature 1 1/3 1/3 1/2 1/5 1/4 1/3 1 1/3 1 1/5 1/4

5 Distance to river 1 1 1 1/3 1/3 1/2 1 1 1 1/4 1/3

6 Drainage density 1 1 1/2 1/2 1 2 2 2 1/4 1/2

7 TWI 1 1/2 1/2 1/2 2 1 2 1/2 1/2

8 Distance to fault 1 1 2 3 2 3 1 1

9 Soil 1 1 3 3 3 1/3 1/2

10 Geomorphology 1 3 2 3 1/3 1/2

11 Landcover 1 1 1 1/6 1/3

12 Distance to road 1 1 1/4 1/3

13 NDVI 1 1/5 1/3

14 Precipitation 1 2

15 Climate 1

λmax = 15.64, CI = 0.045, CR = 0.028
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was better than subjective-based AHP, i.e., AUC values are nearly
0.85 and 0.81, respectively. Compared to the lowest AUC derived
from the AHP, the synergy of the objective and subjective weighting
method, AHP–SE, led to a notable improvement in the landslide
susceptibility model by approximately 7%. The R-index derived for
very high landslide sensitivity levels in AHP, SE, and AHP–SE maps
is 6̉3.35%, 71.09%, and 78.41%, respectively, indicating the best
prediction of AHP–SE models.

5 Discussion

5.1 Sensitivity analysis of causative factors
and subclasses

Out of the 15 selected factors, the weighting approach
subjectively and objectively resulted in different relative
importance levels. For knowledge-based weighting using AHP,
confirmation for the most important factor, slope, was also found
in different case studies (Kayastha et al., 2013; Mondal and Maiti,
2013; Moragues et al., 2021; Agrawal and Dixit, 2022; Khalil et al.,
2022). Slope is a widely used variable in the field of landslide hazard
zonation (Pourghasemi et al., 2018; Reichenbach et al., 2018).
Notwithstanding, its importance in relation to landslide
sensitivity may vary depending on the specific circumstance.
Recent research settings on different characteristics of the area
found other factors to be more influential, such as land use (Guo
et al., 2023) and lithology (Yalcin, 2008; Pourghasemi et al., 2013).
Particularly in the tropical climate region, precipitation was
recognized as the most significant component related to landslide
sensitivity (Shahabi and Hashim, 2015). Related to the data-driven
methods, the results indicated that calculation based on SE gave the
most important factors of soil. It was also confirmed by the same
method (Devkota et al., 2013; Agrawal and Dixit, 2022). For the
integrated model, climate was the most influential factor in the
landslide susceptibility model, especially in tropical monsoon areas.
The factor was rarely used due to data availability and it is
unnecessary in some general case studies. Here, we aimed to
highlight the impact of the typical climate form under tropical
monsoon areas as one of the key variables leading to the high degree
of landslide triggers. An updated global map of landslide sensitivity
strongly suggested that Southeast Asia, with its classical tropical
environment, has one of the most frequent landslide occurrences
(Stanley et al., 2021).

We also have a deep insight into the contribution of different
landslide conditioning factors, which allows us to suggest the
necessary datasets in regions with the same environmental
conditions. Based on the AHP method, our subjective
knowledge indicated that the top five important factors are soil,
climate, land cover, TWI, and elevation. The AHP-based results
suggested that each fundamental group contains at least one factor
with a significant contribution to the landslide hazard predictive
model. However, approaching data-based statistics, the SE method
has shown that precipitation, slope, distance to fault, climate, and
soil were estimated as the highest weight factors. For the combined
AHP–SE, climate, soil, slope, elevation, and geomorphology
become the highest weight factors of the landslide-prone
predictive model. Considering both individual and integrated
methods, two groups of land cover conditions and
anthropogenic activities and hydrology contributed the least to
the landslide susceptibility model. This is a confirmation for the
most essential group of weather, topography, and geology
compared to the two remaining groups of hydrology and
natural–artificial conditions. The topography group also
contained the most significant factor, slope, and the least
important factor, plan curvature, in all the three methods.

It should be noted that subclasses in conditioning factors
significantly affect the results of landslide susceptibility

FIGURE 4
Assigned weight for (A) subjective-based AHP, (B) objective-
based SE, and (C) integrated AHP and SE.
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FIGURE 5
Maps of landslide susceptibility obtained by the methods of (A) AHP, (B) SE, (C) integration of SE and AHP, and (D) percentage area representing
landslide sensitivity levels following corresponding methods.

