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Soils are increasingly acknowledged as complex systems, with potential non-
linear behaviors having important implications for ecosystem and Earth system
dynamics, but soil models could improve adoption of analytical tools from the
broader interdisciplinary field of complex systems. First- and new-generation soil
models formulatemany soil pools using first-order decomposition, which tends to
generate simpler yet numerous parameters. Systems or complexity theory,
developed across various scientific and social fields, may help improve
robustness of soil models, by offering consistent assumptions about system
openness, potential dynamic instability and distance from commonly assumed
stable equilibria, as well as new analytical tools for formulating more generalized
model structures that reduce parameter space and yield a wider array of possible
model outcomes, such as quickly shrinking carbon stocks with pulsing or lagged
respiration. This paper builds on recent perspectives of soil modeling to ask how
various soil functions can be better understood by applying a complex systems
lens. We synthesized previous literature reviews with concepts from non-linear
dynamical systems in theoretical ecology and soil sciences more broadly to
identify areas for further study that may help improve the robustness of soil
models under the uncertainty of human activities and management. Three broad
dynamical concepts were highlighted: soil variablememory or state-dependence,
oscillations, and tipping points with hysteresis. These themes represent possible
dynamics resulting from existing observations, such as reversibility of organo-
mineral associations, dynamic aggregate- and pore hierarchies, persistent wet-dry
cycles, higher-order microbial community and predator-prey interactions,
cumulative legacy land use history, and social management interactions and/or
cooperation. We discuss how these aspects may contribute useful analytical tools,
metrics, and frameworks that help integrate the uncertainties in future soil states,
ranging from micro-to regional scales. Overall, this study highlights the potential
benefits of incorporating spatial heterogeneity and dynamic instabilities into future
model representations of whole soil processes, and contributes to the field as a
modern synthetic review that connects existing similar ideas across disciplines and
highlights their implications for future work and potential findings. Additionally, it
advocates for transdisciplinary collaborations between natural and social
scientists, extending research into anthropedology and biogeosociochemistry.
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Introduction

Soils represent the basis of recurring civilization (Montgomery,
2007; Nunes et al., 2020; Marris, 2022), and models depicting their
structure and dynamics may help improve generalized
understanding of their behavior and ecology. New generation
models of soil nutrient cycles (Sulman et al., 2018; Zhang et al.,
2021) certainly improve on older generation ones (Coleman and
Jenkinson, 1996; Powlson et al., 1996; Berardi et al., 2020), adding
foci on organic matter stabilization by mineral association that
considers the efficiency of microbial degradation (Cotrufo et al.,
2013), molecular and pool stochasticity (Sierra et al., 2018; Waring
et al., 2020; Azizi-Rad et al., 2021), and increasingly large datasets
(Todd-Brown et al., 2022). However, both handling large parameter
spaces and making predictions across microbial to global scales
remain difficult (Wieder et al., 2015; Vereecken et al., 2016),
explaining common decisions to make design tradeoffs between
model generality, or qualitative diversity of dynamical output and
potential case applications, with numerical precision and realism at a
particular scale (e.g., global) (Levins, 1966; Livingtson, 1985).
Additionally, the increasing recognition of soil habitat structure
for organic matter storage and stability (Cotrufo et al., 2013;
Kravchenko A. N. et al., 2019; King, 2020), as well as for
community assembly and biodiversity maintenance (Erktan et al.,
2017; Charlotte et al., 2022; Schweizer, 2022; Vogel et al., 2022),
highlights the potential utility of re-conceptualizing how the soil
environment is modeled and formulated (Baveye, 2023). Given the
breadth of services that soils offer, adopting modeling strategies that
are transferable across soil ecology sub-disciplines (Buchkowski
et al., 2017) indeed helps move toward addressing the most
general of goals in soil ecology, such as how soil biotic and
abiotic spheres or networks interact over time to confer bulk soil
properties. Fortunately, an old yet increasingly studied field of
complex systems focuses on gaining generalized insights from
large multi-component systems, from social and neural networks
(Marder and Calabrese, 1996) to oscillating chemical reactions
(Epstein et al., 1983; Pacault et al., 1987; Epstein and Showalter,
1996), that offer potentially useful analytical perspectives and
strategies for generalizing about how heterogeneous soil
environments can behave. This synthesis builds on previous
efforts to highlight how soil ecology may benefit from integrating
tools and concepts from complex systems (Baveye et al., 2000;
Young and Crawford, 2004; Lavelle et al., 2016; Pachepsky and
Hill, 2017; Bennett et al., 2019), elaborating on how specific
modeling principles may help gain insight into a variety of soil
processes in more generalized ways.

Systems perspective

Early studies of complex systems tended to include explicitly
recognized spatial extent and/or separation among modules
(Turing, 1952; Levins, 1969; Mandelbrot, 1983), and others
recognized explicit state-dependence or time lags (Rutherford
and Do, 1997). Mathematical roots of systems and complexity
theory built upon nonlinear dynamics (Lorenz, 1963; Winfree
and Strogatz, 1984) and chaos theory (May, 1974; Li and Yorke,
1975; Rogers et al., 2022), which was facilitated by computational

technologies allowing simulation. In soil science, early reports on
fractal dimensions of particle size distributions also represent
narratives working toward scale-invariant descriptions of the
physical habitat (Young and Crawford, 1991; Kravchenko et al.,
1999), though fractal methods can also be useful in describing non-
physical domains. Given how large and complicated some systems
can be, analytical research questions have tended to switch focus
from valuing the precision of model predictive ability to its
generality (Levins, 1966), or how consistent a result is across
example systems. This strategy of finding intersecting truths
across case studies is already somewhat familiar to research in
the form of useful reviews, meta-analyses, and model comparison
projects (Sulman et al., 2018), but it can also take a more
computational form. More useful analysis metrics for complex
models with variable outputs tend to shift from distribution
centrality (e.g., median, mean) to variance and/or key single
exponents in cases of high skewness. Accordingly, research
questions about similar complex systems also benefit in switching
from precise future values to the probability of certain types of
events occurring at any future time or location, depending on input
data. Focusing on variance as output also promotes including
realistic inherent variation or randomness as input, known as
stochasticity, which has been a necessary part of explaining and
reproducing natural time series of experimental populations
(Henson et al., 2001). Embracing and allowing for variability in
time series also offers the potential to predict and observe temporal
autocorrelation in anticipation of critical transitions of tipping
points (Scheffer et al., 2012), such as during accelerated soil
degradation or restoration, or naturally unpredictable chaotic
fluctuations with predictable bounds (Schaffer and Kot, 1985;
Hastings et al., 1993), such as in response to human drivers
(Berryman and Millstein, 1989).

Key examples across fields of study have become increasingly
emblematic of complex systems theory. For example, in geophysics,
measuring irregular structures in nature using relative units instead
of absolute ones (Mandelbrot, 1983) has widely uncovered power
law frequencies of system components sub-sets, famously used in
geophysics to study regional earthquake magnitudes (Bak et al.,
2002; Christensen et al., 2002). This tool from the fractal geometry
branch of mathematics was later applied to ecology, both implicitly
(Macarthur and Wilson, 1963) and explicitly (Harte, 1999; Ostling,
2000), as well as to soil structure, including aggregation and porosity,
with implications for predator-prey (i.e., invertebrate-microbe)
interactions (Baveye et al., 2000). Although current applications
of nonlinear dynamical systems principles to soils remain somewhat
siloed in geophysics, potential applications to soil ecology remain.
Another exemplary analysis tool is re-framing focal metrics from
distribution centrality to variance measures, as mentioned above.
This shift has advanced understanding of consistent spatial and
temporal fluctuations (Taylor, 1961) to focus on sub-module
synchronization potential, notably formulated as coupled
pendulum dynamics in physics (Kuramoto, 1984), and has
recently inspired various applications in ecology, including to
predator-prey dynamics on interaction networks (Vandermeer,
2021), dispersal shifts across urban agricultural landscapes (Ong
et al., 2020), and to biodiversity collapse broadly. These analytical
methods tend to uncover internal consistencies or rules among
heterogeneous components that predict relatively new patterns at
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the whole system level, advancing the specific goal of using theory to
advance hypothesis testing, compared to other assumed goals like
precision forecasting.

Early complexity in soils

In ecology generally, there appears to be a consensus that micro-
and meso-habitats are complex, and indeed natural soil systems are
regarded as the most complex habitats we know of. Yet formal
modeling frameworks remain relatively simplified, in part due to
common statistical limitations and disciplinary influences. For
example, Michaelis-Menten kinetics generated a strong
biochemical influence on representing soil organic carbon cycling
and decomposition, which has over time been modified to be
“reversed” to focus on total enzyme production rather than
individual catalysis (Schimel and Bennett, 2004), and has
maintained wide use as a core model structure for fine-scale
carbon and nutrient transformations. This was even applied to
population ecology (Volterra, 1928), where population growth
equations analogous to enzyme kinetics have been well analyzed
to yield technically unstable but noticeably consistent oscillatory
dynamics, also observable in soil data empirically (Reijneveld, 2013;
Kuzyakov and Zamanian, 2019) and modeled (Wang et al., 2014).
Other modeling approaches can also yield counter-intuitive results,
which may contradict existing empirical data, or pre-date
supporting data from future long-term studies. One case of this
was the incorporation of adaptive or environmentally-responsive
(i.e., non-linear) enzyme production, also interpretable as
emphasizing a positive biological feedback based on phenotypic
plasticity, and formulated as a flux- or interaction modification
(Ludington, 2022). This early modeling study (Schimel and
Weintraub, 2003) predicted, in part contrasting contemporary
evidence supporting decomposition as primarily nitrogen-limited
while aligning with others, that nitrogen additions to soil would
suppress rather than stimulate decomposition, a result that preceded
future validating evidence of this from longer-term nitrogen
fertilization studies. In this case, a key multiplicative (i.e., non-
linear) model term associating organic matter decay with both its
current pool size (first-order decay) and also a dynamically-
responsive enzyme pool, ultimately improved model generality,
specifically across time scales from minutes when proteins
turnover to multiple years and seasons. More recently, traditional
enzyme kinetic formulations have been generalized to allowmultiple
enzyme and substrate types (Tang and Riley, 2013), facilitating
subsequent tests of scale with bottom-up spatially explicit agent-
based models (Allison, 2012; Wang et al., 2019). More broadly,
mathematical ecology has provided very interesting insights based
on linear stability analysis tools to focus analyses (King and Schaffer,
1999), but recent pursuits have expanded to include what was
otherwise considered unstable outcomes, like transient dynamics
(Hastings, 2004; Hastings et al., 2018) with implications for
introduced species establishment (Armstrong and McGehee,
1976; McGehee and Armstrong, 1977; Wilson and Abrams, 2005;
Xiao and Fussmann, 2013). These approaches indeed provided new
insight on consistently observable patterns, based on the increasing
use and acceptance of graphical analytical methods like cobwebbing
following the rise of personal computing and simulation power.

Recently, comparable tools and concepts from community ecology
have been synthetically presented to potentially help address
questions in soil carbon cycling and soil community ecology
(Buchkowski et al., 2017).

Accordingly, this perspective now draws from theoretical
ecology to further extend recent efforts to integrate complex
systems principles into soil sciences (Baveye et al., 2000; Young
and Crawford, 2004; Sierra and Müller, 2015; Lavelle et al., 2016;
Buchkowski et al., 2017; Pachepsky and Hill, 2017; Bennett et al.,
2019), and thereby generalize our understanding of the soil habitat,
from micro-to macro-scales, notably embracing persistent variation
and heterogeneity as notably critical to fundamental soil processes
(O’Leary et al., 2018). The intended audience of this paper is broadly
soil scientists and biogeochemists, written from the perspective of
mathematical and complexity theoretical ecologists with domain
knowledge of soil ecology. The purpose of this paper is two-fold, to:
1) highlight ideas in soil ecology that we believe warrant further
exploration and integration in soil models, and 2) discuss some ways
(non-exhaustively) that nonlinear soil models can move the field
forward. This paper contributes to the field as a modern synthetic
review that connects existing similar ideas across disciplines and
highlights their implications for future work and potential findings.
Specifically, this paper includes non-exhaustive discussion of various
aspects of soil research that may benefit from integrating
perspectives from other complex systems research: including
memory, oscillations, tipping points and hysteresis. Relevant
supporting phenomena observed in soils include reversible
organo-mineral associations, aggregate- and pore hierarchy and
dynamics, persistent wet-dry cycles, multi-year gas fluxes (e.g.,
respiration) and nutrient availability, higher-order microbial
community and predator-prey interactions, and cumulative
legacy land use history. Overall, adopting tools from systems and
complexity theory primarily offers ways of reducing model
structural uncertainties (Bradford et al., 2016), thereby also
potentially facilitating model-data integration efforts, for example,
by reducing parameter space (Bennett et al., 2019; Migliavacca et al.,
2021). Addressing model structural variation and uncertainty
represents a fundamental branch of research in mathematical
ecology that analogously serves as higher level robustness
analysis, offering novel insights into results that are relatively
universal vs dependent on formulation details (Weisberg, 2007).

Memory

Iteration and hierarchy

The concept of memory represents a form of self-referential
dynamics specifically based on an event occurring at least one time
step in the past, also referred to as time lags, which in some real
systems can result in hierarchical structures. An example from the
field of physics is nuclear fusion, in which heavier atoms with more
protons are made not by the instant fusion of many lighter atoms,
but the simpler merging of few medium atoms previously built,
interestingly, also with an apparent critical drop in stability at higher
atomic numbers after iron (Pfützner et al., 2012). This shows not
only a hierarchical building process resulting from the dependence
of the existence of larger nuclei on past states (i.e., previously formed
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smaller nuclei), but this also shows related consequences, namely, a
skewed distribution of nuclear stability across the spectrum of
existing nucleus sizes, where the nuclei of smaller atoms are
more tightly bound together than larger ones.

Highly skewed or long-tailed distributions, like the power law
family, based on component or module attributes like cluster size,
are increasingly recognized as (Gillespie, 2015) properties of
complex systems (Clauset et al., 2009; Locey and Lennon, 2016).
This contrasts the normal “bell curve” distribution, which is often
assumed for classic statistical procedures, from simple averages to
within-group variance during linear regression. As a result,
observing power laws in data has served as initial support for
hypothesizing hierarchical or self-organizing processes, offering a
novel path to infer process from pattern. Although various
underlying processes can yield similar distributions (Bashkirov
and Vityazev, 2000; Curado et al., 2018), observing non-normal
distributions may at least help de-emphasize selection-like
mechanisms that tend to produce bell curves.

