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The world’s rapid industrialisation and population expansion have led to water
pollution, causing significant disruption to the activities of humans, animals, and
plants. Organic contamination content in water is commonly evaluated by
measuring the chemical oxygen demand (COD). However, traditional COD
detection methods often require additional reagents, resulting in secondary
contamination and extended detection time. In this study, we propose and
implement a reflective detection system that measures the UV-Vis absorption
spectra of COD in water without contact measurement. We compared the
modeling results of the transmissive and reflective detection systems using
three regression analysis algorithms. We also assessed the modeling results
using various spectral preprocessing and different feature selection bands. The
results of the standard samples confirmed the viability of the reflective detection
system for detecting COD, with the impressive coefficient of determination (R2) of
0.98892, the root mean square error (RMSE) of 2.86776, and the detection time of
only 47.6 s. For the transmissive detection system, the R2 was 0.99976, the RMSE
was 0.41979, and the detection time was 162.4 s. Overall, this study proposes two
referenceable detection methods for measuring COD concentrations, which can
be adapted to suit various job demands.
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1 Introduction

Water resources are fundamental to sustaining life for humans, animals, and plants.
However, due to the rapid development of the world population and industrial technologies,
water resources are being both wasted and polluted. The utilization of wastewater can also
pose significant risks to both human health and the environment, as highlighted by recent
studies (Garg et al., 2021; Lin et al., 2022). Given the global shortage of water resources, an
increasing number of people are becoming aware of the pressing need to address water
pollution issues. As a result, there is a growing urgency to monitor water pollution levels.

Various sources, such as mining, industrial wastes, pesticides and fertilizers, and urban
development, have caused different types of pollution to water resources, as highlighted in
recent studies (Hasan et al., 2019; Liu et al., 2021). Among these sources, organic pollution is
a significant contributor to water quality contamination (Bao et al., 2012). Chemical oxygen
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demand (COD) is a commonly used indicator to determine the
degree of organic pollution in water (Siwiec et al., 2018; Al-Kubaisi,
2021). It quantifies the amount of oxidant consumed during the
oxidation process of reducing substances. Higher COD
concentrations represent a greater degree of organic pollution in
water. The upper limit concentrations of COD for various water
bodies differ among different countries (Hespanhol and Prost, 1994;
Blok and Balk, 2020). For instance, in China’s surface water
environmental quality standard (GB3838-2002), the COD content
of water in agricultural and general landscapes water areas should
not exceed 40 mg/L (Jing et al., 2017). As China is the world’s most
populous nation, its national standard serves as a reference for this
study.

Measuring the concentration of COD is a crucial step in preventing
and controlling water pollution. The conventional method for detecting
COD is dichromate oxidation (Li et al., 2018). After treating the sample
with potassiumdichromate, residual potassiumdichromate ismeasured
either colorimetrically using spectrophotometry or by titration with
ferrous ammonium sulfate, called titrimetric (Wayne, 1997). However,
this method presents challenges such as incomplete oxidation and
interference from chloride ions. Nowadays, popular detection
techniques include the wet chemical method (Kolb et al., 2017),
electrochemical (Wang et al., 2022), ozone oxidation (Pisutpaisal
and Sirisukpoca, 2014), and others. However, the use of extra
chemicals in the wet chemical method leads to secondary
contamination of the water body, and the electrochemical method
can be challenging in practice. The ozone method is associated with
several safety hazards. Ogura (1969) first developed a COD detection
method based on UV-Vis spectrophotometry, which eliminates the
need for sample digestion and extra chemical reagents, thus preventing
secondary contamination. Hence, spectral analyzing detection
technique for COD measurement has become an essential trend.

With the development of optical technology, there are various
methods for determining COD, including single-wavelength (Shi
et al., 2020), double-wavelength (Minchao et al., 2013; Zhang et al.,
2020), multi-wavelength (Lv et al., 2011), and broad-spectrum
spectrometry (Ye et al., 2022). Broad-spectrum spectrometry is
particularly advantageous due to its wider range of absorption
spectral bands compared to the other methods. It is possible to
design correction models when using this method to measure COD
in real wastewater to compensate for the errors introduced by
multiple interfering substances such as turbidity, acidity, and
alkalinity. Therefore, broad-spectrum spectrometry is considered
more accurate and stable for measuring COD. Various algorithms
can impact the accuracy and robustness of the predictive model.
Multiple linear regression (MLR) (Cao et al., 2014) and partial least
squares regression (PLSR) (Chen et al., 2019; Li et al., 2019) are
fundamental statistical techniques. In some research, machine
learning algorithms have been used to build prediction models
that yield superior outcomes. For instance, Huang et al. (2022)
developed a prediction model for COD concentration in textile
desizing wastewater using random forest regression (RFR).
However, determining the most suitable modeling algorithm can
be challenging due to variations in testing methods, system
parameter settings, and water sample sources.