FIGURE 6
Performance of SE, AHP, and the integrated approach AHP–SE for landslide susceptibility mapping through (A) ROC curves with AUC values and (B)
R-index of five landslide sensitivity categories.
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modeling, especially for high-weight factors. Figure 7
represented the percentage of landslide inventory validation
recorded in each specific subclass, which analyzed the
relationship between landslide occurrence and different
subclasses in causal factors. In summary, the sensitivity of
landslide over the case study area was observed mostly in
hilly areas (98–268 m), steep slopes (18–27o), slope aspects of
east and northeast, both concave and convex of planform
curvature, distance to river under 100 m, drainage density
below 0.58 km2/km, TWI ranging from 0.64 to 6.26, distance
to fault higher than 500 m, soil class of Epi Lithi Ferralic Acrisols,
geomorphology landform of slow gravity slope, land cover of tree
cover, distance to road higher than 500 m, high NDVI values,
daily rainfall spanning between 11.1 and 13.3 mm/day, and the

climate form of tropical monsoon climate Ia1b separated by dry
seasons (high temperature and moderator drought) and rainy
seasons (from May to November with the total amount of
precipitation 2,500–2,800 mm).

5.2 Effectiveness of modeling strategies

Among the followed methods, AHP is one of the most common
techniques due to its easy approach and implementation (Tyagi
et al., 2022). Even with the subjective limitation, AHP was still
conducted in many applications of case studies (Pourghasemi et al.,
2018; Yong et al., 2022). The method applied in our study was less
accurate than the SE, with no significant difference, however.

FIGURE 7
Percentage of landslide validation data based on each subclass of fifteen considered factors: (A) elevation; (B) slope; (C) aspect; (D) plan curvature;
(E) distance to river; (F) drainage density; (G) TWI; (H) distance to fault; (I) soil; (J) geomorphology; (K) landcover; (L) distance to road; (M) NDVI, (N)
precipitation; and (O) climate.
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Previous experiences also confirmed the slightly lower performance
than that of data-driven methods such as statistical analysis (Panchal
and Shrivastava, 2021) and machine learning models (Khalil et al.,
2022). Nonetheless questions about the requirement of expert
knowledge contributing to the landslide susceptibility model still
remained, with the continuous proposal for different combined
approaches. Various studies demonstrated a better performance
by integration of AHP with different strategies, i.e., WLC (Hung
et al., 2016), FR (Mondal andMaiti, 2013), fuzzy (Agrawal and Dixit,
2022), and evidential belief function (EBF) (Althuwaynee et al.,
2014). Furthermore, incalculable fluctuation of changing climate
leads to ill-posed problems, while depending individually on data-
driven methods (Gariano and Guzzetti, 2016; Zêzere et al., 2017),
thus emphasizing the necessity of knowledge-based contribution in
diverse landslide susceptibility models.

On the other hand, the objective-based weighting approach, SE,
predicted better landslide sensitivity than the AHP with the
confirmation of all the mentioned accuracy metrics. The method
was applied in numerous works as demonstrated for the best model
while being compared to LR (Devkota et al., 2013), Bayesian conditional
probability model (Pourghasemi et al., 2012), AHP (Panchal and
Shrivastava, 2021), statistical information value (Singh et al., 2021),
and FR (Jaafari et al., 2014). These techniques employ mathematical
models to determine criteria weights without incorporating the
subjective preferences of decision-makers, thereby avoiding the
potential influence of personal bias on the final decision outcome.
Despite the fact that weights assigned by the relationship of history
landslide records and thematic layers are explicit and objective, the
method is affected by the resolution of spatial explanatory factors and
both the quality and quantity of landslide inventory data (Zêzere et al.,
2017).

In the light of various combined methods, we deployed the synergy
of AHP and SE, as noticed for the lack of a combination in the field of
landslide susceptibility assessment. Generally, both of the proposal
weighting approaches have self-advantages and disadvantages. The SE
is based on objective data, while the field dataset of landslide occurrences
and the detail or resolution of the thematic layers affect the performance
of the predictive process. The AHP is based on subjective decisions that
may have the tendency of following rigid perspectives or epistemic
uncertainty. To overcome the disadvantages and yield advantages in both
themethods, we integrated subjective and objective approaches to deliver
an optimal weight for each corresponding landslide-controlling factor.
Statistical metrics of the AHP–SEmethod were revealed in this research.
The performance of the combined approach was demonstrated to be
more accurate compared to that of AHP and SE, thus increasing the
reliability of the predictive model.