Somewhat surprisingly, the nuclear fusion example parallels soil
aggregation almost exactly, where larger aggregates tend to be
weaker and less structurally stable than smaller aggregates. In
this case soil aggregation is in part affected by the amount of
surface area allotted to binding agents, as well as the strengths of
the various binding agents themselves, ranging from fine-scale
organo-mineral associations to fungal mycelial networks (Tisdall
and Oades, 1982). Ultimately, this can be tied back to early
discussions of fractal dimension parameters of power law
distributions observed in porous media and landscsapes
(Burrough, 1981), which simultaneously converged with
empirical support for soil aggregation as a hierarchical processes
(Tisdall and Oades, 1982), and later exploration (Nortcliff, 1984;
Armstrong, 1986; Tyler and Wheatcraft, 1989; Perrier et al., 1996;
Assouline et al., 1998). As a result, while perhaps controversial
(Baveye et al., 2000; Pachepsky and Hill, 2017), one approach for
theoreticians and modelers may be to further attempt the study of
simple models (Vitousek et al., 2022) to explore ideas and test
underlying hypotheses about the implications of hierarchical
structural dynamics for soil properties (Stamati et al., 2013). This
may be especially important for processes that remain near
impossible to measure empirically (Bennett et al., 2019). Some
studies seem to align with this process-based modeling focus
(Waring et al., 2020), while others tend to prioritize more output
precision after long-term simulation (Coleman and Jenkinson, 1996;
Powlson et al., 1996; Cong et al., 2014). Additionally, there is also
supporting evidence for various hierarchical processes in soils,
including those underlying clay flocculation (Brostow et al., 2007;
Cuthbertson et al., 2018), aggregation of solids (Tisdall and Oades,
1982) (mentioned above) as a result of physical mixing (Klaminder
et al., 2013) and fungal enmeshment (Rillig and Mummey, 2006)
amplified by wet-dry cycles (Denef et al., 2001; Wang et al., 2023),
and for pore cluster networks (Quigley and Kravchenko, 2022; Vogel
et al., 2022), all of which represent interesting modules of the soil
environment to explore with hypotheses about hierarchical
structural dynamics and their implications. Specifically,
hierarchical aggregation has been previously analyzed by binning
all aggregates into either micro- or macroaggregate functional
groups, a fractionation that has served as a basic structure for
some models specific to solid aggregation (Segoli et al., 2013;

Stamati et al., 2013), though it may also be relevant for other soil
models, such as ones specific to greenhouse gas
production (Kravchenko A. et al., 2019; Wang et al., 2019) or
microbial diversity.

Overall, these hierarchical patterns emerging from system-
wide memory (i.e., past state-dependence) tend to generally
reflect natural solutions for coarser level system limitations.
Endogenous solutions to system limits can in some cases be
formulated and analyzed as an issue of optimizing information
flow (Czaplicka et al., 2013). If applied to modeling soil pore
dynamics, for example, this general mechanism or principle
could help explain empirical soil pore structure data
specifically as a single naturally-resulting geometric solution
(stable or temporary/unstable) for a set of constraints.
Biological constraints might be microbial cross-feeding rates
fueled by metabolite-carrying water flowing through pore
networks. Physical constraints could be spatial, such as topsoil
depth, and/or temporal, such as growing season length, both of
which would affect pore-forming processes including microbial
secretions and gas exchange (micro-pores) and invertebrate
burrowing activity (macro-pores). Importantly, real soils also
have historical constraints, which state where pores have been
and intuitively predict where new ones can potentially form,
which ultimately holistically frames pore network structures as
ongoing solutions, with varying robustness, for both past and
present ecological activity. Similarly, hierarchical aggregation of
solids may also elongate the effects of environmental changes
enough to minimize compositional variance of microbial
communities living in the smallest habitat pockets (Rillig
et al., 2017; Wilpiszeski et al., 2019). System memory, in the
form of iterative structural dynamics, can also be
environmentally adaptive, such as when system components
are dynamic or continuously dismantled and re-assembled
into new yet familiar structures, which range in scope from
soil micro-habitats to landscape profiles over months and
years. Fine-scale positive feedbacks may help explain the
diversity of soil profiles and pedons across and within order-
level taxonomic soil classifications (Jenny, 1961; Phillips, 2017).
In addition to hierarchies, soil systems’ internal or temporal
memory can also be a regular source of heterogeneity that
increases uncertainty about how soil behaves. In soils, this
hypothesis of increasing heterogeneity along hierarchical
trajectories could, for example, predict greater variance in
diversity or simply beta diversity among microbial
communities observed in macro-aggregates compared to those
among micro-aggregates. However, there remains little evidence
addressing this topic, although technological advances may
facilitate future studies (Bailey et al., 2012).

Soil depth and legacies

Studying subsoils and soil depth also represents an axis that
integrates soil profile memory and time lags. Often only topsoils
(e.g., to 10 or 20 cm depth) are studied due to high nutrient
concentrations there, yet subsoil horizons store more total carbon
(Hicks Pries et al., 2017) and can influence topsoil microbial activity,
ultimately highlighting their relevance to whole profile soil
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functions. Pedological studies have long recognized that land use
history, in addition to the classic five state factors of soils, affects
current soil function (Turley et al., 2020), especially tillage and
fertilization via changes in soil structure and soil fertility (Weitzman
et al., 2022). Additionally, microbes may decompose stable organic
matter reserves when new labile organic matter is added, known as
soil priming (Kuzyakov, 2006; Bastida et al., 2019; Liu et al., 2020), to
which subsoils may be more sensitive (Li M. et al., 2022), and thus
overall priming may offset any expected new carbon storage in
topsoils. Similarly, a multi-year whole profile warming experiment
recently showed that soil overall lost carbon mostly from subsoil
even though topsoil accumulated carbon (Soong et al., 2021),
suggesting that opposite patterns in subsoils may require re-
shaping fundamental understanding of soil systems at the profile
and pedon levels. In contrast, subsoils at over 1 m depth in
agricultural systems may be better posed to accumulate carbon in
the long-term compared to their topsoils, due to existing
degradation from deeper tillage and the potential for added
fertility from added root inputs by perennial plants with deep
roots (Button et al., 2022) and other biological subsoiling
methods (Ning et al., 2022). Since soil pedogenesis is now
understood to follow complex trajectories (Phillips, 2017), future
study of subsoils should help develop explanations for underlying
processes simultaneously affecting different soil horizons.

Ideas of memory also relate to group-level patterns and
processes which are increasingly reported, alongside individual
component-level processes (Kerr and Godfrey-Smith, 2002;
Traulsen and Nowak, 2006), and can have important
implications for overall soil processes. Cooperation often
manifests itself as synchrony among individuals, as in early
examples of tree seed masting (Ostfeld et al., 2006; Victor et al.,
2016) as well as disease transmission (Ostfeld et al., 2005), with
similar principles extended to apply to forests (Filotas et al., 2014)
and soil rhizospheres to describe nutrient exchange (Simard et al.,
1997) along with mycorrhizal symbioses (van der Heijden and
Horton, 2009; Simard et al., 2012). Similarly, population quorum
sensing by soil bacteria has affected antibiotic production (Li et al.,
2021) and other benefits at critical population sizes (Heilmann et al.,
2015) and likely with weak time delays in reciprocity (Alfaro and
Sanjuan, 2022), and quorum sensing has also been hypothesized to
affect enzyme production with implications for nitrogen cycling
(DeAngelis et al., 2008; Wang et al., 2014). Time delays also affecting
interactions between partners changing at different rates or
temporal scales—like between monthly root turnover and
exudation affecting momentary microbial gene expression and
predatory grazing below- and aboveground—could affect
reciprocity of symbioses in soil. Time delays (or accelerations)
may also reflect microbial co-metabolisms, a concept that could
be explicitly added to even generalized versions of enzyme kinetic
models (Tang and Riley, 2013) as additional multiplicative
interactive terms among different enzymes and/or substrates,
which could lead to asymmetric or incongruent results between
spatially implicit versus explicit models (Allison, 2012), depending
on local grid- or global whole matrix-scale analysis (Wang et al.,
2019). Ultimately, the combinations of spatial and temporal
variation generate the fluctuations that make treating dynamic
instability as a somewhat unavoidable and thus inherent property
of natural soil systems.

Oscillations

Focus on variance

Diel cycles in soil temperature and respiration are commonly
observed, yet few studies analyze the implications of natural cycles
for modeling soil responses to environmental changes, which in
some cases can lead to hysteretic irreversibility (Phillips et al., 2011).
Complexity and systems theory offer generalized tools and
perspectives to better incorporate variance (i.e., by soil depth)
into more generalized models of soil processes. The tendency of
a systems perspective to shift analysis toward variance is ultimately
more inclusive of a diversity of model outcomes, such as regular
oscillations or constrained chaotic fluctuations, and more generally
validates informative model outputs that are not precise single point
solutions and otherwise considered unstable by linear stability
analysis. One method of incorporating variances has been to re-
formulate dynamical systems using trigonometric functions, which
are unique for producing repeated symmetrical curves, from
bounded measures of relative distance from a fixed line segment
(Coolidge, 1952). These first principles already reflect modern
principles now understood about many complex systems, like
relativity and symmetry with modification, which likely increase
the generality and applicability of modeled output especially when
processes and questions are newly framed and formulated in
tractable ways.

Soil cycles

Oscillations have been predicted by novel and widely cited
model structures in agroecology (Vandermeer and Perfecto,
2017) and soil ecology (Baveye et al., 2018), and supported by
empirical data across fine- and coarse scales. At fine scales, soil
carbon molecular turnover has been recently proposed to depend on
functional group complexity that also hypothesizes spatial
modularity or hotspots in activity (Vogel et al., 2014), which
could produce oscillations of broader soil properties over time
(Lehmann et al., 2020). Spatial structuring also strengthens
positive feedbacks in decomposition between exo-enzyme activity
and assembly or production, which has influenced some early soil
models toward predicting consistent variance, in the form of limit
cycles, in soil nutrient availability (Schimel and Weintraub, 2003;
Wang et al., 2014). Wet-dry cycle frequency has also been cited as
affecting soil aggregate stability and as a determinant of patterns in
microbial activity (Evans et al., 2022). Various types of limit cycles
have also been a classic prediction of predator-prey models, but are
rarely applied to describe soil faunal grazer food webs (Baveye et al.,
2000; Buchkowski et al., 2017; Erktan et al., 2020; McCary et al.,
2021) especially involving viruses and their traits (Emerson et al.,
2018; Trubl et al., 2018). When these low-dimensional ecological
models are explicitly extended in space, for example, as
metacommunities, a wide variety of mosaic landscapes can be
generated with some sensitivity to model formulation or
structure (Vandermeer and Yitbarek, 2012; Vandermeer, 2013;
Yitbarek and Vandermeer, 2017), suggesting that flexible model
structures are likely important for robust understanding of causes
and consequences of soil heterogeneity. Spatial explicitness also
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emphasizes studying dispersal processes among soil modular
populations more than internal community dynamics shaped by
particular parameterizations, which have been increasingly studied
(Chaudhary et al., 2020; Hajian-Forooshani and Vandermeer, 2020;
Arellano-Caicedo et al., 2021; Mafla-Endara et al., 2021). Spatial or
temporal separation of populations has also inspired other model
structures proposing competitive hierarchies resulting in intransitive
loops (Vandermeer, 2013; Vandermeer and Jackson, 2018), which is
already supported by strong evidence (Kerr et al., 2002; Lozano et al.,
2019). Again, this is a case where new and diverse model predictions
precede empirical supporting evidence, which ultimately highlights
the potential value of general models, with a wide range of output, over
precise ones, specifically for more basic than applied research. At
coarser scales, soil respiration has also experienced regular variance in
magnitude over multiple years, explained by regime shifts among
various dominant stages of community-level decomposer activity (Sihi
et al., 2016; Melillo et al., 2017). Various soil nutrients have also shown
regular oscillations over decades (Reijneveld, 2013), although common
statistical analyses remain linear which remains an analytical
limitation. Some nutrient oscillations are expected from direct
harvests, but if nutrient cycles are coupled (i.e., by microbial
metabolisms) while oscillating, unintended and unintuitive
synergies or conflicts may emerge, as oscillations align either in- or
out of phase (Vandermeer, 2006), leading to either robust, or more
likely quickly degrading, soil nutrient availabilities. The appearance
and prediction of oscillations among a range of soil variables from
both advanced first principles and several empirical studies justifies
further study of non-linear models of soil behavior and ecology, with
example approaches listed in Table 1. The purpose of this included
table is to offer some initial non-exhaustive directions in applying
relatively uniquemodel formulations to research topics in soil ecology.
Some listed approaches include the use of coupled oscillators to
represent heterogeneous reversible priming of organo-mineral
associations in soils, and/or represent complex soil food webs to
better understand the role of faunal predators on soil nutrient and
energy dynamics (Melguizo-Ruiz et al., 2020; McCary et al., 2021; Jiao
et al., 2022; Morrissey et al., 2023), as well as the use of meta-
population/-community formulations to understand pathogen
persistence in soils (Kurkjian, 2019).

Tipping points and hysteresis

Hysteresis can be framed as a specific kind of non-linear
transition and tipping point occurring in soils. Hysteresis is
revealed when model stability analyses include outcomes across
range of parameters, and underlying component processes also
change pace at different speeds (Ong and Vandermeer, 2018). In
soils, this occurs with overall water content and its matric pressure,
or availability; this is because water always moves through wide
pores first regardless of whether the process is drying or wetting, and
wide pores have a weaker relationship between these two water
variables than in narrow pores, which always mediate water
movement second. Here the phenomenon is explained by
temporal consistency in process across spatial heterogeneity,
which can be another cause of dynamical asymmetry more
generally. For example, the relationship between soil temperature
and total soil respiration is also hysteretic in that soil respiration
responds only after considerable changes in temperature, making
respiration stay low as soil warms yet stay high while it cools, even
across the same middle temperatures (Riveros-Iregui et al., 2007;
Phillips et al., 2011; Zhang et al., 2015), which can also be described
as state-dependence or short-term memory for a system. A widely
recognized implication of hysteresis is the practical and sometimes
permanent (Ong and Vandermeer, 2018) irreversibility of past
ecological states, like permanent wilting points for roots under
drought, or more internally regulated predator or pest populations.

Soil carbon saturation is a related concept, which is supported by
field experiments and models, and is inspiring useful model
structures for describing and understanding non-linear processes
in soil. Appropriately, the concept of soil carbon saturation has
already been formulated and incorporated into new generation soil
models like MEMS (Zhang et al., 2021). An early proposed model
(Stewart et al., 2007) simulated decadal field data by mixing two
pools with different local equilibria: a stable mineral-bound carbon
pool that saturates, and a labile pool that mostly decomposes but
with no growth limit. This mixed structure produced flexible
output—slow linear increases in soil carbon at high
concentrations, and quicker but saturating increases at low
concentrations—making it more widely applicable and

TABLE 1 Example cases where employing modeling strategies based on systems theory could be useful for generalizing about soil ecology and agroecology.

