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Soil moisture is an important factor affecting the change of land surface
hydrological processes and the distribution of material and energy exchanges
between the land and atmosphere and vegetation’s temporal and spatial
distributions, especially in arid and semi-arid regions. This paper focuses on
soil moisture features across Northwest China, the core region of the Silk Road
Economic Belt. Six soil moisture datasets from the period 1981–2020 were
employed, which included ERA5 (the European Centre for Medium-Range
Weather Forecasts Atmospheric Reanalysis 5), ESA-CCI (European Space
Agency Climate Change Initiative), GLDAS (Global Land Data Assimilation
System), MERRA-2 (The Modern-Era Retrospective Analysis for Research and
Applications, Version 2), RSSSM (A Remote Sensing-based global 10-day
resolution Surface Soil Moisture dataset), and SSM-Feng (Regional multimodal
fusion of surface soil moisture data in China). The temporal and spatial variation of
the linear trend and abrupt change characteristics at seasonal and annual scale
were explored. The results are as follows: 1) ESA-CCI, GLDAS, and MERRA-2
showed a slow increase in annual soil moisture tendency at a rate of less than
0.001 m3/m3/year, while ERA5 and SSM-Feng showed a significant decreasing
linear trend at a rate of 1.31 × 10−4 m3/m3/year and 1.01 × 10−4 m3/m3/year (p <
0.05), respectively. 2) In autumn and winter, only GLDAS and MERRA-2 showed
significant increasing trends. In the growing season (i.e., fromApril toOctober), the
soil moisture of ESA-CCI, GLDAS, andMERRA-2 significantly increased at the rates
of 3.29 × 10−4 m3/m3/year, 3.30 × 10−4 m3/m3/year, and 6.64 × 10−4 m3/m3/year
(p < 0.05), respectively. 3) ERA5 and ESA-CCI have frequent abrupt changes in
1984, 1987, and 2006 for ERA5, 2010–2012 and 2019–2020 for ESA-CCI. 4) In
terms of spatial variations, most datasets show that soil moisture has increased
across most regions. The ERA5, ESA-CCI, GLDAS, MERRA-2, and SSM-Feng
datasets show decreased soil moisture in the Tarim Basin. The conclusions of
this study deepen the understanding of temporal and spatial variation in soil
moisture in arid areas of Northwest China. Through these conclusions, a certain
theoretical basis can be provided for the complex water cycle process in the arid
region.
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1 Introduction

Soil moisture is one of the essential components in
land–atmosphere interaction, which affects the physical
properties of soil (such as surface albedo and soil heat capacity).
Soil moisture directly or indirectly participates in the water and heat
exchange and material exchange between the surface and
atmosphere to interact with the near-surface climate and affect or
change the water cycle process and the temporal and spatial
distribution characteristics of vegetation (Seneviratne et al., 2010;
Zhou et al., 2021a). Moreover, as an indicator of climate change, soil
moisture is widely used to measure drought characteristics on
regional and global scales (McColl et al., 2017; Seneviratne and
Orth, 2017; Zhao and Dai, 2021). Therefore, soil moisture analysis
has become one of the most significant and vital scientific issues
attracting increasing attention (Gu et al., 2019a; Deng et al., 2019;
Deng et al., 2020; Yao et al., 2021).

Influenced by temperature, precipitation, wind speed, and
vegetation cover, soil moisture shows significant temporal
differences and spatial heterogeneities at regional and global
scales (Das and Mohanty, 2006). According to the basic
parameters of soil moisture data from the essential climate
variable satellites, The Global Land Data Assimilation System
(GLDAS), Coupled Model Intercomparison Project Phase 5
(CMIP5), and several kinds of reanalysis soil moisture data, the
change characteristics of global surface soil moisture during
1980–2005 were analyzed (Gu et al., 2019a). All datasets showed
a drying trend in global soil moisture (Gu et al., 2019a).
Quantification of global hydroclimate and drought changes in the
21st century using 25 CMIP6 models showed that surface soil
moisture is generally reduced in most parts of the United States
of America, Southeast Asia, and North Asia (Zhao and Dai, 2021).
At the regional scale, in Eurasia, over the past 63 years, soil moisture
has generally decreased during the warm season (Gu et al., 2019b).
The soil moisture data of the root zone (0–100 cm) were estimated
using the ESA-CCI (European Space Agency Climate Change
Initiative), as well as surface soil moisture data (0–5 cm), to
understand the spatial and temporal distribution characteristics
in the root zone of East Asia. The variation trend of soil
moisture in the root zone was different in different climatic
regions. From 1982 to 2014, 53% of the study area was dry land
in East Asia (Zohaib et al., 2017).

