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Introduction: Nowadays, the widespread use of plastic products has significantly
contributed towards environmental pollution caused by waste plastics. Laser-
induced breakdown spectroscopy (LIBS), an emerging spectroscopic technology,
has shown great potential for rapid sorting and recycling of plastics. However, the
poor robustness of the classification model severely limits the large-scale
application of LIBS technology in plastic sorting and recycling.

Methods: In this research, we used spectral preprocessing combined with feature
selection to improve the robustness of the support vector machine (SVM)
classification model for four typical plastic samples (ABS, nylon, 3240, and its
modified product FR-4). LIBS spectral data were collected under different
experimental conditions, then we defined robustness over time (ROT),
robustness over time and different focusing lenses (ROT&RFL), and robustness
over time and different manufacturers (ROT&RDM) to assess model performance.
The feature importance of the preprocessed spectra was evaluated using the
Relief-F algorithm, and the maximum accuracy of the validation set was 92.6%
when inputting the first 19 most important features. Eventually, the optimal model
was used for the prediction of the test set.

Results and discussion: The ROT of the original spectrum, spectrum
preprocessing, and spectral preprocessing combined with feature selection
were 58.4%, 79.1%, and 98.47%, respectively. Similarly, ROT&RFL for the same
methods were 65.54%, 75%, and 95.25%, respectively. ROT&RDM were 65.5%,
67%, and 93.92%, respectively. The results demonstrate that spectral
preprocessing combined with feature selection can significantly improve the
robustness of the classification model, and the proposed method is feasible for
plastic sorting and recycling.
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1 Introduction

Plastics have been extensively utilized in various industries due
to their low weight, excellent mechanical, and chemical properties.
(Global plastic production 1950-2021, 2022). In 2022, the global
production of plastics will exceed 400 million tons, of which less
than 10% will be recycled and nearly 80% will be buried or scattered
in the environment (Patel et al., 2000; Shi et al., 2021). Since
traditional plastics take hundreds of years to decompose and
degrade slowly, the problem of white pollution has become
increasingly severe. Hence, research into waste plastic recycling
and sorting technologies is crucial for preserving the
environment (Adarsh et al., 2022). Currently, there exist several
techniques for classifying plastics using spectroscopic methods, such
as near-infrared spectroscopy (NIR) (Xia et al., 2021), X-ray
fluorescence spectroscopy (XRF) (Chaqmaqchee et al., 2017), and
Raman spectroscopy (Neo et al., 2022). Although each of these
techniques has its advantages in plastics classification, they also have
significant limitations. For instance, NIR detects materials based on
their absorption spectra between 780 and 2500 nm, and it is
impacted by samples with dark or black surfaces. The XRF
technique cannot detect light elements, such as C, H, O, and N,
which are the primary components of plastics. Raman spectroscopy
identifies the sample type based on the sample’s molecular structure,
which is rapid and accurate. However, the signal intensity of Raman
scattering is weak and easily influenced by stray light, making this
approach more suitable for laboratory environments than rapid
sorting in industrial settings.

Laser-induced breakdown spectroscopy (LIBS) is an
analytical technique that employs high-energy laser pulses to
ablate a material, thereby producing plasma whose spectrum is
collected and analyzed to determine the material’s elemental
composition. LIBS offers several advantages, including
simultaneous multi-element analysis, remote detection,
rapidity, and no complicated sample pretreatment, thereby
presenting a vast scope for material analysis (Dong et al.,
2011; Hahn and Omenetto, 2012; Labutin et al., 2013; Li et al.,
2018; Liu et al., 2018; Fu et al., 2019; He et al., 2019). Recently, the
combination of LIBS technology and machine learning methods
for plastics classification and identification has become a popular
research topic (Zeng et al., 2021). For instance, Liu et al. (2019)
classified plastics using the partial least squares discrimination
analysis (PLS-DA) model and presented the wavelet transform
(WT) approach to select the suitable spectral window, which
significantly decreased the classification model’s overfitting.
Banaee and Tavassoli (2012) achieved 99% classification
accuracy in identifying six plastic samples with using
discriminant function analysis (DFA) with the input of the
intensity ratio of the characteristic spectral lines at C
247.86 nm. Wang et al. (2012) selected 21 characteristic
spectral lines, including non-metallic elements and impurity
metal elements that may be contained in the samples. Then a
principal component analysis (PCA) combined with a back
propagation (BP) artificial neural network model was used to
achieve 97.5% classification recognition rate for seven plastic
samples. Although these plastic classification works achieved
better recognition rate, however, the research work obtained
spectral data for the training set and test set under the same