Goal Limitation Systems
concept

Model approach Pro Con Related
References

Forecast soil C for
general agricultural or
climate change
management
decisions

Reversible organo-
mineral associations
(priming); Enzyme
production plasticity

Oscillatory
dynamics; strong
positive
feedbacks

Simpler implicitly
oscillatory pools, with
different winding
frequencies

Fewer pool-specific
parameters; Computational
efficiency allows more
stochastic simulations for
system accuracy

Less precise
final SOM pool
sizes

Schimel and Weintraub
(2003); Wang et al.
(2014); Sulman et al.
(2018); Kuramoto
(1984)

Estimate soil
biodiversity for
conservation and
sustainable
development

Large nested food
webs, with trophic
cascades

Indirect/higher-
order interactions

Collection of coupled
oscillator predator-prey
pairs and/or
synchronous
community clusters

Fewer taxon-specific
parameters; Computational
efficiency allows more taxon
pairs

Less precise
species
population
sizes

Potapov (2022);
Buchkowski et al.
(2017); Vandermeer
et al. (2021)

Assess persistent
pathogen risk from
soil, compost, or
municipal sludge

High heterogeneity in
microbial pathogen
population sizes

Chaos,
bifurcations,
period-doubling

Meta-population with
chaotic (high) discrete
growth and/or dispersal
rates

Higher statistical confidence
compared to plate colony
count estimates

Output states
more
parameter
dependent

Levins (1969); May
(1974); Feigenbaum
(1978)
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representing a more generalized understanding of long-term soil
carbon dynamics.

In contrast, older-generation soil models like CENTURY
(Powlson et al., 1996) and RothC (Coleman and Jenkinson, 1996)
did not incorporate pool saturation, but instead offered a simpler
initial models offering widespread practical use. The relative
simplicity of the model structure is broadly observed in the
overall linear successive flow from one decomposition pool to the
next. Furthermore, each individual pool was formulated to observe
first-order decomposition kinetics. While first-order decomposition
represents exponential decay, which is curvi-linear over time, the
non-linearities and complex dynamics under investigation by
systems theory instead stem from multiplicative associations or
interactions among dynamic variables. In many cases, multi-pool
soil systems tend to be represented with an attempted thoroughness,
resulting in a list of coupled equations that influence each other by
additive (or subtraction) terms, which usually consist of a key
variable multiplied by a corresponding abiotic parameter, which
is static relative to carbon or the nutrient of interest (Zhang et al.,
2021). This style of formulation acknowledges that soils are
complicated habitats, but leaves room to lean into the
complexities of the habitat with various nonlinear additions.

Fundamentally, because parameters and dynamic variables in an
ordinary differential equation often represent concepts formulated
to be operating at relatively distinct time scales, the re-formulation
to incorporate multiplicative variable associations can also be
interpreted as a change in descriptive timescale. For example, a
representative modeling study may test the hypothesis that
particulate organic matter and mineral-associated organic matter,
even as distinct pools, might each observe transfer rates that could be
affected by both its own and the other’s size, within a model time
step, rather than between them. More specifically, rather than
modeling the primed loss of existing organic matter implicitly in
the form of a saturating stable pool, soil priming could be formulated
as an interaction modification that implicates the more stable pool’s
size back into its incoming transfer rate from the labile pool.
Generally, this style of formulation may offer a new class of
hypothesis testing, especially for soil processes that are currently
difficult to test empirically (Bennett et al., 2019), representing a
wider array of model outcomes with just a few key soil descriptor
variables, in line with recent qualitative syntheses (Phillips, 2017;
Kuzyakov and Zamanian, 2019). Modeling soil systems using tools
from complexity theory appears to offer an antidote to the
increasingly-large soil simulations that have become more
popular, in part alongside increasing computing power in cloud
systems. The approach using complexity theory can improve
conceptual efficiency by reformulating soil models into fewer
modular components with more inter-linked process rates
(Lehmann et al., 2020). In this way, soil modeling studies may
emerge as useful analyses not only for understanding soils
themselves and their management (Angst et al., 2023), but also
for aiding other academic disciplines studying complex systems
more generally.

Additional recent studies improved generality of
understanding by explicitly modeling biological (Craig et al.,
2021) and microbial (Wang et al., 2014; Marsland et al., 2020;
Pacheco et al., 2021) processes underlying transformation rates,
including with saturating enzyme activity (Buchkowski et al.,

2017; Van Den Berg et al., 2022). Even more general
understanding can be added by expanding similar model
structures to describe effects of soil fauna and invertebrates on
soil micro-habitats including predatory and dispersive influences
on microbial communities (Grandy et al., 2016; Arellano-
Caicedo et al., 2021; Creamer et al., 2022). However,
integrating models of short-term microbial processes with
long-term carbon dynamics remains incomplete (Todd-Brown
et al., 2013), in part because they operate on very different
timescales. Each model class improves understanding of soil,
but for generalized predictions, integrating or coupling models
with the fewest explicit dimensions that yield the most diverse
qualitative output (Levins, 1966; Lane, 2018) may help at least
bound possible outcomes, such as for soil carbon exchange and
net storage, or other nutrient cycles (Manzoni and Porporato,
2009). In addition there are many aspects of soil ecology and
functioning such as biodiversity maintenance or specific soil
pathogen suppression that warrant continued understanding
through modeling the soil environment.

Restorative agropedogenesis

Together, several non-linear dynamics or functions among soil
variables may then combine to reveal critical transitions (Figure 1).
A recent synthesis (Kuzyakov and Zamanian, 2019) revealed many
non-linear relationships among key soil variables across several
decades, such as between soil bulk density and organic carbon.
Their analysis showed distinct phases of pedogenesis, or soil
development, under human management, which they termed
agro-pedogenesis. Ultimately, they presented a convergence of
these processes into an attractor, which they considered to span a
narrower range of values for key soil descriptors than would be
found under natural pedogenesis. However, underlying non-
linearities between the same key soil descriptors, such as bulk
density and soil organic carbon, suggest potential future attractor
instability and more potential divergence among local pedons,
especially under human management. Relatedly, another recent
review (Phillips, 2017) highlighted how natural pedogenesis can
be described with concepts from non-linear dynamics and
complexity theory, notably revealing how pedogenesis can show
unstable trajectories, or many possible alternative end states. These
studies suggest that while globally, recent anthropedogenesis has
converged mostly toward degradation, locally, future
anthropedogenesis could still diverge depending on regional
management strategies. This inference that helps maintain agro-
pedogenesis as a potentially regenerative force for soil fertility, rather
than inherently degrading, especially when distinguishing by
industrial vs small-scale agricultural land management.
Accordingly, a recent global synthesis of soil microbial biomass
carbon showed evidence of higher variance in percent change where
existing stocks were lower, also showing relative increases in some
tropical regions such as the Caribbean (near southeast Ayiti)
(Patoine et al., 2022). In this region and others including
southern Africa and central Asia, even where soil microbial
biomass carbon was lost in sum due to climate changes, land-use
change effects on soil microbial biomass carbon were often much
closer to positive. This higher variance in soil microbial biomass
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carbon, in part driven by positive land-use effects, together with
global cropland analyses (Padarian et al., 2022), points to a potential
for land management to increase soil carbon, rather than necessarily
degrade it (Dynarski et al., 2020). These insights highlight that
increasing soil carbon globally may still be still feasible especially by
sustainable local or regional management coordination.

Accordingly, even social processes that affect regional land
management, such as in agriculture (Newbold et al., 2020),
represent a source of uncertainty affecting soil organic matter
dynamics. However, for soil ecology, the understanding offered
by systems and complexity theory comes less from understanding
farmers’ individual decision-making processes, which is still relevant
(Mestre et al., 2020), but instead comes from how information
spread and collective decision-making processes may affect regional
agricultural management regimes and related soil processes. Given
the modern corporate food regime (Campbell, 2009; McMichael,
2009) and reliance on plantation land systems (Wolford, 2020),
widespread deficit narratives about the ecology of agroecosystems
have been somewhat normalized. However, a liberal interpretation
of a systems approach to soil ecology, by virtue of normalizing and
aiming to integrate hard-to-anticipate critical transitions (Scheffer
et al., 2012; Scheffer et al., 2015; Cooper et al., 2020), motivates the
vision for a counter-narrative—one that focuses on supporting the
world’s small-scale farmers. This results from future global changes
to, for example, soil carbon, emerging from the sum of local and
regional cooperative efforts toward ecosystem restoration and
regenerative agriculture.

Rather than continuing to degrade, regional soil organic matter
levels could potentially increase rapidly, assuming most soils are far
from carbon (or other nutrient) saturation. This could be directly
supported by local social movements that have formed to protect
small-scale agriculture and land tenure via local neighboring
cooperation and collaborative governance. Studies in Brazil near
activity of the landless workers movement, or MST, show that soil
fertility is positively associated with the recent adoption of and
transition to sustainable land management practices (Stratton et al.,
2022) like cover crop diversity, which could also be promoted by
stronger social recognition of benefits (Williams et al., 2021). This
perspective, together with other studies directly tying soil organic
matter to crop yield (Oldfield et al., 2022), ultimately tie soil
regeneration to environmental justice issues of land tenure.
Integrating socio-ecological processes thus offers an additional
means by which key soil variables and anthropedogenesis can
show critical non-linear transitions, especially in positive
directions, challenging common narratives that depict humans as
forces of soil degradation. Some ideas of how social processes affect
nutrient cycling have emerged as biogeo-socio-chemistry especially
for urban settings (Pataki et al., 2011; Kaushal et al., 2014), and
others may help address additional soil ecological dimensions of
multi-functionality (Creamer et al., 2022) beyond nutrients like
spatial patterns of faunal diversity and soil food web network
structures. Recent studies of urban ecology already point to
interesting patterns that challenge deficit narratives of societal
relationships with local soils and agriculture (Bonilla-Bedoya

FIGURE 1
Conceptual diagram highlighting (bottom) that past states incorporated down a soil profile, like buried or subsoil horizons that are plowed, primed
and nutrient-poor, or instead deeply fertile (black gradient, bottom-left), may induce oscillatory dynamics (bottom-right) in key soil variables, like
moisture andmicrobial biomass, and that (top) similarly continuous feedbacks acrossmany soil profiles and pedons in a landscape (top-left) may produce
nonlinear regional patterns including tipping points (top-right) for key soil variables, like soil organic matter, not only during land degradation, but
also during coordinated collective management toward regeneration.
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et al., 2022; Nugent and Allison, 2022; Pindral et al., 2022; Zhang
et al., 2022). Novel insights on soil socio-ecological dynamics may
help guide how to tailor sustainable development initiatives by
individual countries to achieve international soil governance
initiatives (Farnese, 2022; García et al., 2022) like through the
UN FAO Global Soil Partnership, Global Soil Biodiversity
Initiative (Wall et al., 2015), and other working groups generally
addressing UN sustainable development goals of combating soil and
habitat degradation to enhance ecosystem services via dynamic key
soil ecological indicators (Pradhan et al., 2017; Bennich et al., 2020).

Practicalities

Data gathering

In addition to conceptual generality and realism reasons, there
are also practical considerations of concern for soil and ecosystem
modeling—namely, for data gathering and analysis. For data
gathering, the main concern limitation is the collection of fine-
resolution time series, for a few reasons. One reason is that detecting
curves instead of lines statistically requires a more even distribution
of data across focal axes of interpretation. This does not imply a need
for long term data over short term data, just higher frequencies of
data collection relative to the total study duration; although it is well-
established that long-term soil data are rarer and otherwise useful,
there are of course still interesting processes in soils occurring with a
year and season (Upton et al., 2019). Higher collection frequency is
already recognized as important for soil dynamics strongly governed
by spatial and temporal hotspots and rare key event frequencies,
about nitrous oxide emissions from spatial and temporal hotspots
(O’Connell et al., 2022), which in line with the thesis here, is also
increasingly recognized as an important feature of complex systems
generally. Generally, doing so also highlights the common
experimental design trade-off between number of (temporal)
groups and replication per group, with non-linear trend detection
benefiting from more groups and less replication.

Various example studies showing complex system patterns from
empirical data exist in literature from ecology to non-linear
geophysics. Observing and tailoring analyses to ‘threshold’
responses is one approach, reported in spatial consideration of
predator biocontrol in agro-ecosystems (Vandermeer and
Perfecto, 2019), with a supportive model implying underlying
chaos (or infinite equilibria) and field observations as one of
many possible trajectories. In such cases, implying chaotic
dynamics that cannot simultaneously be observed in the field still
offers fundamental and flexible understanding of how ecosystems of
interest could change under different conditions. Chaos is not
elaborated on in this paper, but nonetheless could equally be
included as a fundamental, detectable (Toker et al., 2020), and
arguably insightful category of even simple model output (Pearce
et al., 2020; Rogers et al., 2022). Additional examples of complex
patterns arising from empirical studies of soils specifically include
focus on soil water hysteresis or characteristic curves (Ji et al., 2016)
to explain organic matter decomposition (Ghezzehei et al., 2019),
nitrogen availability (Tarquis et al., 2017), or soil respiration from
temperature (Phillips et al., 2011), including over time (Mirás-
Avalos et al., 2016) as well as overall soil surface

micro-roughness (Abban et al., 2017). Complementarily, many
theoretical studies of microbial population, community, and
resource dynamics involve empirical laboratory approaches using
controlled chemostats or successional dilution schemes for
culturable taxa, which can manipulate background environmental
parameters in multiple directions allowing for observation of
hysteretic gaps among overlayed empirical growth curves (Sun
et al., 2023). Ultimately, various approaches such as for detecting
hysteresis and tipping points converge toward general requirements
of varying background conditions across multiple similar high
frequency time series, and sub-discipline domain knowledge will
be of use for finer details ideally communicated among inter-
disciplinary collaborators.

Data analysis

The second set of concerns relate to changes in data analysis,
from new empirical or existing model outputs. We have already
suggested some relatively unique approaches above, including
changing model structural units from one-dimensional to two-
variable oscillator units (Kuramoto and Nakao, 2019;
Vandermeer et al., 2021), and can add here the study of
geometric variation in hysteresis curves, such as from soil water
(Mascaro and Vivoni, 2016; Zhao et al., 2020) or similarly in model
structure, predator-mediated decomposition (Ong and
Vandermeer, 2018). However, there can also be some ways to
uncover patterns common to complex systems such as soils by
modifying existing approaches. One is reduce parameter uncertainty
by focusing more on exploring multiplicative equation terms, rather
than assuming simple additive relationships between single variables
(and their associated parameters). For example, the very interesting
and modern MEMS soil model, that critically highlights the
importance of spatial interactions of organic carbon with the
fine-scale matrix of soil mineral surfaces, tends to model many
separate pools of carbon, with associated decomposition or uptake
rates, that represent inter-dependence, but ones that are primarily
formulated additively (Robertson et al., 2019 suppl.). A systems-
focused analysis, testing ideas from complexity theory, highlights the
insight gained from either focusing on parameter sweeps that are
associated with multiplicatively interacting variables that are
currently implemented and exist, and/or re-formulating two or
more equations to into fewer that involve such non-linear terms.
Additional strategies can also include model analyses of the relative
influences of key variables over time, which is an existing practice
(Robertson et al., 2019 Supplementary Figure S5), but not typically
at the forefront of hypothesis generation or study presentation.
Practically, it is also relevant to acknowledge that this can result in
longer computational simulation times, and on the other hand,
parameter values for interactive terms become more influential on
relevant model output and thus becomemore important to calibrate,
implying that justifying these choices with evidence becomes more
important. As modeling methods can also be used primarily for
hypothesis testing andmodel structure piloting, additional modeling
strategies include implementing alternative structures to ordinary
differential equation sets, an example being agent-based modeling,
which is increasingly used in other fields including ecology (Esquivel
et al., 2022), but relatively new to soils (Waring et al., 2020). Usefully,
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there is already some support for these systems analyses in both
empirical (Basile et al., 2003) and modeling studies of soils (Zhang
et al., 2014); literature is primarily skewed toward soil physics, but
tools from physics are increasingly brought into ecology, as those
from chemistry have come into ecosystem ecology and
biogeochemistry, and is likely fundamental to understanding and
advancing the unique field of soil ecology (Erktan et al., 2020).
Furthermore, dimension reduction as a model formulation tool can
also help reduce model size, and potentially accordingly, also help
reduce associated code navigational complexity, learning curves,
researcher accessibility, and modeling study reproducibility.