In light of the limited improvement offered by the modified
algorithm, the researcher shifted focus to enhancing the accuracy
and applicability of COD detection techniques through system

improvements. One such system is the laser fluorescence Raman
ratio (LFRR) approach presented by Che et al. (2022) for measuring
COD concentration. However, this method requires the probe to be
in direct contact with the water sample, making it susceptible to wear
and tear. Ágústsson et al. (2014) designed a non-contact COD
measurement system based on the diffuse reflection principle.
However, this system used optical fibers as diffuse light receivers
instead of integrating spheres, resulting in partial loss of luminous
flux and causing system errors. Furthermore, the angle between the
emitter and collector was not fixed, resulting in low system
robustness.

In the present study, we propose a system for reflective detection
that employs absorption spectra to detect COD without the need for
supplementary chemicals. The system comprises a
deuterium–halogen light source, a reflective sample stage, a
Y-type optical fiber, and a fiber spectrometer. Initially, the light
is transmitted from the light source to the probe through the input
port of the Y-type optical fiber and then vertically irradiated onto the
surface of the COD sample liquid. Subsequently, the light carrying
the sample information enters the optical fiber probe and is
transmitted to the fiber spectrometer through the output port of
the Y-type optical fiber. Finally, the software calculates the
absorption spectra of the samples. Therefore, this innovative
technique facilitates contactless measurements.

It is worth noting that in this study, we assess the accuracy of the
CODpredictionmodel not only based on the reflective detection system
but also the transmissive detection system, which is the commonly used
method in absorbance spectroscopy detection. We evaluate the
performance of PLSR, support vector regression (SVR) (Awad et al.,
2015), and RFR algorithms to determine the most suitable modeling
algorithm. Furthermore, we compare the accuracy of the COD
prediction models constructed using various preprocessing
techniques and different numbers of feature bands based on random
forest (RF) feature selection (Niu et al., 2020). To evaluate the modeling
results, we utilize root mean square error (RMSE) and coefficient of
determination (R2) of the model’s training and test sets. The results of
the standard samples demonstrate that the transmissive detection
system yields the R2 value of 0.99976 and the RMSE of 0.42979,
whereas the reflective detection system yields the R2 of 0.98892 and
the RMSE of 2.86776, which confirms the feasibility of our proposed
method. The method obviates the need for cuvettes and direct contact
with water samples, reduces maintenance costs, and minimizes
instrument wear and tear errors, which simplifies the practical use
of the instrument. Furthermore, we conduct experiments on COD
environmental water samples to verify the feasibility and validity of the
measurement method. Our research offers several combinations of two
detection methods and different algorithms for COD measurement,
which can be chosen depending on the specific requirements of the task.

2 Materials and methods

2.1 Chemical oxygen demand detection
principle

The principle of molecular absorption spectroscopy stipulates
that the absorption spectrum is produced by the absorption of
photons by a substance, which causes it to jump from a lower to a
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higher energy level. Molecular spectra, including UV-Vis absorption
spectra, result from the leap of valence electrons of molecules. After
absorbing light radiation of a certain energy, the outer valence
electrons of organic substances can move from lower to higher
energy levels. By measuring the change of the absorption intensity of
the molecules in the solution at different wavelengths, the substance
of the sample can be quantitatively analyzed. Since organic matter
typically exhibits strong absorption at certain wavelengths of UV-
Vis light, UV-Vis absorption spectroscopy can be utilized to
measure COD in a sample.

2.2 Water samples

Surface water in China is classified into five categories according
to the national standard GB3838-2002, based on environmental
functions and protection objectives. Class I & II have a maximum
COD content of 15 mg/L and are typically found in source areas,
national nature reserves, and primary protection zones of domestic
drinking water sources. Aquaculture areas and other fishery waters
are classified as Class III, with a maximum COD content of 20 mg/L.
Industrial water and water for recreational use without direct
contact with people are categorized as Class IV, and the COD
content should not exceed 30 mg/L. Class V is suitable for water
used in agriculture and for general landscape requirements, with a
maximum COD content of 40 mg/L. To meet the practical
requirements, this study includes these systems and their
adjacent values in the chosen COD concentrations. Table 1
provides a detailed distribution of the 34 standard COD
concentrations with different intervals from 0 mg/L to 100 mg/L.