experimental conditions. Even, some researches divided the
spectral data from one measurement into a training set and a
test set. Thus, it is necessary to evaluate the reliability of the
classification models for longer time scales or for data obtained in
various test conditions.

In the realm of online analysis, the robustness of classification
models is a crucial issue. In practical applications, the analytic
instrument needs to be able to run for a long time without
requiring frequent recalibration or maintenance from a
professional. That is to say, the classification model’s
robustness is fundamental. Vors et al. (2016) developed a
SIMCA supervised classification model to recognize 13 alloys,
evaluated and optimized model robustness using spectral data
collected 7–8 months after the calibration phase, and validated
the best model using test sample spectra obtained 2.5 years later.
Wang et al. (2020) classified LIBS spectrum data of four
representative plastic samples using seven chemometric
methods. Further, the robustness of the models was evaluated
for different excitation wavelengths and various data acquisition
periods. The results showed that the neural network model, linear
discriminant analysis (LDA) model, and PLS-DA models exhibit
better robustness, and it is concluded that the robustness of LIBS
classification models can be improved by using suitable
preprocessing methods. Although the above study improved
model robustness, the experimental scenario was relatively
simple. Specifically, the samples that are utilized in the
collection of test set spectra are the same ones that were used
in the training set, and the LIBS system settings were also the
same. In this research, in addition to the different dates of
spectral acquisition, the lens used for laser focusing is changed
from a single plano-convex lens to a microscope objective, which
will change the size of the laser spot as well as the ablation mass of
the sample. Furthermore, it is equally important to improve the
model’s classification accuracy when collecting spectra from the
same type of plastic produced by different manufacturers. The
classification model’s capability to accurately identify plastic
samples in complex scenarios is crucial for various industrial
applications.

In this paper, the robustness of the SVM model is evaluated by
collecting spectral data in various scenarios involving four typical
plastic samples. Three specific scenarios were set up: collecting
spectral data at different dates, changing focusing systems, and
using plastic samples from different manufacturers. Then the
effects of spectral preprocessing and feature selection on the
model robustness are investigated. Additionally, the essential
reasons for model robustness enhancement are analyzed in detail.

2 Experiments and methods

2.1 Experimental setup

Figure 1 illustrates the experimental setup in this study. A
homemade Q-switched Nd: YAG laser, operating at an output
wavelength of 1,064 nm and a repetition frequency of 1 Hz, was
used to provide the excitation source. The laser had a pulse width of
10 ns, a beam diameter of 6 mm, and a single pulse energy of
30 mJ. The laser beam is reflected by three mirrors (M1, M2, and
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M3) and then focused onto the sample surface via a plano-convex
lens that had a focal length of 75 mm or a NIR-corrected
microscopic objective (×10, working distance of 30.5 mm). The
laser was preheated for 30 min before measurements were taken
to stabilize the laser’s output energy. During the experiments, energy
fluctuations were less than 1%, as verified by the energy meter. The
plastic samples were positioned on a stage that moved in three
dimensions, with measurements taken under atmospheric
conditions. Each point on the sample surface was measured
using four laser pulses, with the first two laser pulses cleaning
the surface and the last two capturing the spectrum. The plasma
radiation was collected and focused into a fiber with a diameter of
∅600 μm using two convex lenses (L2 and L3) with focal lengths of
75 mm and 50 mm, respectively. The angle of the collection system
to the laser incidence direction was approximately 45°. The fiber
transmitted the collection optical signal to a dual-channel, portable

CCD spectrometer (AvaSpec 2048-2-USB2, Avantes) with a spectral
measurement range of 200 to 1,100 nm and a spectral resolution of
0.20 to 0.30 nm DG535 commands the spectrometer to begin
collecting LIBS spectral signals, with a delay of 1.28 μs after laser
pulse excitation, and the spectrometer’s integration time is 1.05 m.