Other concerns include with how to engage with transient
dynamics, choosing useful response metrics to show, and
subsequent statistical analysis considerations. Transient dynamics
are commonly considered as the initial output of a model simulation
before reaching equilibrium or steady state, which depending on the
time period of interest for analysis, can represent up to 10 or
100 years of changes in soil properties. Traditionally they are
excluded from model behavioral analyses, as they usually contain
complicated dynamics and technically do not represent “long-term”

status of the system. However, if transient dynamics comprise a
notable proportion of total simulated time, they are worth
considering and analyzing themselves (Hastings et al., 2018;
Francis et al., 2021). Here, the research focus is on designing
model formulations where there is no single multi-dimensional
point to arrive to, but that the complex dynamics of oscillations
and large leaps in values or critical transitions are instead the
expected outcome, and analyses need to work that. In other
words, the non-linear dynamics observable by key soil
descriptors discussed here are not transients, but instead
dynamic, non-point and geometrically diverse equilibriums
(technically considered unstable). Accordingly, one initial
strategy, perhaps before changing existing model structures, may
be to include some analysis of soil model transient dynamics, to gain
intuition on which tend to be key driving variables or sub-pools of
soil carbon.

For the concepts highlighted previously in this paper, some
concrete tools to analyze useful response metrics include:
programming language functions to temporarily store slightly
offset or asymmetric data frames to analyze lags among column
variables (Li et al., 2022a code for ‘peaks’); calculating lyapunov
exponents when descriptor changes are highly variable to check for
chaotic equilibrium (Rogers et al., 2022); identifying “critical points”
where large transitions occur (Vandermeer, 2021), as well as to
identify at which parameter values invisible (i.e., visible when
equation set is analytically tractable) “collisions” of phase space
(or time series data where time is not an axis) occur (Vandermeer
and Yodzis, 1999), which importantly can alter the long-term
equilibrium points of original interest (Strogatz and Fox, 2015);
and finally calculating the size of hysteretic graphical regions, which
may suggest irreversible equilibrium points (Ong and Vandermeer,
2018) under certain realistic parameter combinations.

An ultimate practical consideration for applying a complex
systems framework for studying soils building statistical support.
The first limitation to this is analyzing and presenting temporal
categories as discrete—descretizing time tends to obscure and lower
the ability to identify a pattern as non-linear; similar to the previous
point about needing higher termporal resolution to better support

curvi-linear relationships. The next concern is the ease of use of
current implementations of common statistical tests. Currently,
linear regressions are relatively simple to run and accessible to
learn, as are generalized linear models, linear mixed effects
models, and logistic regressions. However, other non-linear
regressions, such as generalized and nonlinear mixed effects
models can be more error-prone and less easy to run and
interpret. As a result, it is not uncommon for researchers to
choose simpler statistical tests to run when multiple other test
options could also be seen as valid. One work-around is to
consider weaker non-parametric tests and focusing on other
forms of variance partitioning and determining effect sizes, such
as Spearman rank-order correlation, or Kruskal–Wallis with eta-
squared effect size calculations when necessary, as non-parametric
have more flexible underlying assumptions. These kinds of trade-
offs in statistical power when under limited resources for the sake of
model exploration (Levins, 1966) may be useful to help advance the
soil agroecology toward more new hypothesis-driven research.
Ultimately, however, even non-parametric tests maintain some
assumptions, such as monotonicity or uni-directionality, which
would already be violated by oscillatory relationships, as well as
equal variance among groups, which would be violated by mean-
variance correlations (Taylor, 1961), all of which remain partial
barriers for adoption of complex systems level analyses of soil
models. Beyond waiting for new test development, formulation
and implementation, and broad acceptance, it has often proved
often useful to rely simply on graphical analysis, a type of qualitative
analysis analogous to those used in the social sciences, to make wide
leaps in new research hypotheses promising to move the field
forward.

Conclusion

This synthesis applies a complex systems framework to
analyzing key uncertainties about soil processes and habitats,
drawing from various analytical tools used across
interdisciplinary fields, and presenting how they have and will
better address key research questions in the field of soil
agroecology. Overall, this paper contributes to the field as a
modern synthetic review that connects existing similar ideas
across disciplines and highlights their implications for future
work and potential findings. Concepts highlighted include soil
memory, or legacy effects of management history and past
ecological states; oscillations over time, which are observed in
many key soil descriptive variables; and, tipping points and
hysteresis, when several correlated variables change at different
times and/or rates. Together, these three principles should help
decrease uncertainty around soil model structures (Bradford et al.,
2016) by pointing toward how to improve model generality for key
soil processes of interest, such as soil respiration and particulate
organic matter storage via occlusion by microbial community
byproducts produced during soil aggregation. The complexity
perspective on soil agroecology also inspires a positive outlook
on the potential feasibility of collective societal solutions to soil
degradation crises (Montgomery, 2007; Richter, 2021), by including
and better anticipating drastic unexpected changes that often
emerge from the combined effects of many interacting processes.
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Because farms are social-ecological systems, forward steps include
collaborating with social sciences, humanities such as history or
literature (Schloss and Handelsman, 2007), or non-equilibrium or
statistical physics (Bak et al., 2002) including geophysics, to expand
and improve the set of potentially useful analytical tools and
perspectives needed to inclusively and robustly describe the
extreme heterogeneity and complexity of soil habitats.

Author contributions

NM and JV contributed to paper conceptualization, funding
acquisition, literature review, conceptual synthesis, and paper
organization; NM wrote initial drafts, and NM and JV
contributed to later revisions. All authors contributed to the
article and approved the submitted version.

Funding

This research was supported by the University of Michigan
Rackham Merit Fellowship program and NSF DEB Award
#1853261.

Acknowledgments

Thanks to the JV-Perfecto lab for initial organizational feedback,
colleagues Kenzo Esquivel and Aidee Guzmán for inviting a
conference presentation on the topic, and Jennifer Blesh and
Alison E King for initial written draft comments.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abban, B. K. B., Papanicolaou, A. N., Giannopoulos, C. P., Dermisis, D. C., Wacha, K.
M., Wilson, C. G., et al. (2017). Quantifying the changes of soil surface microroughness
due to rainfall impact on a smooth surface. Nonlin. Process. Geophys. 24, 569–579.
doi:10.5194/npg-24-569-2017

Alfaro, G., and Sanjuan, M. A. F. (2022). Time-dependent effects hinder cooperation
on the public goods game. Chaos, Solit. Fractals 160, 112206. doi:10.1016/j.chaos.2022.
112206

Allison, S. D. (2012). A trait-based approach for modelling microbial litter
decomposition. Ecol. Lett. 15, 1058–1070. doi:10.1111/j.1461-0248.2012.01807.x

Angst, G., Mueller, K. E., Castellano, M. J., Vogel, C., Wiesmeier, M., and Mueller, C.
W. (2023). Unlocking complex soil systems as carbon sinks: multi-pool management as
the key. Nat. Commun. 14, 2967. doi:10.1038/s41467-023-38700-5

Arellano-Caicedo, C., Ohlsson, P., Bengtsson, M., Beech, J. P., and Hammer, E. C.
(2021). Habitat geometry in artificial microstructure affects bacterial and fungal growth,
interactions, and substrate degradation. Commun. Biol. 4, 1226. doi:10.1038/s42003-
021-02736-4

Armstrong, A. C. (1986). On the fractal dimensions of some transient soil properties.
J. Soil Sci. 37, 641–652. doi:10.1111/j.1365-2389.1986.tb00393.x

Armstrong, R. A., and McGehee, R. (1976). Coexistence of species competing for
shared resources. Theor. Popul. Biol. 9, 317–328. doi:10.1016/0040-5809(76)90051-4

Assouline, S., Tessier, D., and Bruand, A. (1998). A conceptual model of the soil water
retention curve. Water Resour. Res. 34, 223–231. doi:10.1029/97WR03039

Azizi-Rad, M., Chanca, I., Herrera-Ramírez, D., Metzler, H., and Sierra, C. A. (2021).
Stochastic and deterministic interpretation of pool models. Glob. Change Biol. 2,
2271–2272. doi:10.1111/gcb.15581

Bailey, V. L., Bilskis, C. L., Fansler, S. J., McCue, L. A., Smith, J. L., and Konopka, A.
(2012). Measurements of microbial community activities in individual soil
macroaggregates. Soil Biol. Biochem. 48, 192–195. doi:10.1016/j.soilbio.2012.01.004

Bak, P., Christensen, K., Danon, L., and Scanlon, T. (2002). Unified scaling law for
earthquakes. Phys. Rev. Lett. 88, 178501. doi:10.1103/PhysRevLett.88.178501

Bashkirov, A. G., and Vityazev, A. V. (2000). Information entropy and power-law
distributions for chaotic systems. Phys. A Stat. Mech. its Appl. 277, 136–145. doi:10.
1016/S0378-4371(99)00449-5

Basile, A., Ciollaro, G., and Coppola, A. (2003). Hysteresis in soil water characteristics
as a key to interpreting comparisons of laboratory and field measured hydraulic
properties. Water Resour. Res. 39, 1–12. doi:10.1029/2003WR002432

Bastida, F., García, C., Fierer, N., Eldridge, D. J., Bowker, M. A., Abades, S., et al.
(2019). Global ecological predictors of the soil priming effect. Nat. Commun. 10, 3481.
doi:10.1038/s41467-019-11472-7

Baveye, P., Parlange, J., and Stewart, B. A. (2000). Fractals in soil science.

Baveye, P. C. (2023). Ecosystem-scale modelling of soil carbon dynamics: time for a
radical shift of perspective? Soil Biol. Biochem. 184, 109112. doi:10.1016/j.soilbio.2023.
109112

Baveye, P. C., Otten, W., Kravchenko, A., Balseiro-Romero, M., Beckers, É.,
Chalhoub, M., et al. (2018). Emergent properties of microbial activity in
heterogeneous soil microenvironments: different research approaches are slowly
converging, yet major challenges remain. Front. Microbiol. 9, 1929. doi:10.3389/
fmicb.2018.01929

Bennett, A. E., Preedy, K., Golubski, A., Umbanhowar, J., Borrett, S. R., Byrne, L., et al.
(2019). Beyond the black box: promoting mathematical collaborations for elucidating
interactions in soil ecology. Ecosphere 10. doi:10.1002/ecs2.2799

Bennich, T., Weitz, N., and Carlsen, H. (2020). Deciphering the scientific literature on
SDG interactions: a review and reading guide. Sci. Total Environ. 728, 138405. doi:10.
1016/j.scitotenv.2020.138405

Berardi, D., Brzostek, E., Blanc-Betes, E., Davison, B., DeLucia, E. H., Hartman, M. D.,
et al. (2020). 21st-century biogeochemical modeling: challenges for Century-based
models and where do we go from here? GCB Bioenergy 12, 774–788. doi:10.1111/gcbb.
12730

Berryman, A. A., and Millstein, J. A. (1989). Are ecological systems chaotic – and if
not, why not? Trends Ecol. Evol. 4, 26–28. doi:10.1016/0169-5347(89)90014-1

Bonilla-Bedoya, S., Ángel Herrera, M., Vaca, A., Salazar, L., Zalakeviciute, R., Mejía,
D., et al. (2022). Urban soil management in the strategies for adaptation to climate
change of cities in the Tropical Andes. Geoderma 417, 115840. doi:10.1016/j.geoderma.
2022.115840

Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., and
Crowther, T. W. (2016). Managing uncertainty in soil carbon feedbacks to climate
change. Nat. Clim. Change 6, 751–758. doi:10.1038/nclimate3071

Brostow, W., Pal, S., and Singh, R. P. (2007). A model of flocculation.Mater. Lett. 61,
4381–4384. doi:10.1016/j.matlet.2007.02.007

Buchkowski, R. W., Bradford, M. A., Grandy, A. S., Schmitz, O. J., and Wieder, W. R.
(2017). Applying population and community ecology theory to advance understanding
of belowground biogeochemistry. Ecol. Lett. 20, 231–245. doi:10.1111/ele.12712

Burrough, P. A. (1981). Fractal dimensions of landscapes and other environmental
data. Nature 294, 240–242. doi:10.1038/294240a0

Button, E. S., Pett-Ridge, J., Murphy, D. V., Kuzyakov, Y., Chadwick, D. R., and Jones,
D. L. (2022). Deep-C storage: biological, chemical and physical strategies to enhance
carbon stocks in agricultural subsoils. Soil Biol. Biochem. 170, 108697. doi:10.1016/j.
soilbio.2022.108697

Frontiers in Environmental Science frontiersin.org11

Medina and Vandermeer 10.3389/fenvs.2023.1171194

https://doi.org/10.5194/npg-24-569-2017
https://doi.org/10.1016/j.chaos.2022.112206
https://doi.org/10.1016/j.chaos.2022.112206
https://doi.org/10.1111/j.1461-0248.2012.01807.x
https://doi.org/10.1038/s41467-023-38700-5
https://doi.org/10.1038/s42003-021-02736-4
https://doi.org/10.1038/s42003-021-02736-4
https://doi.org/10.1111/j.1365-2389.1986.tb00393.x
https://doi.org/10.1016/0040-5809(76)90051-4
https://doi.org/10.1029/97WR03039
https://doi.org/10.1111/gcb.15581
https://doi.org/10.1016/j.soilbio.2012.01.004
https://doi.org/10.1103/PhysRevLett.88.178501
https://doi.org/10.1016/S0378-4371(99)00449-5
https://doi.org/10.1016/S0378-4371(99)00449-5
https://doi.org/10.1029/2003WR002432
https://doi.org/10.1038/s41467-019-11472-7
https://doi.org/10.1016/j.soilbio.2023.109112
https://doi.org/10.1016/j.soilbio.2023.109112
https://doi.org/10.3389/fmicb.2018.01929
https://doi.org/10.3389/fmicb.2018.01929
https://doi.org/10.1002/ecs2.2799
https://doi.org/10.1016/j.scitotenv.2020.138405
https://doi.org/10.1016/j.scitotenv.2020.138405
https://doi.org/10.1111/gcbb.12730
https://doi.org/10.1111/gcbb.12730
https://doi.org/10.1016/0169-5347(89)90014-1
https://doi.org/10.1016/j.geoderma.2022.115840
https://doi.org/10.1016/j.geoderma.2022.115840
https://doi.org/10.1038/nclimate3071
https://doi.org/10.1016/j.matlet.2007.02.007
https://doi.org/10.1111/ele.12712
https://doi.org/10.1038/294240a0
https://doi.org/10.1016/j.soilbio.2022.108697
https://doi.org/10.1016/j.soilbio.2022.108697
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1171194