In accordance with the national standard for determining water
quality chemical oxygen demand (COD) (GB11914-89), the solute
used in COD standard solutions is potassium hydrogen phthalate. In
this study, the COD standard solutions were prepared by Aoke
Reference Materials of China, with potassium hydrogen phthalate as
the solute and six times purified water as the solvent. After qualifying
the detected concentration, a standard substance certificate was
issued for each COD concentration. The standard water sample
for each COD concentration was 50 mL.

2.3 The transmissive detection system

The transmissive detection system is founded upon the
Lambert-Beer law (Mäntele and Deniz, 2017), which delineates
the relationship between the degree of light absorption by a
substance, the thickness of the absorbing medium, and the
substance concentration. Thus, this law is commonly used for
absorption spectroscopy. Figure 1A depicts the propagation of

light as it travels through the solution. According to the
Lambert-Beer law, when a parallel monochromatic light passes
vertically through a uniform non-scattering absorbing substance,
its absorbance A is proportional to both the concentration c of the
absorbing substance and the thickness L of the absorbing layer, while
it is inversely related to the transmittance T. These relationships are
mathematically expressed as follows:

A � log10
IT0
IT

, (1)

T � IT
IT0

, (2)
A � kcL, (3)

where A denotes the absorbance, IT0 represents the intensity of the
incident light, IT refers to the intensity of the transmitted light, T
indicates light transmittance, k represents the absorption coefficient,
c denotes the concentration of light-absorbing substances, and L
represents the path length. The transmissive detection system is
mainly composed of a light source, cuvettes, fiber lens, fibers, and a
fiber spectrometer, as shown in Figure 2A.

The transmissive detection system, designated as T in this paper, is
depicted in Line T of Figure 3 and was established in the laboratory as
shown in Figure 4. To prevent oversaturation of the spectrometer, a
fiber optic attenuator was utilized for transmissive measurements.
Throughout the test, a shaded sample holder (Thorlabs, CVH100)
was employed to avoid errors in the test data caused by ambient light.
Table 2 details the manufacturer, model, and spectral range of each
component in our experimental transmissive detection system.AsCOD
exhibits absorption peaks in the UV band, the established system
operates at UV-Vis wavelengths ranging from 200 nm to 1,090 nm.

For each different concentration of the COD standard assay,
we used a pipette gun (Thermo, 100–1,000 μL). To improve the

TABLE 1 The COD concentrations in standard water samples. CODCN is COD concentration of the Chinese national standard in surface water. CODEX is COD
concentration of experimental water samples.

Classification I & II (mg/L) III (mg/L) IV (mg/L) V (mg/L) Wastewater (mg/L)

CODCN ≤15 ≤20 ≤30 ≤40 —

CODEX 0, 5, 8, 10, 15 18, 20 22, 25, 28, 30 35, 38, 40 45, 48, 50, 52, 55, 58, 60, 65, 68, 70, 75, 78, 80, 82, 85, 88, 90, 95, 98, 100

FIGURE 1
(A) The principle of the transmissive detection system. (B) The
principle of the reflective detection system.
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experimental results, we washed the cuvette with 1 mL of water
sample of the same concentration to be measured. Next, 3 mL of
the water sample was aspirated into the cuvette for testing in the
transmissive detection system. To achieve a high signal-to-noise
ratio, measurements were performed within an integration time
of 50 ms, and the average number of scans was set to 5. We used
0 mg/L of COD standard solution as the reference solution. To
record the bright spectrum and dark spectrum in absorbance
mode, we first put the reference solution into the cuvette holder
using Ocean Optics’ Ocean View software. Then, the solution to
be measured was placed into the holder, and the software
generated an absorbance spectrum. To improve data volume
and reduce errors, we saved 300 absorption spectra for each

concentration of water samples. We calculated the absorbance
spectra of each concentration of COD samples using Ocean
Optics’ Ocean View software. Figure 5A shows the absorbance
spectra of some concentrations of COD samples measured using
the transmissive detection system.

2.4 The reflective detection system

The Y-type optical fiber probe consists of 6 illuminating fibers
around 1 reading fiber. The Y-type optical fiber input port consisting
6 fibers connects to the light source and the Y-type optical fiber
output port consisting 1 fiber connects to the fiber spectrometer. The
principle of the reflective detection system is shown in the Figure 1B.
After the illumination light IR0 irradiates the water sample, the light
IR enters the reading fiber of the probe. The light IR is composed of
the light I1 and the light I2. The light I1 is reflected by the water

FIGURE 2
(A) Schematic diagram of the transmissive detection system. (B) Schematic diagram of the reflective detection system.

FIGURE 3
COD detection procedure of two systems. The flowchart on the
left is named as Line T, and the flowchart on the right is named as Line
R. T refers to the transmissive detection system, and R refers to the
reflective detection system.