The in situ observation data account for the most accurate soil
moisture data. However, due to their low temporal and spatial
resolution and small coverage time range, it is difficult to adapt to
practical applications in the field of hydrometeorology (Bárdossy
and Lehmann, 1998). With the rapid development of remote
sensing technology, this problem has gradually been solved.
Microwave sensors on satellites can observe soil moisture daily
and worldwide; thus, they are widely used (Peng and Loew, 2017).
For example, soil moisture products from the ESA-CCI have
attracted considerable attention (Dorigo et al., 2017). However,
satellite remote sensing of soil moisture has the disadvantages of
measuring soil moisture in the root zone, temporal and spatial

discontinuity of coverage, and limited historical data (Ford et al.,
2020). In contrast, the land surface models and reanalysis products
have the advantages of global coverage, high spatial and temporal
resolution, long time series, spatial and temporal continuity, etc.
Therefore, they can be used to study the spatial and temporal
variation characteristics of soil moisture in a refined time scale.
Therefore, many scholars have compared satellite remote sensing,
land surface simulation, and reanalysis products at different
regional scales (Peng et al., 2017; Bai et al., 2018; Deng et al.,
2019; Deng et al., 2020). Although model outputs are spatially and
temporally continuous, there is uncertainty in model-simulated
soil moisture products because of the physical model structure,
input parameters, input datasets, and other factors (Schellekens
et al., 2017; Chew and Small, 2018; Gruber et al., 2019). Hence,
multiple sources of soil moisture data are needed to investigate soil
moisture variations and to overcome the disadvantages and
uncertainties of single data.

The arid region of Northwest China plays a vital role in the Silk
Road. The fragile ecosystem in Northwest China is susceptible to
climate change and soil moisture. Recent studies have shown that
this region has experienced a significant warming trend (Hu et al.,
2014), wetting trend (Hu et al., 2017, 2019a), and decreasing
terrestrial water storage (Hu et al. (2019b); Zhou et al., 2022) and
groundwater. Furthermore, it has been shown that under the long-
term influence of climatic drought, insufficient water supply, and
substantial water consumption by plants, the phenomenon of soil
moisture negative balance frequently occurs in the arid region of
Northwest China. Therefore, soil desiccation becomes increasingly
severe (Yan et al., 2015). Climate change, terrestrial water storage
variations, and the response of soil moisture to climate and plants
have substantial regional disparities. A previous study detected an
increased soil moisture trend in Xinjiang during 2000–2017 using
six GLDAS models (Hu et al., 2021a). Nevertheless, remote sensing
and reanalysis data were not considered.

Based on this analysis, it is essential to address the following
three questions regarding the arid region of Northwest China: 1)
Do the different sources of soil moisture datasets have consistent
spatiotemporal feature results? 2) Does soil moisture undergo
abrupt changes? 3) Do soil moistures have evident regional
disparities? In this paper, the soil moisture content in
Northwest China was studied using satellite remote sensing,
global land surface modeling, and reanalysis data. The second
part is mainly about the research scope, data, and research
methods. Next, we present our research results in the third
section. A discussion is provided in the fourth section. The last
section concludes this paper.

2 Study area, dataset, andmethodology

2.1 Study area

The arid area in Northwest China is in the center of Eurasia
and the core area of the Silk Road Economic Belt, located at 34°–50°
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N and 72°–107° E. It includes the Xinjiang Uygur Autonomous
Region, the Hexi Corridor in Gansu Province, the Alxa Plateau to
the west of Qilian Mountain in Inner Mongolia, a part of the
northern Qilian Mountain in Qinghai Province, and a small part of
Ningxia (Li et al., 2022). Affected by its topography and complex
climate system, the study area has arid and semi-arid climate
characteristics throughout the year, with precipitation less than
400 mm. The annual average potential evapotranspiration is high,
up to 1216.39 mm, and its fragile ecosystem is extremely sensitive
to climate change and human activities (Li and Sawada, 2022). The
soil moisture observation stations are sparsely distributed in the
arid region of Northwest China and are mainly concentrated near
the Tian shan and Qilian Mountains (Figure 1). Based on the
topography and climate characteristics, the study area was divided
into nine sub-regions: the Altay Prefecture of Xinjiang, Junggar
Basin, northern Tian shan Mountains, southern Tian shan

Mountains, Tuha Basin, Tarim Basin, Kunlun Mountains, Hexi
Corridor, and Alxa Plateau.