Campbell, H. (2009). Breaking new ground in food regime theory: corporate
environmentalism, ecological feedbacks and the “food from somewhere” regime?
Agric. Hum. Values 26, 309–319. doi:10.1007/s10460-009-9215-8

Charlotte, V., Laure, V. G., Naoise, N., and Claire, C. (2022). Opportunities and limits
in imaging microorganisms and their activities in soil microhabitats. Soil Biol. Biochem.
174, 108807. doi:10.1016/j.soilbio.2022.108807

Chaudhary, V. B., Nolimal, S., Sosa-Hernández, M. A., Egan, C., and Kastens, J.
(2020). Trait-based aerial dispersal of arbuscular mycorrhizal fungi. New Phytol. 228,
238–252. doi:10.1111/nph.16667

Christensen, K., Danon, L., Scanlon, T., and Bak, P. (2002). Unified scaling law for
earthquakes. Proc. Natl. Acad. Sci. 5 . doi:10.1073/pnas.012581099

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-law distributions in
empirical data. SIAM Rev. 51, 661–703. doi:10.1137/070710111

Coleman, K., and Jenkinson, D. S. (1996). “RothC-26.3 - a Model for the turnover of
carbon in soil,” in Evaluation of soil organic matter models. Editors D. S. Powlson,
P. Smith, and J. U. Smith (Berlin, Heidelberg: Springer Berlin Heidelberg), 237–246.
doi:10.1007/978-3-642-61094-3_17

Cong, R., Wang, X., Xu, M., Ogle, S. M., and Parton, W. J. (2014). Evaluation of the
CENTURY model using long-term fertilization trials under corn-wheat cropping systems in
the typical croplands of China. PLoS ONE 9, e95142. doi:10.1371/journal.pone.0095142

Coolidge, J. L. (1952). The origin of polar coordinates, 9. doi:10.1080/00029890.1952.11988074

Cooper, G. S., Willcock, S., and Dearing, J. A. (2020). Regime shifts occur
disproportionately faster in larger ecosystems. Nat. Commun. 11, 1175. doi:10.1038/
s41467-020-15029-x

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E. (2013). The
Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter
decomposition with soil organic matter stabilization: do labile plant inputs form stable
soil organic matter? Glob. Change Biol. 19, 988–995. doi:10.1111/gcb.12113

Craig, M. E., Mayes, M. A., Sulman, B. N., and Walker, A. P. (2021). Biological
mechanisms may contribute to soil carbon saturation patterns. Glob. Change Biol. 27,
2633–2644. doi:10.1111/gcb.15584

Creamer, R. E., Barel, J. M., Bongiorno, G., and Zwetsloot, M. J. (2022). The life of
soils: integrating the who and how ofmultifunctionality. Soil Biol. Biochem. 166, 108561.
doi:10.1016/j.soilbio.2022.108561

Curado, E., Nobre, F., and Plastino, A. (2018). Associating an entropy with power-law
frequency of events. Entropy 20, 940. doi:10.3390/e20120940

Cuthbertson, A. J. S., Samsami, F., and Dong, P. (2018). Model studies for flocculation
of sand-clay mixtures. Coast. Eng. 132, 13–32. doi:10.1016/j.coastaleng.2017.11.006

Czaplicka, A., Holyst, J. A., and Sloot, P. M. A. (2013). Noise enhances information
transfer in hierarchical networks. Sci. Rep. 3, 1223. doi:10.1038/srep01223

DeAngelis, K. M., Lindow, S. E., and Firestone, M. K. (2008). Bacterial quorum
sensing and nitrogen cycling in rhizosphere soil: bacterial QS and rhizosphere nitrogen
cycling. FEMS Microbiol. Ecol. 66, 197–207. doi:10.1111/j.1574-6941.2008.00550.x

Denef, K., Six, J., Bossuyt, H., Frey, S. D., Elliott, E. T., Merckx, R., et al. (2001).
Influence of dry-wet cycles on the interrelationship between aggregate, particulate
organic matter, and microbial community dynamics. Soil Biol. 13, 1599–1611. doi:10.
1016/S0038-0717(01)00076-1

Dynarski, K. A., Bossio, D. A., and Scow, K. M. (2020). Dynamic stability of soil
carbon: reassessing the “permanence” of soil carbon sequestration. Front. Environ. Sci.
8, 514701. doi:10.3389/fenvs.2020.514701

Emerson, J. B., Roux, S., Brum, J. R., Bolduc, B., Woodcroft, B. J., Jang, H. B., et al.
(2018). Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol.
3, 870–880. doi:10.1038/s41564-018-0190-y

Epstein, I. R., Kustin, K., De Kepper, P., and Orbán, M. (1983). Oscillating chemical
reactions. Sci. Am. 248, 112–123. doi:10.1038/scientificamerican0383-112

Epstein, I. R., and Showalter, K. (1996). Nonlinear chemical dynamics: oscillations,
patterns, and chaos. J. Phys. Chem. 100, 13132–13147. doi:10.1021/jp953547m

Erktan, A., Balmot, J., Merino-Martín, L., Monnier, Y., Pailler, F., Coq, S., et al. (2017).
Immediate and long-term effect of tannins on the stabilization of soil aggregates. Soil
Biol. Biochem. 105, 197–205. doi:10.1016/j.soilbio.2016.11.017

Erktan, A., Rillig, M. C., Carminati, A., Jousset, A., and Scheu, S. (2020). Protists and
collembolans alter microbial community composition, C dynamics and soil aggregation in
simplified consumer - prey systems, 4961–4980.

Esquivel, K. E., Hesselbarth, M. H. K., and Allgeier, J. E. (2022). Mechanistic support
for increased primary production around artificial reefs. Ecol. Appl. 32, e2617. doi:10.
1002/eap.2617

Evans, S. E., Allison, S. D., and Hawkes, C. V. (2022).Microbes, memory and moisture:
predicting microbial moisture responses and their impact on carbon cycling, 12.

Farnese, P. L. (2022). Soil governance in a pandemic. Soil Secur. 6, 100033. doi:10.
1016/j.soisec.2021.100033

Feigenbaum, M. J. (1978). Quantitative universality for a class of nonlinear
transformations. J. Stat. Phys. 19, 25–52. doi:10.1007/BF01020332

Filotas, E., Parrott, L., Burton, P. J., Chazdon, R. L., Coates, K. D., Coll, L., et al. (2014).
Viewing forests through the lens of complex systems science. Ecosphere 5, 1–23. art1.
doi:10.1890/ES13-00182.1

Francis, T. B., Abbott, K. C., Cuddington, K., Gellner, G., Hastings, A., Lai, Y.-C., et al.
(2021). Management implications of long transients in ecological systems. Nat. Ecol.
Evol. 5, 285–294. doi:10.1038/s41559-020-01365-0

García, S. O., Santillán, V. S., Vivier, V. B., Anglés-Hernánez, M., Pérez, M. E., and
Prado, B. (2022). Soil governance and sustainable agriculture in Mexico. Soil Security.
100059. doi:10.1016/j.soisec.2022.100059

Ghezzehei, T. A., Sulman, B., Arnold, C. L., Bogie, N. A., and Berhe, A. A. (2019). On
the role of soil water retention characteristic on aerobic microbial respiration.
Biogeosciences 16, 1187–1209. doi:10.5194/bg-16-1187-2019

Gillespie, C. S. (2015). Fitting heavy tailed distributions: the powerlaw package. J. Stat.
Softw. 64, 1–16. doi:10.18637/jss.v064.i02

Grandy, A. S., Wieder, W. R., Wickings, K., and Kyker-Snowman, E. (2016). Beyond
microbes: are fauna the next frontier in soil biogeochemical models? Soil Biol. Biochem.
102, 40–44. doi:10.1016/j.soilbio.2016.08.008

Hajian-Forooshani, Z., and Vandermeer, J. (2020). Spatial structure and pathogen
epidemics: the influence of management and stochasticity in agroecosystems. bioRxiv.
doi:10.1101/2020.06.19.161810100872

Harte, J., Kinzig, A., and Green, J. (1999). Self-similarity in the distribution and
abundance of species. Science 284, 334–336. doi:10.1126/science.284.5412.334

Hastings, A. (2004). Transients: the key to long-term ecological understanding?
Trends Ecol. Evol. 19, 39–45. doi:10.1016/j.tree.2003.09.007

Hastings, A., Abbott, K. C., Cuddington, K., Francis, T., Gellner, G., Lai, Y. C., et al.
(2018). Transient phenomena in ecology. Science 361, eaat6412. doi:10.1126/science.
aat6412

Hastings, A., Hom, C. L., Ellner, S., Turchin, P., and Godfray, H. C. J. (1993). Chaos in
ecology: is mother nature a strange attractor? Annu. Rev. Ecol. Sytematics 35, 1–33.
doi:10.1146/annurev.es.24.110193.000245

Heilmann, S., Krishna, S., and Kerr, B. (2015). Why do bacteria regulate public goods
by quorum sensing? How the shapes of cost and benefit functions determine the form of
optimal regulation. Front. Microbiol. 6, 767. doi:10.3389/fmicb.2015.00767

Henson, S. M., Costantino, R. F., Cushing, J. M., Desharnais, R. A., Dennis, B., and
King, A. A. (2001). Lattice effects observed in chaotic dynamics of experimental
populations. Science 294, 602–605. doi:10.1126/science.1063358

Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S. (2017). The whole-soil
carbon flux in response to warming. Science 355, 1420–1423. doi:10.1126/science.
aal1319

Jenny, H. (1961). Derivation of state factor equations of soils and ecosystems. Soil Sci.
Soc. Am. J. 25, 385–388. doi:10.2136/sssaj1961.03615995002500050023x

Ji, W., Lin, M., Biswas, A., Si, B. C., Chau, H. W., and Cresswell, H. P. (2016). Fractal
behavior of soil water storage at multiple depths. Nonlin. Process. Geophys. 23, 269–284.
doi:10.5194/npg-23-269-2016

Jiao, S., Lu, Y., andWei, G. (2022). Soil multitrophic network complexity enhances the
link between biodiversity and multifunctionality in agricultural systems. Glob. Change
Biol. 28, 140–153. doi:10.1111/gcb.15917

Kaushal, S. S., McDowell, W. H., and Wollheim, W. M. (2014). Tracking evolution of
urban biogeochemical cycles: past, present, and future. Biogeochemistry 121, 1–21.
doi:10.1007/s10533-014-0014-y

Kerr, B., and Godfrey-Smith, P. (2002). Individualist and multi-level perspectives on
selection in structured populations. Biol. Philos. 17, 477–517. doi:10.1023/A:
1020504900646

Kerr, B., Riley, M. A., Feldman, M. W., and Bohannan, B. J. M. (2002). Local dispersal
promotes biodiversity in a real-life game of rock–paper–scissors. Nature 418, 171–174.
doi:10.1038/nature00823

King, A. A., and Schaffer, W. M. (1999). The rainbow bridge: Hamiltonian limits and
resonance in predator-prey dynamics. J. Math. Biol. 39, 439–469. doi:10.1007/
s002850050174

King, A. E., Ali, G. A., Gillespie, A.W., andWagner-Riddle, C. (2020). Soil organicmatter as
catalyst of crop resource capture. Front. Environ. Sci. 8, 8. doi:10.3389/fenvs.2020.00050

Klaminder, J., Giesler, R., and Makoto, K. (2013). Physical mixing between humus
and mineral matter found in cryoturbated soils increases short-term heterotrophic
respiration rates. Soil Biol. Biochem. 57, 922–924. doi:10.1016/j.soilbio.2012.10.038

Kravchenko, A., Otten, W., Garnier, P., Pot, V., and Baveye, P. C. (2019b). Soil
aggregates as biogeochemical reactors: not a way forward in the research on
soil–atmosphere exchange of greenhouse gases. Glob. Change Biol. 25, 2205–2208.
doi:10.1111/gcb.14640

Kravchenko, A. N., Boast, C. W., and Bullock, D. G. (1999). Multifractal analysis of
soil spatial variability. Agron. J. 91, 1033–1041. doi:10.2134/agronj1999.9161033x

Kravchenko, A. N., Guber, A. K., Razavi, B. S., Koestel, J., Quigley, M. Y., Robertson,
G. P., et al. (2019a). Microbial spatial footprint as a driver of soil carbon stabilization.
Nat. Commun. 10, 3121. doi:10.1038/s41467-019-11057-4

Frontiers in Environmental Science frontiersin.org12

Medina and Vandermeer 10.3389/fenvs.2023.1171194

https://doi.org/10.1007/s10460-009-9215-8
https://doi.org/10.1016/j.soilbio.2022.108807
https://doi.org/10.1111/nph.16667
https://doi.org/10.1073/pnas.012581099
https://doi.org/10.1137/070710111
https://doi.org/10.1007/978-3-642-61094-3_17
https://doi.org/10.1371/journal.pone.0095142
https://doi.org/10.1080/00029890.1952.11988074
https://doi.org/10.1038/s41467-020-15029-x
https://doi.org/10.1038/s41467-020-15029-x
https://doi.org/10.1111/gcb.12113
https://doi.org/10.1111/gcb.15584
https://doi.org/10.1016/j.soilbio.2022.108561
https://doi.org/10.3390/e20120940
https://doi.org/10.1016/j.coastaleng.2017.11.006
https://doi.org/10.1038/srep01223
https://doi.org/10.1111/j.1574-6941.2008.00550.x
https://doi.org/10.1016/S0038-0717(01)00076-1
https://doi.org/10.1016/S0038-0717(01)00076-1
https://doi.org/10.3389/fenvs.2020.514701
https://doi.org/10.1038/s41564-018-0190-y
https://doi.org/10.1038/scientificamerican0383-112
https://doi.org/10.1021/jp953547m
https://doi.org/10.1016/j.soilbio.2016.11.017
https://doi.org/10.1002/eap.2617
https://doi.org/10.1002/eap.2617
https://doi.org/10.1016/j.soisec.2021.100033
https://doi.org/10.1016/j.soisec.2021.100033
https://doi.org/10.1007/BF01020332
https://doi.org/10.1890/ES13-00182.1
https://doi.org/10.1038/s41559-020-01365-0
https://doi.org/10.1016/j.soisec.2022.100059
https://doi.org/10.5194/bg-16-1187-2019
https://doi.org/10.18637/jss.v064.i02
https://doi.org/10.1016/j.soilbio.2016.08.008
https://doi.org/10.1101/2020.06.19.161810
https://doi.org/10.1126/science.284.5412.334
https://doi.org/10.1016/j.tree.2003.09.007
https://doi.org/10.1126/science.aat6412
https://doi.org/10.1126/science.aat6412
https://doi.org/10.1146/annurev.es.24.110193.000245
https://doi.org/10.3389/fmicb.2015.00767
https://doi.org/10.1126/science.1063358
https://doi.org/10.1126/science.aal1319
https://doi.org/10.1126/science.aal1319
https://doi.org/10.2136/sssaj1961.03615995002500050023x
https://doi.org/10.5194/npg-23-269-2016
https://doi.org/10.1111/gcb.15917
https://doi.org/10.1007/s10533-014-0014-y
https://doi.org/10.1023/A:1020504900646
https://doi.org/10.1023/A:1020504900646
https://doi.org/10.1038/nature00823
https://doi.org/10.1007/s002850050174
https://doi.org/10.1007/s002850050174
https://doi.org/10.3389/fenvs.2020.00050
https://doi.org/10.1016/j.soilbio.2012.10.038
https://doi.org/10.1111/gcb.14640
https://doi.org/10.2134/agronj1999.9161033x
https://doi.org/10.1038/s41467-019-11057-4
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1171194


Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence.