FIGURE 4
The transmissive detection system and the reflective detection
system established in the laboratory.
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surface, and the light I2 is reflected after entering the water. The
mathematical expression is:

IR � I1 + I2 � IR0R + IR0 1 − R( )T, (4)
where R is the reflectivity. According to Eq. 1, the absorbance AR of
the reflective system can be expressed as:

AR � log10
IR0
IR

� −log10 R + 1 − R( )T[ ]. (5)

Also, because of Eq. 3 and Eq. 2, T can be expressed as:

T � 10−kcL. (6)
Equation 6 is brought into Eq. 5:

AR � −log10 R + 1 − R( )10−kcL[ ]. (7)

Therefore, Eq. 7 shows that there is a relation between the
absorbance measured by reflective method and the concentration
and the reflectivity of the sample solution.

As shown in Figure 2B, the reflective system mainly consists of a
light source, petri dishes, a Y-type optical fiber and a fiber
spectrometer. The reflective detection system, designated as R in
this paper, is depicted in Line R of Figure 3 and was established in

the laboratory as shown in Figure 4. In addition, the reflective
sample stage consists of an adjustable fiber probe holder (Thorlabs,
RPS), a lens sleeve (Thorlabs, SM2L10), and petri dishes. Table 2
contains the manufacturer, model number and spectral range of the
relevant components. The spectral range of the system is
200–1,090 nm. We pipette 4 mL of water samples into petri
dishes each time. Place petri dishes with the water sample to be
measured in the center of the test rack panel and rotate down the
shade to avoid the influence of environmental light. Other
measurement procedures are the same as those for the
transmissive detection system. Figure 5B shows the average
absorbance spectra of some concentrations of COD samples
measured using the reflective detection system.

3 Results and discussion

3.1 Division of water samples

We experimented with 34 concentrations of COD solutions
under different systems, and 300 spectral curves were recorded for
each concentration. Thus, 10,200 spectra of COD solution were

TABLE 2 The manufacturer, model and spectral range of each component.

Component name Manufacturer Model Spectral range (nm)

Light source Ocean Optics DH-2000-S-DUVTTL 190–2,500

Fiber optic attenuator Ocean Optics FVA-UV 200–2,500

Optical fiber (transmissive) Ocean Optics QP600-1-SR 200–1,100

Y-type optical fiber (reflective) Ocean Optics QR400-7-SR 200–1,100

Cuvette Thorlabs CV10Q35 190–2,500

Fiber lens Thorlabs LA5315 180–8,000

Fiber spectrometer Ocean Optics MAYA2000PRO 190–1,090

FIGURE 5
(A) Absorption spectra of 10 concentrations of COD samples obtained by transmissive method. (B) Absorption spectra of 10 concentrations of COD
samples obtained by reflective method.
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obtained under transmissive and reflective detection systems,
respectively. The data set was roughly divided into training set
and test set according to 3:1, and the concentration distribution of
training set and test set was kept uniform. Thus, 26 groups were
selected as the training set for model building, and the remaining
8 groups were used as the test set, as listed in Table 3.

3.2 Comparison of multiple spectral
regression analysis algorithms

Regression analysis is commonly used for the prediction of
the data. In this study, three regression analysis algorithms were
used to model the raw absorption spectral data of UV-Vis COD
solutions measured by two systems. PLSR is a multiple linear
regression modeling method. The models using PLSR have better
accuracy of fit, especially in the presence of multiple correlations
and small sample sizes. Support vector machine (SVM) have been
widely used in areas such as pattern recognition. In addition to
solving classification problems, SVM can also solve regression
problems. SVR is an important branch of SVM. SVR finds a
regression plane such that all the data in a set of data are closest to
that plane. It is worth noting that the kernel function of SVR can
be very flexible to solve various regression problems. After
comparing various kernel functions, we chose the linear kernel
function for this study, whose penalty coefficient generally took
the default value of 1. RF refers to a classifier that uses multiple
trees to train and predict samples. RF can also be used for
regression analysis. RFR randomly draws samples, builds
multiple uncorrelated decision trees, and obtains predictions
in a parallel approach. In this study, the number of trees is
500, and the number of randomly selected features for each tree
is 200.

To objectively evaluate the prediction effect of the COD model,
this paper uses R2 and RMSE as the performance evaluation index of
the model. The calculation formulas of each evaluation index are as
follows:

R2 � 1 − ∑n
i�1 ỹi − yi( )2∑n
i�1 ỹi − �y( )2 , (8)

RMSE �
������������
1
n
∑n
i�1

ỹi − yi( )2√
, (9)

where yi denotes the theoretical value of sample i, ỹi denotes the
predicted value of sample i, �y denotes the arithmetic mean of the
theoretical value of the sample, and n denotes the number of
samples. R2 is used to reflect the degree of fit of the model. The
closer R2 is to 1 means the better the fit. RMSE is used to measure the
deviation between the predicted value and the theoretical value.
Smaller RMSE indicates a better prediction of the model.