2.2 Plastics samples

Four common plastics were selected as experimental samples,
including acrylonitrile-butadiene-styrene (ABS), Nylon, 3240 epoxy
glass cloth and FR-4 epoxy glass cloth, whose molecular formulae
and structures are listed in Table 1. The constituent elements (C, H,
O, and N) of the four types of plastic samples are similar, where
3240, and FR-4 consist of epoxy resin (C11H12O3)n. Additionally, the
presence of metallic elemental emission lines, such as Na, Ca, Fe, and
K, in the spectra may be attributed to the presence of additives in
each sample. All samples were made into 100 mm × 100 mm ×
3 mm plastic plates, and the surfaces were cleaned with alcohol to
remove contamination before the experiments.

2.3 Data acquisition

The LIBS spectroscopy measurements were conducted in three
distinct scenarios, which included data collection at different dates,
using different lenses to focus samples, and using plastic samples
from different manufacturers. Table 2 provides details about the
focusing lens, sample type, manufacturer, and number of spectra for
each data set. A total of 23 sets of spectral data were acquired in varying
conditions. Among them, 11 sets of spectra were acquired at different
dates for NO.1–NO.11. NO.12–NO.17 were collected at different dates,
and the samples were focused using a microscopic objective. NO.18-
NO.23 were collected on different dates, and samples were selected from
plastics produced by different manufacturers. Each set of spectral data
was monitored with an energy meter to ensure the laser energy was
consistent before collection, and the samples were excited with laser
pulses having a fundamental frequency of 1064 nm and an energy of

FIGURE 1
Schematic diagram of LIBS experimental setup.

TABLE 1 Molecular formulas and structure of four types of plastics.

Sample Molecular formula Molecular structure

ABS (C8H8·C4H6·C3H3N)n

Nylon (C12H23NO)n

3240 (C11H12O3)n

FR-4 (C11H12O3)n
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30mJ. The two laser pulses taken at each locationwere averaged to obtain
each spectrum in the dataset.

2.4 Spectral preprocessing and feature
selection

In general, the classification results of the model are affected by
the fluctuation of the spectral data due to the variation factor
between different measurements. To improve the performance of
classification recognition models, spectral data preprocessing is
implemented in four steps: baseline correction, spectral peak
finding, correction of drift peaks, and total intensity
normalization. The detailed processing is described in previous
work (Li et al., 2017; Wang et al., 2018; Xu et al., 2020).

The impacts of noise and spurious peaks have been effectively
removed from the preprocessed LIBS spectra, however, there are still
redundant variables present in the characteristic spectral lines. To
address this issue, variable selection identifies useful spectral
variables to optimize the spectral differences between various
samples and enhance the performance and interpretability of

multivariate models. Typically, the choice of spectral variables
can be made by employing a priori knowledge that is based on
the structure and elemental makeup of a specific sample. However,
because the plastic matrix is quite complicated, it is difficult to
evaluate if the spectral emission lines of a particular element can
accurately reflect the variations between samples. In this work, the
Relief-F algorithm is utilized to carry out the process of feature
selection and to calculate the important weights of the feature
spectral lines. Relief-F is an extended version of the classical
filtering feature selection method Relief (Cui et al., 2021), which
evaluates the importance of variables by correlation.

2.5 Classification model and clustering
evaluation index

Machine learning methods, a type of multivariate analysis
methodology, can efficiently extract the implicit information
from spectral data for qualitative analysis in LIBS. These
methods establish the relationship between sample spectral
data and corresponding category information to classify and

TABLE 2 Details about the make-up of the spectral datasets.