Kuramoto, Y., and Nakao, H. (2019). On the concept of dynamical reduction: the case
of coupled oscillators.

Kurkjian, H. M. (2019). The Metapopulation Microcosm Plate: a modified 96-well
plate for use in microbial metapopulation experiments.Methods Ecol. Evol. 10, 162–168.
doi:10.1111/2041-210X.13116

Kuzyakov, Y. (2006). Sources of CO2 efflux from soil and review of partitioning
methods. Soil Biol. Biochem. 38, 425–448. doi:10.1016/j.soilbio.2005.08.020

Kuzyakov, Y., and Zamanian, K. (2019). Reviews and syntheses:
agropedogenesis – humankind as the sixth soil-forming factor and attractors of
agricultural soil degradation. Biogeosciences 16, 4783–4803. doi:10.5194/bg-16-4783-
2019

Lane, P. A. (2018). The road before us: have we come to a “fork in the road” in defining
complexity? Ecol. Complex. 35, 1–5. doi:10.1016/j.ecocom.2017.07.005

Lavelle, P., Spain, A., Blouin, M., Brown, G., Decaëns, T., Grimaldi, M., et al. (2016).
Ecosystem engineers in a self-organized soil: a review of concepts and future research
questions. Soil Sci. 181, 91–109. doi:10.1097/SS.0000000000000155

Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., et al.
(2020). Persistence of soil organic carbon caused by functional complexity. Nat. Geosci.
13, 529–534. doi:10.1038/s41561-020-0612-3

Levins, R. (1966). THE STRATEGY OF MODEL BUILDING IN POPULATION
BIOLOGY. Am. Sci. 12.

Levins, R. (1969). Some demographic and genetic consequences of environmental
heterogeneity for biological control. Bull. Entomological Soc. Am. 15, 237–240. doi:10.
1093/besa/15.3.237

Li, K., Hajian-Forooshani, Z., Su, C., Perfecto, I., and Vandermeer, J. (2022a). Reduced
rainfall and resistant varieties mediate a critical transition in the coffee rust disease. Sci.
Rep. 12, 1564. doi:10.1038/s41598-022-05362-0

Li, K., Xu, G., Wang, B., Wu, G., Hou, R., and Liu, F. (2021). The predatory soil
bacterium Lysobacter reprograms quorum sensing system to regulate antifungal
antibiotic production in a cyclic-di-GMP-independent manner. Commun. Biol. 4,
1131. doi:10.1038/s42003-021-02660-7

Li, M., Meador, T., Sauheitl, L., Guggenberger, G., and Angst, G. (2022b). Substrate
quality effects on stabilized soil carbon reverse with depth. Geoderma 406, 115511.
doi:10.1016/j.geoderma.2021.115511

Li, T.-Y., and Yorke, J. A. (1975). Period three implies chaos. Am. Math. Mon. 9.
doi:10.2307/2318254

Liu, T., Yang, L., Hu, Z., Xue, J., Lu, Y., Chen, X., et al. (2020). Biochar exerts negative
effects on soil fauna across multiple trophic levels in a cultivated acidic soil. Biol. Fertil.
Soils 56, 597–606. doi:10.1007/s00374-020-01436-1

Livingtson, K. (1985). The dialectical biologist. Richard Levins and richard lewontin.
Cambridge, Mass: Harvard University Press.

Locey, K. J., and Lennon, J. T. (2016). Scaling laws predict global microbial diversity.
Proc. Natl. Acad. Sci. U. S. A. 113, 5970–5975. doi:10.1073/pnas.1521291113

Lorenz, E. (1963). Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141. doi:10.
1175/1520-0469(1963)020<0130:dnf>2.0.co;2
Lozano, G. L., Bravo, J. I., Diago, M. F. G., Park, H. B., Hurley, A., Peterson, S. B., et al.

(2019). Introducing THOR, a model microbiome for genetic dissection of community
behavior. mBio 10, 1–14. doi:10.1128/mBio.02846-18

Ludington, W. B. (2022). Higher-order microbiome interactions and how to find
them. Trends Microbiol. S0966842X22000890 30, 618–621. doi:10.1016/j.tim.2022.
03.011

Macarthur, R. H., and Wilson, E. O. (1963). An equilibrium theory of insular
zoogeography. Evolution 16. doi:10.2307/2407089

Mafla-Endara, P. M., Arellano-Caicedo, C., Aleklett, K., Pucetaite, M., Ohlsson, P.,
and Hammer, E. C. (2021). Microfluidic chips provide visual access to in situ soil
ecology. Commun. Biol. 4, 889. doi:10.1038/s42003-021-02379-5

Mandelbrot, B. B. (1983). The fractal geometry of nature, 1.

Manzoni, S., and Porporato, A. (2009). Soil carbon and nitrogen mineralization:
theory andmodels across scales. Soil Biol. Biochem. 41, 1355–1379. doi:10.1016/j.soilbio.
2009.02.031

Marder, E., and Calabrese, R. L. (1996). Principles of rhythmic motor pattern
generation. Physiol. Rev. 76, 687–717. doi:10.1152/physrev.1996.76.3.687

Marris, E. (2022). A call for governments to save soil. Nature 601, 503–504. doi:10.
1038/d41586-022-00158-8

Marsland, R., Cui, W., and Mehta, P. (2020). A minimal model for microbial
biodiversity can reproduce experimentally observed ecological patterns. Sci. Rep. 10,
3308. doi:10.1038/s41598-020-60130-2

Mascaro, G., and Vivoni, E. R. (2016). On the observed hysteresis in field-scale soil
moisture variability and its physical controls. Environ. Res. Lett. 11, 084008. doi:10.
1088/1748-9326/11/8/084008

May, R. M. (1974). Biological populations with nonoverlapping generations:
stable points, stable cycles, and chaos. Science 186 (4164), 645–647. doi:10.1126/
science.186.4164.645

McCary, M. A., Phillips, J. S., Ramiadantsoa, T., Nell, L. A., McCormick, A. R., and
Botsch, J. C. (2021). Transient top-down and bottom-up effects of resources pulsed to
multiple trophic levels. Ecology 102, e03197. doi:10.1002/ecy.3197

McGehee, R., and Armstrong, R. A. (1977). Some mathematical problems concerning
the ecological principle of competitive exclusion. J. Differ. Equations 23, 30–52. doi:10.
1016/0022-0396(77)90135-8

McMichael, P. (2009). A food regime analysis of the “world food crisis.”. Agric. Hum.
Values 26, 281–295. doi:10.1007/s10460-009-9218-5

Melguizo-Ruiz, N., Jiménez-Navarro, G., De Mas, E., Pato, J., Scheu, S., Austin, A. T.,
et al. (2020). Field exclusion of large soil predators impacts lower trophic levels and
decreases leaf-litter decomposition in dry forests. J. Anim. Ecol. 89, 334–346. doi:10.
1111/1365-2656.13101

Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F.
P., et al. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate
system in a warming world. Science 358, 101–105. doi:10.1126/science.aan2874

Mestre, M. C. V., Hoey, L., and Vandermeer, J. (2020). Tree management and
balancing process among Panamanian farmers. Small-scale For. 19, 541–563. doi:10.
1007/s11842-020-09453-6

Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J., Baldocchi, D.
D., et al. (2021). The three major axes of terrestrial ecosystem function. Nature 598,
468–472. doi:10.1038/s41586-021-03939-9

Mirás-Avalos, J. M., Trigo-Córdoba, E., Da Silva-Dias, R., Varela-Vila, I., and García-
Tomillo, A. (2016). Multifractal behaviour of the soil water content of a vineyard in
northwest Spain during two growing seasons. Nonlin. Process. Geophys. 23, 205–213.
doi:10.5194/npg-23-205-2016

Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Soil Eros.
Agric. Sustain. 104, 13268–13272. doi:10.1073/pnas.0611508104

Morrissey, E. M., Kane, J., Tripathi, B. M., Rion, M. S. I., Hungate, B. A., Franklin, R.,
et al. (2023). Carbon acquisition ecological strategies to connect soil microbial
biodiversity and carbon cycling. Soil Biol. Biochem. 177, 108893. doi:10.1016/j.
soilbio.2022.108893

Newbold, T., Tittensor, D. P., Harfoot, M. B. J., Scharlemann, J. P. W., and Purves, D.
W. (2020). Non-linear changes in modelled terrestrial ecosystems subjected to
perturbations. Sci. Rep. 10, 14051. doi:10.1038/s41598-020-70960-9

Ning, T., Liu, Z., Hu, H., Li, G., and Kuzyakov, Y. (2022). Physical, chemical and
biological subsoiling for sustainable agriculture. Soil Tillage Res. 223, 105490. doi:10.
1016/j.still.2022.105490

Nortcliff, S. (1984). Spatial analysis of soil. Prog. Phys. Geogr. Earth Environ. 8,
261–269. doi:10.1177/030913338400800205

Nugent, A., and Allison, S. D. (2022). A framework for soil microbial ecology in urban
ecosystems. Ecosphere 13. doi:10.1002/ecs2.3968

Nunes, F. C., De Jesus Alves, L., De Carvalho, C. C. N., Gross, E., DeMarchi Soares, T.,
and Prasad, M. N. V. (2020). “Soil as a complex ecological system for meeting food and
nutritional security,” in Climate change and soil interactions (Elsevier), 229–269. doi:10.
1016/B978-0-12-818032-7.00009-6

O’Connell, C. S., Anthony, T. L., Mayes, M. A., Pérez, T., Sihi, D., and Silver, W. L.
(2022). Utilizing novel field and data exploration methods to explore hot moments in
high-frequency soil nitrous oxide emissions data: opportunities and challenges. Front.
For. Glob. Change 5, 674348. doi:10.3389/ffgc.2022.674348

Oldfield, E. E., Eagle, A. J., Rubin, R. L., Rudek, J., Sanderman, J., and Gordon, D. R.
(2022). Crediting agricultural soil carbon sequestration. Science 375, 1222–1225. doi:10.
1126/science.abl7991

O’Leary, J., Eastwood, D., Müller, C., and Boddy, L. (2018). Emergent properties
arising from spatial heterogeneity influence fungal community dynamics. Fungal Ecol.
33, 32–39. doi:10.1016/j.funeco.2018.02.001

Ong, T. W., Li, K., Lucatero, A., Pak, D., Hawkes, L., Hunter, M., et al. (2020). Taylor
made landscapes: using taylor’s law to scale between metapopulations and source-sinks
in urban garden space. Front. Sustain. Food Syst. 4, 46. doi:10.3389/fsufs.2020.00046

Ong, T. W. Y., and Vandermeer, J. (2018). Multiple hysteretic patterns from elementary
population models. Theor. Ecol. 11, 433–439. doi:10.1007/s12080-018-0376-1

Ostfeld, R., Glass, G., and Keesing, F. (2005). Spatial epidemiology: an emerging (or
re-emerging) discipline. Trends Ecol. Evol. 20, 328–336. doi:10.1016/j.tree.2005.03.009

Ostfeld, R. S., Canham, C. D., Oggenfuss, K., Winchcombe, R. J., and Keesing, F.
(2006). Climate, deer, rodents, and acorns as determinants of variation in lyme-disease
risk. PLoS Biol. 4, e145. doi:10.1371/journal.pbio.0040145

Ostling, A., Harte, J., and Green, J. (2000). Self-similarity and clustering in the spatial
distribution of species. Science 290, 671a–671a. doi:10.1126/science.290.5492.671a

Pacault, A., Ouyang, Q., and De Kepper, P. (1987). Bistable and oscillating chemical
reactions. J. Stat. Phys. 48, 1005–1016. doi:10.1007/BF01009529

Frontiers in Environmental Science frontiersin.org13

Medina and Vandermeer 10.3389/fenvs.2023.1171194

https://doi.org/10.1111/2041-210X.13116
https://doi.org/10.1016/j.soilbio.2005.08.020
https://doi.org/10.5194/bg-16-4783-2019
https://doi.org/10.5194/bg-16-4783-2019
https://doi.org/10.1016/j.ecocom.2017.07.005
https://doi.org/10.1097/SS.0000000000000155
https://doi.org/10.1038/s41561-020-0612-3
https://doi.org/10.1093/besa/15.3.237
https://doi.org/10.1093/besa/15.3.237
https://doi.org/10.1038/s41598-022-05362-0
https://doi.org/10.1038/s42003-021-02660-7
https://doi.org/10.1016/j.geoderma.2021.115511
https://doi.org/10.2307/2318254
https://doi.org/10.1007/s00374-020-01436-1
https://doi.org/10.1073/pnas.1521291113
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://doi.org/10.1128/mBio.02846-18
https://doi.org/10.1016/j.tim.2022.03.011
https://doi.org/10.1016/j.tim.2022.03.011
https://doi.org/10.2307/2407089
https://doi.org/10.1038/s42003-021-02379-5
https://doi.org/10.1016/j.soilbio.2009.02.031
https://doi.org/10.1016/j.soilbio.2009.02.031
https://doi.org/10.1152/physrev.1996.76.3.687
https://doi.org/10.1038/d41586-022-00158-8
https://doi.org/10.1038/d41586-022-00158-8
https://doi.org/10.1038/s41598-020-60130-2
https://doi.org/10.1088/1748-9326/11/8/084008
https://doi.org/10.1088/1748-9326/11/8/084008
https://doi.org/10.1126/science.186.4164.645
https://doi.org/10.1126/science.186.4164.645
https://doi.org/10.1002/ecy.3197
https://doi.org/10.1016/0022-0396(77)90135-8
https://doi.org/10.1016/0022-0396(77)90135-8
https://doi.org/10.1007/s10460-009-9218-5
https://doi.org/10.1111/1365-2656.13101
https://doi.org/10.1111/1365-2656.13101
https://doi.org/10.1126/science.aan2874
https://doi.org/10.1007/s11842-020-09453-6
https://doi.org/10.1007/s11842-020-09453-6
https://doi.org/10.1038/s41586-021-03939-9
https://doi.org/10.5194/npg-23-205-2016
https://doi.org/10.1073/pnas.0611508104
https://doi.org/10.1016/j.soilbio.2022.108893
https://doi.org/10.1016/j.soilbio.2022.108893
https://doi.org/10.1038/s41598-020-70960-9
https://doi.org/10.1016/j.still.2022.105490
https://doi.org/10.1016/j.still.2022.105490
https://doi.org/10.1177/030913338400800205
https://doi.org/10.1002/ecs2.3968
https://doi.org/10.1016/B978-0-12-818032-7.00009-6
https://doi.org/10.1016/B978-0-12-818032-7.00009-6
https://doi.org/10.3389/ffgc.2022.674348
https://doi.org/10.1126/science.abl7991
https://doi.org/10.1126/science.abl7991
https://doi.org/10.1016/j.funeco.2018.02.001
https://doi.org/10.3389/fsufs.2020.00046
https://doi.org/10.1007/s12080-018-0376-1
https://doi.org/10.1016/j.tree.2005.03.009
https://doi.org/10.1371/journal.pbio.0040145
https://doi.org/10.1126/science.290.5492.671a
https://doi.org/10.1007/BF01009529
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1171194