The experimental setup is kept consistent with the different
algorithms used in this paper. The modeling of the COD solution
was completed by the above algorithm. Then, the test set of
8 concentrations was input into the model. The predicted results
and efficiency metric are listed in the Table 4. The sum of the
running times of the modeling and prediction test sets is used as the
efficiency metric time. Based on the results of the test set,
6 comparison curves were plotted between the predicted and
theoretical COD values of the model as shown in Figure 6. The
absorption spectra of the COD samples measured by the
transmissive detection system have a better fit than those
measured by the reflective detection system when comparing
Figures 6A–C with Figures 6D–F. The degree of effectiveness of
the information included in the light received by the optical fiber
probe varies because of the different measurement methods. The
receiving probe of a reflective detection system contains the part of
the light that is reflected from the water surface by the incident light.
The COD in the water does not absorb this part of the light, resulting
in an inability to produce an absorption spectrum. Therefore, when
the incident light intensity is the same, the prediction accuracy of the
model of the absorption spectra measured by the transmissive
detection system is higher than those measured by the reflective
detection system.

In addition, Figure 6B shows that the data measured from the
transmissive detection system performs better with the SVR
algorithm for modeling. While, the data from the reflective
detection system is more accurate with the PLSR algorithm than
the other two algorithms in Figure 6D. SVR is ideal for modeling in
the transmissive detection system because it uses a linear kernel
function and there is a linear link between the COD concentration
and absorption spectra. The PLSR is appropriate for multiple
regression, and the absorbance of the reflective detection system
is related to the COD concentration, as well as the reflectivity of
different COD concentrations. For this reason, PLSR is a useful
modelling approach for this system. Particularly, Figures 6C, F
shows that the experiments by the RFR algorithm all appear to
be overfitted. The reason for this situation is that RFR is prone to
overfitting when handling noisy classification or regression
situations. It is no longer being considered for future
experiments. What’s more, the efficiency metrics in the last
column of Table 4 show that the PLSR algorithm requires less
time than other algorithms to build the model. Thus, the PLSR
algorithm has a large speed advantage.

3.3 Comparison of multiple spectral
preprocessing methods

Figure 5 demonstrates that the absorbance spectra includes
information about the composition and concentration of the

TABLE 3 COD solution sample division.

Concentration (mg/L) Spectral number

Training set 0, 5, 10, 15, 18, 22, 25, 28, 35, 38, 40, 48, 50, 52, 58, 60, 65, 70, 75, 78, 82, 85, 88, 95, 98, 100 7,800

Test set 8, 20, 30, 45, 55, 68, 80, 90 2,400
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sample itself, as well as information from outside the sample.
Examples of interference factors include the status of the sample,
the noise of the experimental equipment, the experimental
environment during operation, and the mistake generated by
the experimental staff. These interferences can impact
subsequent spectral analysis results. Hence, the spectra should
always be preprocessed before to application in order to increase
spectral reliability and stability (Jiao et al., 2020). In this paper,
multiplicative scattering correction (MSC), standard normal
variate (SNV), mean centering, normalize, moving average
smoothing (MAS) and Savitzky-Golay (SG) smoothing
methods are used for spectral preprocessing. Using various

preprocessing methods based on the COD prediction model
described in Section 3.2, the results of their predictions are
listed in Table 5.

Comparing the Tables 4, 5 reveals that the data of the
transmissive detection system without preprocessing after SVR
modeling is superior, with the test set of R2 of 0.99973.
Consequently, various preprocessing method presented in this
research are inapplicable prior to SVR modeling of raw spectral
data collected by this system. As indicated by the prediction results,
the spectral data collected from the reflective detection system may
be modeled by the PLSR algorithm after MAS, achieving the test set
of R2 of 0.98806.

TABLE 4 Modeling results using different regression analysis algorithms.

System Algorithm Test RMSE Test R2 Train RMSE Train R2 Time (s)

T PLSR 0.93932 0.99881 0.43806 0.99979 119.9

SVR 0.44481 0.99973 0.37252 0.99985 351.5

RFR 2.67470 0.99036 0.04164 1.00000 149.8

R PLSR 3.07317 0.98727 1.64122 0.99701 82.2

SVR 3.29746 0.98535 3.32197 0.98774 411.4

RFR 5.92080 0.95275 0.06262 1.00000 167.9

COD standard sample data from transmissive measurements had the best model evaluation index results with the SVR algorithm.