Datasets Number of spectra per sample type Focusing lens Plastic types Manufacturer

NO.1 (2021-03-11) 60 Plano-convex lens ABS FR-4 3240 Nylon 1

NO.2 (2021-03-15) 50 Plano-convex lens

NO.3 (2021-03-18) 50 Plano-convex lens

NO.4 (2021-03-22) 100 Plano-convex lens

NO.5 (2021-03-23) 60 Plano-convex lens

NO.6 (2021-03-24) 50 Plano-convex lens

NO.7 (2021-03-29) 60 Plano-convex lens

NO.8 (2021-03-30) 60 Plano-convex lens

NO.9 (2021-03-31) 60 Plano-convex lens

NO.10 (2021-04-06) 60 Plano-convex lens

NO.11 (2021-04-07) 60 Plano-convex lens

NO.12 (2021-08-24) 100 Microscope objective

NO.13 (2021-08-26) 100 Microscope objective

NO.14 (2021-08-29) 100 Microscope objective

NO.15 (2021-09-05) 100 Microscope objective

NO.16 (2021-09-06) 50 Microscope objective

NO.17 (2021-09-07) 100 Microscope objective

NO.18 (2021-09-05) 100 Plano-convex lens FR-4 3240 2

NO.19 (2021-09-06) 50 Plano-convex lens

NO. 20 (2021-09-07) 100 Plano-convex lens

NO. 21 (2023-03-29) 50 Plano-convex lens ABS FR-4 3240 Nylon 3

NO. 22 (2023-03-31) 50 Plano-convex lens

NO. 23 (2023-04-02) 50 Plano-convex lens
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identify unknown samples. Support vector machine (SVM)
models are more commonly used in the data analysis and
pattern recognition (Sattlecker et al., 2010; Sattlecker et al.,
2011). For data that can be linearly separated, the SVM can
perform discrimination directly in the original space. In cases
where data is not linearly separable, SVM models use an
appropriate kernel function to transform initial data into
linearly separable data in a high-dimensional feature space.

The davis-bouldin index (DBI) is used to evaluate the effect of
clustering (Davies and Bouldin, 1979). The DBI criterion is based on
a ratio of within-cluster and between-cluster distances. DBI is
defined as:

DBI � 1
k
∑
k

i�1
max j≠i Di,j{ } (1)

where Dij is the within-to-between cluster distance ratio for the ith
and jth clusters.

Di,j � di + dj

di,j
(2)

di is the average Euclidean distance between each point in the ith
cluster and the centroid of the ith cluster. dj is the average Euclidean
distance between each point in the jth cluster and the centroid of the
jth cluster. di,j is the Euclidean distance between the centroids of the
ith and jth clusters. Themaximum value ofDi,j represents the worst-
case within-to-between cluster ratio for cluster i. The optimal
clustering solution has the smallest DBI value.

2.6 Design of experiments

In this research, multiple test scenarios were established to
imitate the actual LIBS plastic sorting process, and the raw
spectra collected under each scenario were distinct. Specifically,
in scenario 1, spectral data collected on various dates were
influenced by factors such as changes in laser, collection system,
and lens-to-sample distance. Moreover, in scenario 2, in addition to
the influence of the aforementioned factors, when the plano-convex
lens is replaced with a microscopic objective for focusing, the
focused spot diameter is reduced from ∅150 μm to ∅100 μm. As
a result, both the sample ablation mass, as well as the power density
at the focal point, are impacted. In Scenario 3, there are
discrepancies in the manufacturing processes of plastic samples
from various manufacturers, which results in more noticeable
matrix effects. As a consequence, the LIBS spectra of samples
produced by different manufacturers will be distinct from one
another.

Based on these scenarios, three indicators are defined to assess
the robustness of the classification model. First, the average correct
classification rates (CCRs) of the model for spectra measured on
different dates reflect the robustness over time (ROT). Second, the
average CCRs of the model for spectra measured at different dates
and with different focusing lenses is defined as the robustness over
time and different focusing lenses (ROT & RFL). Lastly, the average
CCRs of the model for spectra measured on different dates and using
samples produced by different manufacturers was defined as
robustness over time and different manufacturers (ROT &

RDM). Here the correct classification rate (CCR) is calculated by
the following equation.

CCR � 1
N

∑
q

i�1
δi × 100% (3)

where δi is the number of spectra classified correctly for each type of
sample and q is the number of classes. N is the number of all
samples.