5.3 Future implementation

In the present study, we involved 15 factors in an effort to consider
the entire prevalent landslide-predisposing aspects of topography,
geology, hydrology, land cover environment and anthropogenic
activities, and weather. However, it is hard to confirm the best
selection of conditioning factors as the task is a major challenge in
hazard prediction modeling. Among hundreds of factors (with their
original name) used in the landslide susceptibility, more than 23 factors
were mostly used (Reichenbach et al., 2018). Analysis of studies during

2005–2016 also indicated the same number of factors used more than
30 times (Pourghasemi et al., 2018). Due to the unavailability of
standard guidelines to select the most effective factors, the optimal
factors are mainly based on landslide type, examined area conditions,
methods applied in available data, and scale requirements (Pourghasemi
et al., 2018). The accuracy of models by adopting different factors was
demonstrated by Gaidzik and Ramírez-Herrera (2021). Therefore,
future implementation should involve quantitative analysis to suggest
themost significant factors and to improve our profound understanding
of how predisposing factors affected landslide susceptibility.

The geospatial data DEM is the main source used to generate
different landslide-related spatial products such as slope, aspect, and
curvature. Although various studies confirmed the unimpacted
topographic product resolution on the performance of landslide
susceptibility models (Tian et al., 2008; Chen et al., 2020),
suggestions for the most congruous raster pixel size of the DEM
were also discussed in detail. Gaidzik and Ramírez-Herrera (2021)
indicated that a finer resolution of topographic data leads to better
prediction; however, the quantity and quality of input data seem to
be important with lower resolution. Lee et al. (2004) concluded that
the proper resolution of 30 m, while constructing the map with
scales ranging from 1:5,000 to 1:50,000 (Tian et al., 2008), implied
that for a changed study area, the size decided the meaningful spatial
resolution, while also mentioning that flat, ridge, and slope foot
terrain shape is more difficult to predict than landslide probability in
the case of lower DEM resolution. In addition, the choice of suitable
methods is also mentioned, for instance, the FR applied in low-
resolution products seemed to be better than the entropy-based
method and WoE (Chen et al., 2020), or the AHP is appropriate in
the medium-resolution scale (1:250,000–1:25,000) (Yong et al.,
2022). Therefore, further analysis needs to be considered for
calculating the spatial resolution of topographic products in
specific conditions of the area and for selecting the most suitable
input data, methodologies, and map scale results.

Apart from the proposed methods already applied in this study,
further experiments should attempt to continue accessing different
methods including statistics, expert-based methods, artificial
intelligence solutions, and a synergy of these methods to choose the
most suitable approach (Chakrabortty et al., 2022). Big data also leads to
the uncertainty of traditional methods due to the complex analysis
process. Combining advanced high-performance machine learning
and deep learning models with big geospatial data may help in
resolving complicated issues and significantly improving the
performance of the landslide model. This could be a potential
solution for the transferability of accurate landslide susceptibility
models over different areas and for temporal analysis.

6 Conclusion

Our study demonstrated the successful prediction of landslide
sensitivity over a Vietnamese coastal mountainous area through the
subclass weighting FR and factor weighting of AHP and SE on
15 independent landslide-causative factors. By combining subjective
and objective approaches, we improved the performance of the
predictive model and provided statistical evidence to support our
findings. Under the perspective of integrating expert-based knowledge
and data-driven methods, we also emphasized the importance of
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considering climate patterns in tropical monsoon areas when assessing
landslide susceptibility. Sensitivity analysis indicated the most impacted
subclass for individual landslide causative variables, providing valuable
insights for the considered area. Notwithstanding the proposed methods,
it showed a promising solution; further research is needed to improve our
understanding related to the influences of different conditioning factors,
input spatial factors, data sampling methods, advanced techniques, and
model transferability for large-scale spatiotemporal analysis. The research
contributed to the field of GIS-based landslide sensitivity zonation in
Vietnam, enabling the potential for early warning of disastrous hazards
and mitigation efforts based on not only knowledge but also statistical
evidence, especially in the context of uncertain future climate changes.
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