COD standard sample data from reflective measurements had the best model evaluation index results with the PLSR algorithm.

FIGURE 6
Comparison curves between predicted and theoretical COD values in the training set and test set of six models. (A) The model of PLSR in
transmissive detection. (B) Themodel of SVR in transmissive detection. (C) Themodel of RFR in transmissive detection. (D) Themodel of PLSR in reflective
detection. (E) The model of SVR in reflective detection. (F) The model of RFR in reflective detection.
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FIGURE 7
Comparison curves between predicted and theoretical COD values in the training set and test set of two models. (A) The model of SVR with
700 feature bands in transmissive detection. (B) The model of MAS and PLSR with 2000 feature bands in reflective detection.

TABLE 5 Modeling results using different preprocessing methods.

System Preprocessing Algorithm Test RMSE Test R2 Train RMSE Train R2 Time (s)

T MSC PLSR 0.93932 0.99881 0.43806 0.99979 141.2

SVR 5.10385 0.96489 1.49645 0.99751 454.6

SVN PLSR 3.30638 0.98527 3.17526 0.98880 44.3

SVR 3.08113 0.98721 3.06278 0.98958 444.8

Mean centering PLSR 0.93932 0.99881 0.43806 0.99979 138.3

SVR 0.44484 0.99973 0.37252 0.99985 273.2

Normalize PLSR 3.76494 0.98090 3.20310 0.98860 43.7

SVR 3.03171 0.98761 3.76673 0.98424 414.0

MAS PLSR 0.85054 0.99903 0.45840 0.99977 140.6

SVR 0.44656 0.99973 0.38417 0.99984 334.8

SG PLSR 0.88135 0.99895 0.52623 0.99969 100.2

SVR 0.44875 0.99973 0.39369 0.99983 294.8

R MSC PLSR 3.07317 0.98727 1.64121 0.99701 80.3

SVR 2.98265 0.98801 2.56338 0.99270 405.7

SVN PLSR 5.42494 0.96034 4.51966 0.97731 58.9

SVR 5.62245 0.95740 3.76318 0.98427 464.4

Mean centering PLSR 3.07317 0.98727 1.64121 0.99701 83.0

SVR 3.29745 0.98535 3.32197 0.98774 355.6

Normalize PLSR 4.50582 0.97264 2.78440 0.99139 80.0

SVR 11.44185 0.82356 11.97793 0.84060 423.2

MAS PLSR 2.97693 0.98806 2.24271 0.99441 51.9

SVR 3.28475 0.98546 3.43949 0.98686 417.5

SG PLSR 3.07703 0.98724 2.71080 0.99184 52.6

SVR 3.31874 0.98516 3.53290 0.98613 352.7

The COD standard sample data from the reflective measurement had the best model evaluation index results with the MAS preprocessing and PLSR algorithm.
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3.4 Comparison ofmultiple feature selection
bands amount

Too many features will increase the model’s complexity and
introduce more noisy data that are more susceptible to overfitting. A
feature selection method can pick modeling-relevant features and
shorten the modeling process’s runtime. Use the RF method for
feature selection in this study based on Section 3.3. The number of
trees is 1,000, and the number of randomly-selected features for each
tree is the square root of the total number of features. When the
bands have been feature selected, each band is given a score; a higher
score indicates a greater contribution to the prediction result.
According to their scores, the bands are ordered from the largest
to the smallest. According to the rearranged spectra, the number of
feature bands is picked while building the model.

On the basis of the preceding model, feature selection was
conducted to pick varying numbers of feature bands for
modeling, and the results are listed in Table 6. Generally, feature
selection enhances the accuracy of the model’s predictions.
Nevertheless, the prediction accuracy of the model was low when
50 feature bands were used. Due to the large number of relevant
bands, selecting too few feature bands during the modeling process
might result in underfitting. The detection system is more closely
correlated with the amount of effective feature bands based on the
modeling findings of various algorithms. 75% or more of the total
number of bands are effective in the reflective detection system. And,
the transmissive type’s effective spectral bands contribute to between

10% and 50%. The higher number of effective spectral bands may
make the model more robust and less susceptible to external test
conditions. As shown in Figure 7A, the transmissive detection
system has a greater prediction accuracy when 700 feature bands
are used in modeling with the SVR algorithm. As illustrated in
Figure 7B, the reflective detection system has a superior model fit
utilizing the PLSR algorithm when 2000 feature bands are picked
after MAS preprocessing method. In addition, the column of
efficiency metric time in Table 6 lists that the PLSR algorithm
has a huge efficiency advantage over SVR, as well as in Table 2 in
Section 3.2 and Table 3 in Section 3.3.