Pacheco, A. R., Osborne, M. L., and Segrè, D. (2021). Non-additive microbial
community responses to environmental complexity. Nat. Commun. 12, 2365. doi:10.
1038/s41467-021-22426-3

Pachepsky, Y., and Hill, R. L. (2017). Scale and scaling in soils. Geoderma 287, 4–30.
doi:10.1016/j.geoderma.2016.08.017

Padarian, J., Minasny, B., McBratney, A., and Smith, P. (2022). Soil carbon
sequestration potential in global croplands. PeerJ 10, e13740. doi:10.7717/peerj.13740

Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings, V., Pincetl, S., et al.
(2011). Coupling biogeochemical cycles in urban environments: ecosystem services,
green solutions, and misconceptions. Front. Ecol. Environ. 9, 27–36. doi:10.1890/090220

Patoine, G., Eisenhauer, N., Cesarz, S., Phillips, H. R. P., Xu, X., Zhang, L., et al. (2022).
Drivers and trends of global soil microbial carbon over two decades. Nat. Commun. 13,
4195. doi:10.1038/s41467-022-31833-z

Pearce, M. T., Agarwala, A., and Fisher, D. S. (2020). Stabilization of extensive fine-
scale diversity by ecologically driven spatiotemporal chaos. Proc. Natl. Acad. Sci. U.S.A.
117, 14572–14583. doi:10.1073/pnas.1915313117

Perrier, E., Rieu, M., Sposito, G., and de Marsily, G. (1996). Models of the water
retention curve for soils with a fractal pore size distribution. Water Resour. Res. 32,
3025–3031. doi:10.1029/96WR01779

Pfützner, M., Karny, M., Grigorenko, L. V., and Riisager, K. (2012). Radioactive
decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567–619. doi:10.1103/
RevModPhys.84.567

Phillips, C. L., Nickerson, N., Risk, D., and Bond, B. J. (2011). Interpreting diel
hysteresis between soil respiration and temperature. Glob. Change Biol. 17, 515–527.
doi:10.1111/j.1365-2486.2010.02250.x

Phillips, J. D. (2017). Soil complexity and pedogenesis. Soil Sci. 182, 117–127. doi:10.
1097/SS.0000000000000204

Pindral, S., Kot, R., and Hulisz, P. (2022). The influence of city development on urban
pedodiversity. Sci. Rep. 12, 6009. doi:10.1038/s41598-022-09903-5

Potapov, A. M. (2022). Multifunctionality of belowground food webs: resource, size
and spatial energy channels. Biol. Rev. 97, 1691–1711. doi:10.1111/brv.12857

Powlson, D. S., Smith, P., and Smith, J. U. (1996). Evaluation of soil organic matter
models: using existing long-term datasets. Berlin, Heidelberg: Springer Berlin Heidelberg.
doi:10.1007/978-3-642-61094-3

Pradhan, P., Costa, L., Rybski, D., Lucht, W., and Kropp, J. P. (2017). A systematic
study of sustainable development goal (sdg) interactions: a systematic study of sdg
interactions. Earth’s Future 5, 1169–1179. doi:10.1002/2017EF000632

Quigley, M. Y., and Kravchenko, A. N. (2022). Inputs of root-derived carbon into soil
and its losses are associated with pore-size distributions. Geoderma 410, 115667. doi:10.
1016/j.geoderma.2021.115667

Reijneveld, J. A. (2013). Unravelling changes in soil fertility of agricultural land in The
Netherlands, 240.

Richter, D. D. (2021). Searching for solutions to our soil woes A world without soil:
the past, present, and precarious future of the earth beneath our feet jo handelsman
yale university press, 2021. 272 pp. Science 374, 1452. doi:10.1126/science.abm4765

Rillig, M. C., Muller, L. A. H., and Lehmann, A. (2017). Soil aggregates as massively
concurrent evolutionary incubators. ISME 11, 1943–1948. doi:10.1038/ismej.2017.56

Rillig, M. C., and Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytol.
171, 41–53. doi:10.1111/j.1469-8137.2006.01750.x

Riveros-Iregui, D. A., Emanuel, R. E., Muth, D. J., McGlynn, B. L., Epstein, H. E.,
Welsch, D. L., et al. (2007). Diurnal hysteresis between soil CO2 and soil temperature is
controlled by soil water content. Geophys. Res. Lett. 34, 1–5. doi:10.1029/2007GL030938

Robertson, A. D., Paustian, K., Ogle, S., Wallenstein, M. D., Lugato, E., and Cotrufo,
M. F. (2019). Unifying soil organic matter formation and persistence frameworks: the
MEMS model. Biogeosciences 16, 1225–1248. doi:10.5194/bg-16-1225-2019

Rogers, T. L., Johnson, B. J., and Munch, S. B. (2022). Chaos is not rare in natural
ecosystems. Nat. Ecol. Evol. 6, 1105–1111. doi:10.1038/s41559-022-01787-y

Rutherford, S. W., and Do, D. D. (1997). Review of time lag permeation technique as a
method for characterisation of porous media and membranes. Adsorption 3, 283–312.
doi:10.1007/BF01653631

Schaffer, W. M., and Kot, M. (1985). Do strange attractors govern ecological systems?
BioScience 35, 342–350. doi:10.2307/1309902

Scheffer, M., Barrett, S., Carpenter, S. R., Folke, C., Green, a. J., Holmgren, M., et al.
(2015). Ecosystem collapsed. Science, 8–10. doi:10.1126/science.aaa9484

Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., et al.
(2012). Anticipating critical transitions. Science 338, 344–348. doi:10.1126/science.
1225244

Schimel, J. P., and Weintraub, M. N. (2003). The implications of exoenzyme activity
on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol.
Biochem. 35 (04), 549–563. doi:10.1016/S0038-0717(03)00015-4

Schimel, J. P., and Bennett, J. (2004). NITROGEN MINERALIZATION:
CHALLENGES OF A CHANGING PARADIGM. Ecology 85, 591–602. doi:10.1890/
03-8002

Schloss, P. D., and Handelsman, J. (2007). The last word: books as a statistical
metaphor for microbial communities. Annu. Rev. Microbiol. 61, 23–34. doi:10.1146/
annurev.micro.61.011507.151712

Schweizer, S. A. (2022). Perspectives from the Fritz-Scheffer Awardee 2021: soil organic
matter storage and functions determined by patchy and piled-up arrangements at the
microscale. J. Plant Nutr. Soil Sci. Jpln. 202200217, 694–706. doi:10.1002/jpln.202200217

Segoli, M., De Gryze, S., Dou, F., Lee, J., Post, W. M., Denef, K., et al. (2013).
AggModel: a soil organic matter model with measurable pools for use in incubation
studies. Ecol. Model. 263, 1–9. doi:10.1016/j.ecolmodel.2013.04.010

Sierra, C. A., Hoyt, A. M., He, Y., and Trumbore, S. E. (2018). Soil organic matter
persistence as a stochastic process: age and transit time distributions of carbon in soils.
Glob. Biogeochem. Cycles 32, 1574–1588. doi:10.1029/2018GB005950

Sierra, C. A., and Müller, M. (2015). A general mathematical framework for
representing soil organic matter dynamics. Ecol. Monogr. 85, 505–524. doi:10.1890/
15-0361.1

Sihi, D., Gerber, S., Inglett, P. W., and Inglett, K. S. (2016). Comparing models of
microbial–substrate interactions and their response to warming. Biogeosciences 13,
1733–1752. doi:10.5194/bg-13-1733-2016

Simard, S. W., Beiler, K. J., Bingham,M. A., Deslippe, J. R., Philip, L. J., and Teste, F. P.
(2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol. Rev.
26, 39–60. doi:10.1016/j.fbr.2012.01.001

Simard, S. W., Perry, D. A., Jones, M. D., Myrold, D. D., Durall, D. M., and Molina, R.
(1997). Net transfer of carbon between ectomycorrhizal tree species in the field. Nature
388, 579–582. doi:10.1038/41557

Soong, J. L., Castanha, C., Hicks Pries, C. E., Ofiti, N., Porras, R. C., Riley, W. J., et al.
(2021). Five years of whole-soil warming led to loss of subsoil carbon stocks and
increased CO 2 efflux. Sci. Adv. 7, eabd1343. doi:10.1126/sciadv.abd1343

Stamati, F. E., Nikolaidis, Ν. P., Banwart, S., and Blum, W. E. H. (2013). A coupled
carbon, aggregation, and structure turnover (CAST) model for topsoils. Geoderma
211–212, 51–64. doi:10.1016/j.geoderma.2013.06.014

Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., and Six, J. (2007). Soil carbon
saturation: concept, evidence and evaluation. Biogeochemistry 86, 19–31. doi:10.1007/
s10533-007-9140-0

Stratton, A. E., Comin, J. J., Siddique, I., Zak, D. R., Dambroz Filipini, L., Rodrigues Lucas,
R., et al. (2022). Assessing cover crop and intercrop performance along a farm management
gradient. Agric. Ecosyst. Environ. 332, 107925. doi:10.1016/j.agee.2022.107925

Strogatz, S. H., and Fox, R. F. (2015). Nonlinear dynamics and chaos: with
applications to physics. Biol. Chem. Eng. 93. doi:10.1063/1.2807947

Sulman, B. N., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin, S., Georgiou, K., et al.
(2018). Multiple models and experiments underscore large uncertainty in soil carbon
dynamics. Biogeochemistry 141, 109–123. doi:10.1007/s10533-018-0509-z

Sun, X., Han, L., Wang, M., Liu, S., and Shen, Y. (2023). Social exclusion with
antisocial punishment in spatial public goods game. Phys. Lett. A 474, 128837. doi:10.
1016/j.physleta.2023.128837

Tang, J. Y., and Riley, W. J. (2013). A total quasi-steady-state formulation of substrate
uptake kinetics in complex networks and an example application to microbial litter
decomposition. Biogeosciences 10, 8329–8351. doi:10.5194/bg-10-8329-2013

Tarquis, A. M., Castellanos, M. T., Cartagena, M. C., Arce, A., Ribas, F., Cabello, M. J.,
et al. (2017). Scale and space dependencies of soil nitrogen variability. Nonlin. Process.
Geophys. 24, 77–87. doi:10.5194/npg-24-77-2017

Taylor, L. R. (1961). Aggregation, variance and the mean. Nature 189, 732–735.
doi:10.1038/189732a0

Tisdall, J. M., and Oades, J. M. (1982). Organic matter and water-stable aggregates in
soils. J. Soil Sci. 33, 141–163. doi:10.1111/j.1365-2389.1982.tb01755.x

Todd-Brown, K. E. O., Abramoff, R. Z., Beem-Miller, J., Blair, H. K., Earl, S.,
Frederick, K. J., et al. (2022). Reviews and syntheses: the promise of big diverse soil
data, moving current practices towards future potential. Biogeosciences 19, 3505–3522.
doi:10.5194/bg-19-3505-2022

Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C.,
Schuur, E. A. G., et al. (2013). Causes of variation in soil carbon simulations from
CMIP5 Earth system models and comparison with observations. Biogeosciences 10,
1717–1736. doi:10.5194/bg-10-1717-2013

Toker, D., Sommer, F. T., and D’Esposito, M. (2020). A simple method for detecting
chaos in nature. Commun. Biol. 3, 11–13. doi:10.1038/s42003-019-0715-9

Traulsen, A., and Nowak, M. A. (2006). Evolution of cooperation by multilevel
selection. Proc. Natl. Acad. Sci. U.S.A. 103, 10952–10955. doi:10.1073/pnas.0602530103

Trubl, G., Jang, H. B., Roux, S., Emerson, J. B., Solonenko, N., Vik, D. R., et al. (2018).
Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3,
000766. doi:10.1128/msystems.00076-18

Turing, A. M. (1952). The chemical basis of morphogenesis. Proceedings of the Royal
Society B.

Turley, N. E., Bell-Dereske, L., Evans, S. E., and Brudvig, L. A. (2020). Agricultural
land-use history and restoration impact soil microbial biodiversity. J. Appl. Ecol. 57,
852–863. doi:10.1111/1365-2664.13591

Frontiers in Environmental Science frontiersin.org14

Medina and Vandermeer 10.3389/fenvs.2023.1171194

https://doi.org/10.1038/s41467-021-22426-3
https://doi.org/10.1038/s41467-021-22426-3
https://doi.org/10.1016/j.geoderma.2016.08.017
https://doi.org/10.7717/peerj.13740
https://doi.org/10.1890/090220
https://doi.org/10.1038/s41467-022-31833-z
https://doi.org/10.1073/pnas.1915313117
https://doi.org/10.1029/96WR01779
https://doi.org/10.1103/RevModPhys.84.567
https://doi.org/10.1103/RevModPhys.84.567
https://doi.org/10.1111/j.1365-2486.2010.02250.x
https://doi.org/10.1097/SS.0000000000000204
https://doi.org/10.1097/SS.0000000000000204
https://doi.org/10.1038/s41598-022-09903-5
https://doi.org/10.1111/brv.12857
https://doi.org/10.1007/978-3-642-61094-3
https://doi.org/10.1002/2017EF000632
https://doi.org/10.1016/j.geoderma.2021.115667
https://doi.org/10.1016/j.geoderma.2021.115667
https://doi.org/10.1126/science.abm4765
https://doi.org/10.1038/ismej.2017.56
https://doi.org/10.1111/j.1469-8137.2006.01750.x
https://doi.org/10.1029/2007GL030938
https://doi.org/10.5194/bg-16-1225-2019
https://doi.org/10.1038/s41559-022-01787-y
https://doi.org/10.1007/BF01653631
https://doi.org/10.2307/1309902
https://doi.org/10.1126/science.aaa9484
https://doi.org/10.1126/science.1225244
https://doi.org/10.1126/science.1225244
https://doi.org/10.1016/S0038-0717(03)00015-4
https://doi.org/10.1890/03-8002
https://doi.org/10.1890/03-8002
https://doi.org/10.1146/annurev.micro.61.011507.151712
https://doi.org/10.1146/annurev.micro.61.011507.151712
https://doi.org/10.1002/jpln.202200217
https://doi.org/10.1016/j.ecolmodel.2013.04.010
https://doi.org/10.1029/2018GB005950
https://doi.org/10.1890/15-0361.1
https://doi.org/10.1890/15-0361.1
https://doi.org/10.5194/bg-13-1733-2016
https://doi.org/10.1016/j.fbr.2012.01.001
https://doi.org/10.1038/41557
https://doi.org/10.1126/sciadv.abd1343
https://doi.org/10.1016/j.geoderma.2013.06.014
https://doi.org/10.1007/s10533-007-9140-0
https://doi.org/10.1007/s10533-007-9140-0
https://doi.org/10.1016/j.agee.2022.107925
https://doi.org/10.1063/1.2807947
https://doi.org/10.1007/s10533-018-0509-z
https://doi.org/10.1016/j.physleta.2023.128837
https://doi.org/10.1016/j.physleta.2023.128837
https://doi.org/10.5194/bg-10-8329-2013
https://doi.org/10.5194/npg-24-77-2017
https://doi.org/10.1038/189732a0
https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
https://doi.org/10.5194/bg-19-3505-2022
https://doi.org/10.5194/bg-10-1717-2013
https://doi.org/10.1038/s42003-019-0715-9
https://doi.org/10.1073/pnas.0602530103
https://doi.org/10.1128/msystems.00076-18
https://doi.org/10.1111/1365-2664.13591
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1171194