Optimization of the model parameters is required to obtain the
best classification accuracy. Table 3 lists the division of the dataset.
Dataset NO.1 is used for model building in the training set. To
obtain the optimal number of spectral features, datasets NO.2, NO.3,
NO.4, and NO.5 are used in the validation set. The test set is used to
verify the robustness of the model under different scenarios.

3 Results and discussion

3.1 LIBS spectral analysis

Figure 2A shows the average LIBS spectra of the four plastics in
data set NO.1. Although the four plastic samples belong to distinct
species, it is clear from the figure that their LIBS spectral data
contain about the same elemental information. The spectrum shows
the non-metallic elements H (656.3 nm), O (777.3 nm), and N
(744.6, 746.5, and 844.6 nm), as well as the CN molecular band
(387.8 nm) and C2 molecular line (558.42 nm). Additionally, there
are spectral lines for the metal elements Ca (393.4, 442.7, and
445.5 nm, etc.), Fe (315.4 nm and 317.5 nm), Mg (279.1 nm and
517.3 nm), Na (589.0 nm), and K (766.5 nm). Perhaps the presence
of additives in the plastic materials caused the metallic lines to
appear in the spectra. In addition, there are notable similarities
among the LIBS spectral profiles of several plastic samples, such as
the spectra of the 3240 and FR-4 samples. Although the constituent
elements of the four plastic samples are similar, there are differences
in the LIBS spectra. ABS displays a lower number of spectral lines
compared to the other samples, and its Ca spectral line has a
significantly lower intensity. Similarly, the spectral line intensities
of Fe and Mg were weak in the Nylon samples.

Figure 2B shows the spectra of the 3,240 plastic samples
collected under three different scenarios. NO.1-3240 and NO.6-
3240 are collected under scenario 1, which are extremely similar in
their spectral profiles and differ mainly in the intensity of some

TABLE 3 Lists the division of the spectral data set.

Dataset division Spectral data set

Training set NO.1

Validation set NO.2, NO.3, NO.4, NO.5

Test set Scenario 1 NO.6, NO.7, NO.8, NO.9, NO.10, NO.11

Scenario 2 NO.12, NO.13, NO.14, NO.15, NO.16,
NO.17

Scenario 3 NO.18, NO.19, NO.20, NO.21, NO.22,
NO.23
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characteristic spectral lines. When compared to the aforementioned
datasets, NO.12-3240 exhibits a considerable intensity decrease of
the spectral characteristic peak, which is due to the replacement of
the plano-convex lens used for focusing during the experiment with
a microscope objective. The maximum intensity of the characteristic
peak is about 40,000. This is because, after focusing the microscope
objective, the size of the laser spot decreases, resulting in a significant
decrease in the size of the ablation crater and a reduction in the mass
of the ablated plastic sample. For NO.18-3240 and NO.1-3240, in
addition to the different collection dates, the plastic sample

manufacturers are also different. The comparison of the two
spectra sets revealed a difference in the intensity of several
characteristic peaks, including stronger Ca 393.4 nm and Ca
422.7 nm in NO.18-3240, and stronger Mg 517.3, C2 558.4, and
Na 589.0 nm in NO.1-3240. Meanwhile, the intensity ratios of the
main characteristic spectral lines were calculated to make a clear
comparison of the differences between the collected spectra in
different scenarios. The calculated results are listed in Table 4,
and there are significant differences in the intensity ratios of the
characteristic spectral lines of the collected spectra under different

FIGURE 2
Comparison of the acquired LIBS spectra. (A) The average LIBS spectra of the four plastics in data set NO.1. (B) The spectra of the 3240 plastic sample
collected under three different scenarios.
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scenarios, especially for Ca (393.4 nm)/Na (589.0 nm) and Ca
(393.4 nm)/Mg (517.3 nm). There are significant differences in
the acquisition spectra of the same plastic sample in different
scenarios, which makes plastic classification and identification
more challenging.