3.5 Cross-validation

Cross-validation (Peter et al., 2019), also known as rotation
estimation, is a statistical method used to evaluate the skill of
machine learning models. The basic idea of cross-validation is to
split a dataset into multiple non-overlapping subsets and perform
multiple rounds of training and testing on these subsets. Then, the
results of the multiple rounds of validation are averaged to evaluate
the generalization and performance of the model. K-fold cross-
validation is a prevalent cross-validation method. First, the dataset is
randomly split into K mutually exclusive subsamples, a single
subsample is kept as the test set, and the other K-1 samples are
used for training. Then, the dataset is repeated K times for training
and testing until each subsample has been predicted. Thus, the

TABLE 6 Modeling results using different numbers of feature bands.

System Preprocessing Algorithm Feature bands Test RMSE Test R2 Train RMSE Train R2 Time (s)

T MAS PLSR 50 1.39143 0.99739 1.45233 0.99766 3.4

150 0.70115 0.99934 0.78828 0.99931 6.6

400 0.66302 0.99941 0.54965 0.99966 18.6

1,100 0.84903 0.99903 0.49879 0.99972 43.1

— SVR 50 1.62090 0.99646 1.60350 0.99714 12.0

400 0.43677 0.99974 0.48838 0.99974 88.1

700 0.41979 0.99976 0.41770 0.99981 162.4

1,000 0.44076 0.99974 0.39515 0.99983 236.5

R MAS PLSR 50 10.08397 0.86296 10.91271 0.86769 1.4

1700 2.92491 0.98847 1.80508 0.99638 44.4

2000 2.86776 0.98892 2.24174 0.99442 47.6

2050 2.95357 0.98824 2.24495 0.99440 50.6

MAS SVR 50 10.31625 0.85657 10.64135 0.87419 11.3

1,550 3.22623 0.98597 3.56290 0.98590 257.9

1,600 3.20191 0.98618 3.53694 0.98610 271.3

1800 3.25797 0.98569 3.47087 0.98662 318.8

The COD standard sample data from the transmissive measurement had the best model evaluation index results with no preprocessing, SVR algorithm, and 700 feature bands.

The COD standard sample data from the reflective measurement had the best model evaluation index results with MAS preprocessing, PLSR algorithm, and 2000 feature bands.
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model is evaluated by averaging the results of the performance
indexes of K times. Notably, the stability of the model evaluated by
this method depends heavily on the K values chosen. As the value of
K becomes larger, the size difference between subsets becomes
smaller. The K value for the size of the dataset is a special case
of K-fold cross-validation, which is called leave-one-out cross-
validation (LOOCV). Therefore, we chose LOOCV to evaluate
the generalizability and performance of the model that performed
best in Section 3.4.

First, the dataset was divided into 34 subsets by concentration.
We used one subset as the test set and trained the remaining subsets
into the model, rotating it 34 times until each subset was predicted.
The dataset obtained from the transmissive detection system was
modeled using 700 feature bands and the SVR algorithm. And, the
dataset obtained from the reflective detection system was modeled
using MAS preprocessing, 200 feature bands and the PLSR
algorithm. We use the average of the RMSE of each round and
the R2 calculated from the predictions of all test sets as the model
evaluation indexes. The transmissive RMSE of LOOCV is 0.504 and
R2 is 0.99966. And the reflective RMSE of LOOCV is 3.22935 and R2

is 0.98439. Overall, the results of LOOCV do not worsen drastically
comparing with those of Section 3.4 for the same parameters. The
experimental results of LOOCV further demonstrate the well
generalization and performance of the best performing model in
Section 3.4.

4 Environmental water samples and
experiments

4.1 Environmental water samples

To further verify the feasibility and effectiveness of the
transmissive and reflective detection systems, experiments were
conducted on environmental water samples. Compared with the

standard water samples, COD environmental water samples also
contain other substances besides potassium hydrogen phthalate.

First, we chose to configure the COD environmental samples using
natural drinking water from Nongfu Spring as the solvent. The natural
drinking water of Nongfu Spring contains many mineral elements such
as potassium, sodium, calcium and magnesium, and the pH value is
7.3 ± 0.5. Then, we chose potassium hydrogen phthalate as the solute.
Since the Chinese national standard defines COD concentration in
surface water over 40 mg/L as wastewater, the COD concentration
ranged from 0mg/L to 50 mg/L with an interval of 5 mg/L. In addition,
we added turbidity index to the COD solution prepared from drinking
natural water of Nongfu Spring. Urban and rural domestic water supply
turbidity testing limit for normal conditions do not exceed 1 NTU.
Therefore, the prepared COD environmental water samples for various
types of indicators are listed in Table 7.