Tyler, S. W., and Wheatcraft, S. W. (1989). Application of fractal mathematics to soil
water retention estimation. SOIL SCIENCE SOCIETY OF AMERICA, 987–996. doi:10.
2136/sssaj1989.03615995005300040001x

Upton, R. N., Bach, E. M., and Hofmockel, K. S. (2019). Spatio-temporal microbial
community dynamics within soil aggregates. Soil Biol. Biochem. 132, 58–68. doi:10.
1016/j.soilbio.2019.01.016

Van Den Berg, N. I., Machado, D., Santos, S., Rocha, I., Chacón, J., Harcombe, W.,
et al. (2022). Ecological modelling approaches for predicting emergent properties in
microbial communities. Nat. Ecol. Evol. 6, 855–865. doi:10.1038/s41559-022-01746-7

van der Heijden, M. G. A., and Horton, T. R. (2009). Socialism in soil? The
importance of mycorrhizal fungal networks for facilitation in natural ecosystems.
J. Ecol. 12. doi:10.1111/j.1365-2745.2009.01570.x

Vandermeer, J. (2006). Oscillating populations and biodiversity maintenance.
Oscillating Populations Biodivers. Maintenance 56, 967–975. doi:10.1641/0006-
3568(2006)56[967:opabm]2.0.co;2

Vandermeer, J. (2013). Forcing by rare species and intransitive loops creates distinct
bouts of extinction events conditioned by spatial pattern in competition communities.
Theor. Ecol. 6, 395–404. doi:10.1007/s12080-012-0175-z

Vandermeer, J. (2021). The meta-Allee effect: a generalization from intermittent
metapopulations. Ecol. Complex. 46, 100912. doi:10.1016/j.ecocom.2021.100912

Vandermeer, J., Hajian-Forooshani, Z., Medina, N., and Perfecto, I. (2021). New
forms of structure in ecosystems revealed with the Kuramoto model. R. Soc. open Sci. 8,
210122. doi:10.1098/rsos.210122

Vandermeer, J., and Jackson, D. (2018). Stabilizing intransitive loops: self-organized
spatial structure and disjoint time frames in the coffee agroecosystem. Ecosphere 9, 17.
doi:10.1002/ecs2.2489

Vandermeer, J., and Perfecto, I. (2017). Ecological complexity and agroecosystems:
seven themes from theory. Agroecol. Sustain. Food Syst. 41, 697–722. doi:10.1080/
21683565.2017.1322166

Vandermeer, J., and Perfecto, I. (2019). Hysteresis and critical transitions in a coffee
agroecosystem. Proc. Natl. Acad. Sci. U.S.A. 116, 15074–15079. doi:10.1073/pnas.
1902773116

Vandermeer, J., and Yitbarek, S. (2012). Self-organized spatial pattern determines
biodiversity in spatial competition. J. Theor. Biol. 300, 48–56. doi:10.1016/j.jtbi.2012.
01.005

Vandermeer, J., and Yodzis, P. (1999). Basin boundary collision as a model of
discontinuous change in ecosystems. Ecol. Soc. Am. 80 1817–1827. doi:10.1890/0012-
9658(1999)080[1817:bbcaam]2.0.co;2

Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., et al.
(2016). Modeling soil processes: review, key challenges, and new perspectives. Vadose
Zone J. 57. doi:10.2136/vzj2015.09.0131

Victor, J. M., Goulet, L. M., Schmidt, K., Linds, W., Episkenew, J.-A., and Goulet, K.
(2016). Like braiding sweetgrass: nurturing relationships and alliances in indigenous
community-based research. Int. Rev. Qual. Res. 23. doi:10.1525/irqr.2016.9.4.423

Vitousek, P. M., Treseder, K. K., Howarth, R. W., and Menge, D. N. L. (2022). A “toy
model” analysis of causes of nitrogen limitation in terrestrial ecosystems.
Biogeochemistry 160, 381–394. doi:10.1007/s10533-022-00959-z

Vogel, C., Mueller, C.W., Höschen, C., Buegger, F., Heister, K., Schulz, S., et al. (2014).
Submicron structures provide preferential spots for carbon and nitrogen sequestration
in soils. Nat. Commun. 5, 2947. doi:10.1038/ncomms3947

Vogel, H., Balseiro-Romero, M., Kravchenko, A., Otten, W., Pot, V., Schlüter, S., et al.
(2022). A holistic perspective on soil architecture is needed as a key to soil functions.
Eur. J Soil Sci. 73. doi:10.1111/ejss.13152

Volterra, V. (1928). Variations and fluctuations of the number of individuals in
animal species living together. ICES J. Mar. Sci. 3, 3–51. doi:10.1093/icesjms/3.1.3

Wall, D. H., Nielsen, U. N., and Six, J. (2015). Soil biodiversity and human health.
Nature 528, 69–76. doi:10.1038/nature15744

Wang, B., Brewer, P. E., Shugart, H. H., Lerdau, M. T., and Allison, S. D. (2019). Soil
aggregates as biogeochemical reactors and implications for soil – atmosphere exchange
of greenhouse gases— a concept.Glob. Chang. Biol. 25, 373–385. doi:10.1111/gcb.14515

Wang, S., Thi Thu Hoang, D., The Luu, A., Mostafa, T., and Razavi, B. S. (2023).
Environmental memory of microbes regulates the response of soil enzyme kinetics to
extreme water events: drought-rewetting-flooding. Geoderma 437, 116593. doi:10.1016/
j.geoderma.2023.116593

Wang, Y. P., Chen, B. C., Wieder, W. R., Leite, M., Medlyn, B. E., Rasmussen, M., et al.
(2014). Oscillatory behavior of two nonlinear microbial models of soil carbon
decomposition. Biogeosciences 11, 1817–1831. doi:10.5194/bg-11-1817-2014

Waring, B. G., Sulman, B. N., Reed, S., Smith, A. P., Averill, C., Creamer, C. A., et al.
(2020). From pools to flow: the PROMISE framework for new insights on soil carbon
cycling in a changing world. Glob. Change Biol. 26, 6631–6643. doi:10.1111/gcb.15365

Weisberg, M. (2007). Forty years of “the strategy”: Levins on model building and
idealization. Biol. Philos. 21, 623–645. doi:10.1007/s10539-006-9051-9

Weitzman, J. N., Brooks, J. R., Compton, J. E., Faulkner, B. R., Mayer, P. M., Peachey,
R. E., et al. (2022). Deep soil nitrogen storage slows nitrate leaching through the vadose
zone. Agric. Ecosyst. Environ. 332, 107949. doi:10.1016/j.agee.2022.107949

Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O., He, Y., et al.
(2015). Explicitly representing soil microbial processes in Earth system models: soil
microbes in earth system models. Glob. Biogeochem. Cycles 29, 1782–1800. doi:10.1002/
2015GB005188

Williams, T. G., Dressler, G., Stratton, A. E., and Müller, B. (2021). Ecological
and financial strategies provide complementary benefits for smallholder climate
resilience: insights from a simulation model. E&S 26, art14. art14. doi:10.5751/ES-
12207-260214

Wilpiszeski, R. L., Aufrecht, J. A., Retterer, S. T., Sullivan, M. B., Graham, D. E., Pierce,
E. M., et al. (2019). Soil aggregate microbial communities: towards understanding
microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. 85,
003244. doi:10.1128/AEM.00324-19

Wilson, W. G., and Abrams, P. A. (2005). Coexistence of cycling and dispersing
consumer species: Armstrong and McGehee in space. Am. Nat. 165, 193–205. doi:10.
1086/427733

Winfree, A. T., and Strogatz, S. H. (1984). Organizing centres for three-dimensional
chemical waves. Nature 311, 611–615. doi:10.1038/311611a0

Wolford, W. (2020). The plantationocene: a lusotropical contribution to the theory.
Ann. Am. Assoc. Geogr., 1–18. doi:10.1080/24694452.2020.1850231

Xiao, X., and Fussmann, G. F. (2013). Armstrong – McGehee mechanism revisited:
competitive exclusion and coexistence of nonlinear consumers. J. Theor. Biol. 339,
26–35. doi:10.1016/j.jtbi.2013.05.025

Yitbarek, S., and Vandermeer, J. H. (2017). Reduction of species coexistence through
mixing in a spatial competition model. Theor. Ecol. 10, 443–450. doi:10.1007/s12080-
017-0341-4

Young, I. M., and Crawford, J. W. (1991). The fractal structure of soil aggregates: its
measurement and interpretation. J. Soil Sci. 42, 187–192. doi:10.1111/j.1365-2389.1991.
tb00400.x

Young, I. M., and Crawford, J. W. (2004). Interactions and self-organization in the
soil-microbe complex. Science 304, 1634–1637. doi:10.1126/science.1097394

Zhang, Q., Katul, G. G., Oren, R., Daly, E., Manzoni, S., and Yang, D. (2015). The
hysteresis response of soil CO2 concentration and soil respiration to soil temperature.
J. Geophys. Res. Biogeosci. 120, 1605–1618. doi:10.1002/2015JG003047

Zhang, Q., Manzoni, S., Katul, G., Porporato, A., and Yang, D. (2014). The hysteretic
evapotranspiration-Vapor pressure deficit relation: ET-VPD hysteresis. J. Geophys. Res.
Biogeosci. 119, 125–140. doi:10.1002/2013JG002484

Zhang, Y., Lavallee, J. M., Robertson, A. D., Even, R., Ogle, S. M., Paustian, K., et al.
(2021). Simulating measurable ecosystem carbon and nitrogen dynamics with the
mechanistically defined MEMS 2.0 model. Biogeosciences 18, 3147–3171. doi:10.5194/
bg-18-3147-2021

Zhang, Z., Gao, X., Zhang, S., Gao, H., Huang, J., Sun, S., et al. (2022). Urban
development enhances soil organic carbon storage through increasing urban vegetation.
J. Environ. Manag. 312, 114922. doi:10.1016/j.jenvman.2022.114922

Zhao, L., Wang, S., Hallett, L. M., Rypel, A. L., Sheppard, L. W., Castorani, M. C. N.,
et al. (2020). A new variance ratio metric to detect the timescale of compensatory
dynamics. Ecosphere 11. doi:10.1002/ecs2.3114

Frontiers in Environmental Science frontiersin.org15

Medina and Vandermeer 10.3389/fenvs.2023.1171194

https://doi.org/10.2136/sssaj1989.03615995005300040001x
https://doi.org/10.2136/sssaj1989.03615995005300040001x
https://doi.org/10.1016/j.soilbio.2019.01.016
https://doi.org/10.1016/j.soilbio.2019.01.016
https://doi.org/10.1038/s41559-022-01746-7
https://doi.org/10.1111/j.1365-2745.2009.01570.x
https://doi.org/10.1641/0006-3568(2006)56[967:opabm]2.0.co;2
https://doi.org/10.1641/0006-3568(2006)56[967:opabm]2.0.co;2
https://doi.org/10.1007/s12080-012-0175-z
https://doi.org/10.1016/j.ecocom.2021.100912
https://doi.org/10.1098/rsos.210122
https://doi.org/10.1002/ecs2.2489
https://doi.org/10.1080/21683565.2017.1322166
https://doi.org/10.1080/21683565.2017.1322166
https://doi.org/10.1073/pnas.1902773116
https://doi.org/10.1073/pnas.1902773116
https://doi.org/10.1016/j.jtbi.2012.01.005
https://doi.org/10.1016/j.jtbi.2012.01.005
https://doi.org/10.1890/0012-9658(1999)080[1817:bbcaam]2.0.co;2
https://doi.org/10.1890/0012-9658(1999)080[1817:bbcaam]2.0.co;2
https://doi.org/10.2136/vzj2015.09.0131
https://doi.org/10.1525/irqr.2016.9.4.423
https://doi.org/10.1007/s10533-022-00959-z
https://doi.org/10.1038/ncomms3947
https://doi.org/10.1111/ejss.13152
https://doi.org/10.1093/icesjms/3.1.3
https://doi.org/10.1038/nature15744
https://doi.org/10.1111/gcb.14515
https://doi.org/10.1016/j.geoderma.2023.116593
https://doi.org/10.1016/j.geoderma.2023.116593
https://doi.org/10.5194/bg-11-1817-2014
https://doi.org/10.1111/gcb.15365
https://doi.org/10.1007/s10539-006-9051-9
https://doi.org/10.1016/j.agee.2022.107949
https://doi.org/10.1002/2015GB005188
https://doi.org/10.1002/2015GB005188
https://doi.org/10.5751/ES-12207-260214
https://doi.org/10.5751/ES-12207-260214
https://doi.org/10.1128/AEM.00324-19
https://doi.org/10.1086/427733
https://doi.org/10.1086/427733
https://doi.org/10.1038/311611a0
https://doi.org/10.1080/24694452.2020.1850231
https://doi.org/10.1016/j.jtbi.2013.05.025
https://doi.org/10.1007/s12080-017-0341-4
https://doi.org/10.1007/s12080-017-0341-4
https://doi.org/10.1111/j.1365-2389.1991.tb00400.x
https://doi.org/10.1111/j.1365-2389.1991.tb00400.x
https://doi.org/10.1126/science.1097394
https://doi.org/10.1002/2015JG003047
https://doi.org/10.1002/2013JG002484
https://doi.org/10.5194/bg-18-3147-2021
https://doi.org/10.5194/bg-18-3147-2021
https://doi.org/10.1016/j.jenvman.2022.114922
https://doi.org/10.1002/ecs2.3114
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1171194

	Developing systems theory in soil agroecology: incorporating heterogeneity and dynamic instability
	Introduction
	Systems perspective
	Early complexity in soils

	Memory
	Iteration and hierarchy
	Soil depth and legacies

	Oscillations
	Focus on variance
	Soil cycles

	Tipping points and hysteresis
	Restorative agropedogenesis

	Practicalities
	Data gathering
	Data analysis

	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