In a further step, to quantitatively describe the discrepancy
between the collected spectra in the three scenarios, the
intensities of the spectra from different data sets were fitted, and
lower fit coefficients indicated greater spectral discrepancy. The
fitted curves between NO.1-3240 and NO.6-3240, NO.13-3240, and
NO.18-3240 are depicted in Figures 3A–C, respectively. It is evident
that differences occurred in the fitting coefficients for the spectra
under different experimental conditions. The fitted curve in
Figure 3A has a maximum fit coefficient of R2 = 0.938 because
compared to other scenarios, only the date of spectral data
acquisition has been changed. The R2 = 0.837 in Figure 3B, the
fit coefficient that is noticeably lower than that in Figure 3A, is
caused by a change in the sample’s ablation mass following the
replacement of the focusing lens, which leads to a major variation in
the spectra. In particular, the characteristic spectral lines of Ca at
422.7, 393.4, and 396.5 nm showed greater deviation from the fitted
curve. Compared to Figure 3B, the fit coefficient of Figure 3C is
further reduced (R2 = 0.823), and there are many data points in the
plot that deviate significantly from the fitted curve. This could be as a
result of the 3,240 samples’ varied additive composition from
various manufacturers, which causes the matrix effects to be
more evident. Fitting plots for the other three samples FR-4, ASB

and Nylon were added to the support material as shown in
Supplementary Figures S1–S3. The lower fit coefficients in
different scenarios pose a higher challenge for plastic identification.

3.2 Improving model robustness by
preprocessing methods

In this research, the spectra of different types of plastic samples
have similar spectral profiles, but there are discrepancies in the
intensity of the characteristic spectral lines. Machine learning
models can accomplish the classification task efficiently. LIBS
combined with machine learning models can achieve accurate
classification of spectra acquired under the same experimental
conditions. However, changes in experimental conditions
generally result in a decline in the classification recognition
accuracy. Hence, the classification model should be robust
enough to meet the testing requirements in under different
experimental scenarios.

The original spectra were preprocessed using the method
introduced in Section 2.4. This study considers the make-up of
four different plastic types and the intensity of the characteristic
spectral lines, and selects 85 spectral lines with intensities higher
than 500 counts. The SVM classification model used the atomic and
molecular spectral lines (C, CN, C2, H, N, O, Ca, Fe, K, Mg, Na, etc.)
as input variables. The particle swarm optimization algorithm (PSO)
in the training set combined with 10-fold cross validation was used

TABLE 4 Intensity ratios of the main characteristic spectral lines in the spectra of 3,240 samples collected under different scenarios.

Datasets CN(387.8 nm)/C2
(558.4 nm)

Ca (393.4 nm)/Ca
(445.5 nm)

Ca (393.4 nm)/Mg
(517.3 nm)

Ca (393.4 nm)/Na
(589.0 nm)

N (714.7 nm)/O
(844.6 nm)

NO.1-3240 0.84 0.90 0.98 1.20 1.43

NO.6-3240 0.88 1.03 1.15 2.17 1.00

NO.12-3240 1.06 1.64 1.71 2.58 1.29

NO.18-3240 0.69 1.46 1.93 3.04 1.39

FIGURE 3
The fitted curves of spectral intensity between NO.1-3240 and NO.6-3240, NO.12-3240, and NO.18-3240.
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to optimize the hyper-parameters of the SVMmodel. The spectra in
the test set were preprocessed similar to the training set, and we
compared the CCRs of the SVM model for the original and
preprocessed spectra in Figure 4. It is clear from Figure 4 and

Table 5 that there is a small improvement in the robustness of the
model after spectral preprocessing. The ROT in Figure 4A increases
from 58.4% for the original spectrum to 79.1% for the preprocessed
spectrum. Similarly, the ROT&RFL increases from 65.54% to 75% in

FIGURE 4
CCRs of the SVM model for the original and preprocessed spectra were tested separately. (A) Scenario 1, (B) Scenario 2, and (C) Scenario 3.

TABLE 5 CCRs predicted by the test sets under different methods.