COD environmental water samples (50 mL) ranging from 0 mg/
L to 50 mg/L with an interval of 5 mg/L were prepared by Aoke
Reference Materials of China, which also produces turbidity
standards (50 mL, 10 NTU). According to Table 7, we prepared
two sets of samples using a pipette gun (Thermo, 100–1,000 μL). The
experimental water volume was 3 mL for the transmissive detection
system and 4 mL for the reflective detection system. We measured
the transmittance absorbance and reflectance absorbance of COD
environmental samples according to the system and method
mentioned in Section 2.

4.2 Results and discussion

We conducted experiments on two sets of sample solutions
under different systems and 300 spectral curves were recorded
for each sample. Similarly, the data set for each sample set is
roughly divided into a training set and a test set in the ratio of 3:
1. Therefore, 9 concentrations in each group of water samples
were selected as the training set for building the model, and the

TABLE 7 Environmental water sample concentrations and divisions.

Environmental water
samples

Solvent COD range
(mg/L)

Interval
(mg/L)

Turbidity
(NTU)

Training set
concentration (mg/L)

Test set
concentration (mg/L)

Sample 1 Nongfu
Spring

[0, 50] 5 0 0, 5, 10, 20, 25, 30, 40, 45, 50 15, 35

Sample 2 Nongfu
Spring

[0, 45] 4.5 1 0, 4.5, 9, 18, 22.5, 27, 36, 40.5, 45 13.5, 31.5

TABLE 8 Environmental water sample modeling results.

Environmental water
samples

System Preprocessing Algorithm Feature
bands

Test
RMSE

Test
R2

Train
RMSE

Train
R2

Time
(s)

Sample 1 T — SVR 700 1.23185 0.98483 0.44641 0.99930 14.6

R MAS PLSR 2000 3.49111 0.87812 0.56667 0.99887 50.3

Sample 2 T — SVR 700 0.80822 0.99194 0.72467 0.99771 16.3

R MAS PLSR 2000 3.31002 0.86474 0.46320 0.99907 41.5

Number of best modelled feature bands for different systems based on the content of Section 3.4.
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remaining 2 concentrations were used as the test set, as listed in
Table 7. Also, we used the combination of the best performing
algorithms in Section 3.4 to perform regression analysis of the
absorbance measured by the two systems. Based on the above
parameters, the modeling results in the three sets of COD
environmental water samples are listed in Table 8.

In conclusion, the predicted results for the two sets of COD
environmental water samples are satisfactory. For this reason,
environmental samples are modeled based on preprocessing,
feature selection, and regression algorithms that perform
better in standard samples. In addition, the SVR algorithm has
a huge efficiency advantage compared to PLSR in environmental
samples. However, this performance differs from that of the
standard samples. The extreme sensitivity of the SVR
algorithm to the size of the sample size may cause this
phenomenon. So with small sample sizes, the SVR algorithm
could provide a greater speed advantage. Therefore, the two
methods mentioned in this paper can effectively predict the
COD concentration in environmental water samples.

5 Conclusion

This study details the establishment of a non-contact COD
measurement system using reflective detection of absorption
spectra. Three regression analysis algorithms were utilized to
compare the modeling performance of absorbance spectra
obtained from the transmissive and reflective detection systems.
The reflective raw spectral data underwent MAS preprocessing and
feature selection to improve the accuracy of the predictive models.
The results of the standard samples showed that the PLSR algorithm
applied to data measured using the reflective detection system
yielded a better fit, with the R2 value of 0.98892 and RMSE of
2.86776. Conversely, feature selection and SVR algorithm applied to
data measured using the transmissive detection system resulted in
greater prediction accuracy, with the R2 value of 0.99976 and RMSE
value of 0.41979. The reflective method required 47.6 s, while the
transmissive method required 162.4 s, indicating that the reflective
method is more time-saving.

The reflective detection system has been demonstrated to be a
viable solution for non-contact measurement of COD solution
concentration, as evidenced by various experimental results.
Further development of algorithms has the potential to enhance
the predictive accuracy of these systems. In laboratory testing
scenarios with less corrosive solutions and minimal solid

contaminants, transmissive detection system exhibit superior
prediction accuracy. However, reflective detection, as a non-
contact method, presents a promising solution to outdoor
emergency detection issues. Additionally, the absorption
properties of substances to light make reflective detection a
powerful tool for identifying additional water quality pollutants.
This research enables users to select and combine different detection
systems and algorithms based on their specific requirements.
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