Scenario Test set Original
spectrum (%)

Spectral
preprocessing (%)

Spectral preprocessing combined with feature
selection (%)

Scenario 1 NO.6 50 75 100

NO.7 89.17 95 100

NO.8 29.58 75 100

NO.9 50 75 91.25

NO.10 50.42 74.58 99.58

NO.11 81.25 80 100

ROT 58.4 79.1 98.47

Scenario 2 NO.12 77 76.25 92

NO.13 75.25 78.5 99.75

NO.14 54 74.75 95

NO.15 84 94.75 100

NO.16 52.5 69 99.5

NO.17 50.5 56.75 85.25

ROT&RFL 65.54 75 95.25

Scenario 3 NO.18 60.25 72 93.5

NO.19 54.5 61 100

NO.20 52.75 60 100

NO.21 74 64.5 90

NO.22 76.5 74 81.5

NO.23 75 69.5 98.5

ROT&RDM 65.5 67 93.92
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Figure 4B. Finally, ROT&RDM also increased from 65.5% to 67% in
Figure 4C.

Spectral preprocessing has three key advantages that enhance
the SVM model’s robustness. Firstly, spectral preprocessing can
effectively reduce the data dimensionality of the input variables and

extract the spectral information. Moreover, the preprocessing can
effectively reduce the RSD of the spectra, which means that the
uncertainty of the spectra is reduced. Figure 5 shows the RSD of the
original spectra of the main feature spectral lines in dataset
NO.1 compared with the preprocessed spectra. For samples 3240,

FIGURE 5
Comparison of the RSD between the original spectra and preprocessed spectra of the primary feature spectral lines in dataset NO.1. (A) 3240, (B)
ABS, (C) Nylon, and (D) FR-4.

TABLE 6 Comparison of DBI under different methods.

Method Training set Validation set Test set Average

Scenario 1 Scenario 2 Scenario 3

Original spectrum 0.29 0.78 1.36 1.36 0.95 0.95

Spectral preprocessing 0.27 0.85 1.02 0.90 0.85 0.78

Spectral preprocessing combined with feature selection 0.18 0.40 0.64 0.73 0.80 0.55

Frontiers in Environmental Science frontiersin.org09

Xu et al. 10.3389/fenvs.2023.1175392

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1175392


ABS, Nylon, and FR-4, the average RSDs of the characteristic
spectral lines decreased from 10.85% to 8.49%, 19.26%–12.57%,
37.50%–22.14%, and 13.82%–11.01%, respectively. Particularly, the
RSDs were decreased by more than half for the three characteristic
spectral lines (Ca, N, and O) of Nylon samples. Moreover, spectral
preprocessing reduces the DBI of spectral datasets. As shown in
Table 6, the DBI decreased from 0.95 for the original spectra to
0.78 after preprocessing, which indicates that the preprocessing
enhanced the clustering effect of the data.

3.3 Further enhance the robustness of the
model by feature selection methods

Feature selection is essential in feature engineering and aims to
find the optimal subset of features while excluding irrelevant or
redundant ones. Feature selection can exclude irrelevant or
redundant characteristics in order to minimize the amount of
features, maximize spectral variance, enhance model accuracy,
and decrease runtime. Typically, characteristic spectral emission
lines are selected based on prior knowledge of sample structure and
elemental composition. However, for plastic samples with a
complicated matrix, it can be challenging to determine if a
particular elemental spectral emission line is representative of the
variations between samples. The present work utilizes the Relief-F
algorithm to evaluate the spectral importance weights of the

85 feature spectral lines that were preprocessed in Section 3.2.
Figure 6A depicts the relationship between the importance
weights of the characteristic spectral lines and their wavelengths.
Among them, the variables with greater importance weights are
located at 420–450 nm (Cr and Ca elements) and 512–650 nm (Fe,
C, and O elements and C2 molecular bands). After that, we ranked
the spectral feature lines from greatest to smallest based on their
importance weights, and the corresponding 85 feature selection
models are trained in sequence. The feature selection models are
applied to the validation set (NO. 2, 3, 4, and 5) to obtain the optimal
number of feature spectral lines. As shown in Figure 6B, the average
CCRs of the validation set varied with the input variables. When the
first 19 most important feature variables are selected, the average
CCR reaches a maximum of 92.6%.

We applied the optimized feature selection models obtained in
the previous step to the test set. Figure 7 shows the CCRs that were
predicted based on the spectra collected in different scenarios using
different methods (original spectra, spectral preprocessing, and
spectral preprocessing combined with feature selection). Our
results, depicted in Figure 7 and Table 5, demonstrate a
substantial enhancement in the SVM model’s robustness after
feature selection. In Figure 7A, the ROT improves from 58.40%
for the original spectrum and 79.10% for the spectral preprocessing
to 98.47% for the feature selection. Similarly, in Figure 7B,
ROT&RFL improves from 65.54% to 75%–95.25%. Finally, in
Figure 7C, ROT&RDM also improved from 65.50% to 67%–93.92%.

FIGURE 6
(A) Relief-F evaluates the important weights of the characteristic spectral lines. (B) The relationship between themean CCRs of the validation set and
the input variables.
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Feature selection significantly improves the model’s robustness
via three factors. First, the Relief-F algorithm, which evaluates the
importance of variables by correlation, can maximize the spectral
differences between different classes of samples. And the important
features selected by the method are suitable for different application
scenarios. Secondly, feature selection can significantly reduce the
DBI of the dataset. As shown in Table 6, the average DBI is reduced
from 0.95 for the original spectra and 0.78 for the spectral
preprocessing to 0.55, which is 42.1% lower compared to the
original spectra. The further reduction of DBI in comparison to
preprocessed spectra indicates that feature selection can further
improve the clustering performance of spectral datasets. Last but not
least, feature selection considerably improves the similarity between
the spectral variables of the test set and the training set. After
19 optimal features were selected, the fitting curves of the spectral
variables are shown in Figure 8A–C, respectively. Comparing
Figure 8A to Figure 3A, the R2 increases from 0.938 to 0.978,
indicating that the similarity of spectral variables between

scenario 1 and the training set has increased. Especially for
Figure 8B and Figure 3B, R2 improves more significantly from
0.837 to 0.954. Similarly, for scenario 3, comparing Figure 3C
with Figure 8C, R2 improves from 0.823 to 0.916.

4 Conclusion

In this paper, spectral preprocessing combined with feature
selection was used to improve the robustness of the SVM
classification model for four typical plastic samples (ABS, nylon,
3240, and FR-4). LIBS spectroscopy measurements were taken under
three distinct scenarios, including data collected at different dates,
samples focused with different lenses, and the use of plastic samples
from various manufacturers. We defined three indices (ROT,
ROT&RFL, and ROT&RDM) to evaluate the robustness of the
model. The feature importance of the preprocessed spectra was
assessed using the Relief-F algorithm, and the maximum accuracy of

FIGURE 7
Predicted CCRs of original spectra, spectral preprocessing and feature selection methods for different scene acquisition spectra. (A) Scenario 1, (B)
Scenario 2, and (C) Scenario 3.

FIGURE 8
After selecting 19 optimal features, the curves between the spectral variables NO.1-3240 and NO.6-3240, NO.13-3240, and NO.18-3240 were
fitted.
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the validation set is 92.6% when inputting the first 19 most important
features. Further, the optimalmodel is applied to predict the test set. The
ROT of the original spectrum, spectrum preprocessing, and spectral
preprocessing combined with feature selection is 58.4%, 79.1%, 98.47%,
respectively. Similarly, ROT&RFL of the three methods is 65.54%, 75%,
and 95.25%, respectively. ROT&RDM is 65.5%, 67%, and 93.92%,
respectively. Spectral preprocessing combined with feature selection
effectively enhances the model’s robustness due to the following factors.
1) Spectral preprocessing can exclude the influence of noise on the
model and significantly reduce the RSD of the spectrum. 2) Feature
selection can enhance the spectral differences between different sample
classes. 3) For the same class of samples, the similarity between the
spectra of the test set and the training set is improved after feature
selection. The results demonstrate that the combination of spectral
preprocessing and feature selection can notably improve the robustness
of the classification model, thereby proving the feasibility of the
proposed plastic sorting and recycling method.
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