2.2 Datasets

In this study, site soil moisture data were analyzed based on the
gravity method, ERA5 reanalyzed soil moisture data, ESA-CCI
active–passive satellite remote sensing soil moisture data, GLDAS
land simulation soil moisture data, MERRA-2 reanalyzed soil
moisture data, global surface soil moisture decade-based remote
sensing dataset (RSSSM, 2003–2020), and China regional multi-mode
fusion surface soil moisture data (SSM-Feng) (Table 1). The unit of all
soil moisture data is soil volumetric water content (m3/m3), except
that of MERRA-2 soil moisture data, which is ground wetness values
(GWET). The details of data are in the Supplementary materials.

FIGURE 1
Study area and the station distribution in Northwest China, (Ⅰ) Altay Mountains, (Ⅱ) Alxa Plateau, (Ⅲ) Hexi Corridor, (Ⅳ) Junggar Basin, (Ⅴ) Kunlun
Mountains, (Ⅵ) Tarim Basin, (Ⅶ) northern Tian shan Mountains, (Ⅷ) southern Tian Shan Mountains, and (Ⅸ) Tuha Basin, Figure number: GS(2019)1822.

TABLE 1 Six soil moisture datasets used in this study.

Product Data type Soil
depth

Spatial
resolution

Temporal
resolution

Horizontal
coverage

Temporal
coverage

ERA5 Reanalysis dataset 0–7 cm 0.25° × 0.25° Monthly Global January 1959 to
present

ESA-CCI-SOILMOISTURE
v06.1

Remote sensing 0–5 cm 0.25° × 0.25° Daily Global November 1978 to
present

GLDAS_NOAH Land surface model
dataset

0–10 cm 0.25° × 0.25° Monthly Global January 1948 to
present

MERRA-2 Reanalysis dataset Surface 0.5° × 0.625° Monthly Global January 1980 to
present

RSSSM Remote sensing 0–7 cm 0.1° × 0.1° 10-day Global 2003–2020

SSM-Feng Regional multimodal
fusion

0–7 cm 0.25° × 0.25° Monthly China 1850–2100
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2.3 Methodologies

This study analyzed the linear trend, mutation characteristics, and
main spatial modes of soil moisture in the arid region of Northwest
China. Linear least squares, Mann–Kendall abrupt test, Mann–Kendall
trend analysis, and empirical orthogonal function (EOF) analysis were
used. Considering the difference in the applicability of satellite remote
sensing data, GLDAS data, and reanalysis data in different regions, the
accuracy was evaluated using data from 41 stations. The accuracy
evaluation methods include the correlation coefficient (CC), relative
error (RE), rootmean square error (RMSE), distance between indices of
simulation and observation (DISO) and the triple collocation (TC)
method. The DISO index is widely used in many fields, such as climate
change, medicine, and economics (Hu et al., 2019; Hu et al., 2020; Zhou
et al., 2021b; Hu et al., 2022; Liu et al., 2022; Yin et al., 2022; Zhang et al.,
2022). TC (Stoffelen, 1998; Gruber et al., 2016) is a statistical method
used to estimate the random error variance of three independent
datasets. The specific method is described in the Supplementary
Materials.

2.3.1 Seasonal and annual scales in this study
In order to study the dynamic change of soil moisture, the time

scales were divided into annual and seasonal scales. Among them,
the seasonal scales are divided into spring [from March to May
(MAM)], summer [from June to August (JJA)], autumn [from
September to November (SON)], winter [from December to
February (DJF)], and growing season. The growing season is
defined as April–October (Yin et al., 2016).

3 Result

This section mainly discusses the accuracy in evaluating
multiple datasets and the temporal and spatial variation
characteristics of soil moisture. The precision evaluation included
statistical metrics and the TC method. The temporal variation
characteristics included inter-annual and seasonal linear variation
trends and abrupt change characteristics. Spatial variation includes
linear trends, abrupt changes, and spatial modes. Moreover, we
analyzed the spatiotemporal variations in nine sub-regions to
address more detailed spatial differences.

3.1 Accuracy assessment of the six different
soil moisture datasets

The accuracy of ERA5, ESA-CCI, GLDAS, MERRA-2, RSSSM,
and SSM-Feng soil moisture datasets from 1992 to 2013 was
evaluated using the soil moisture data of 41 ground observation
stations in the arid area of Northwestern China. The statistical
indices RE, RMSE, and DISO were calculated. The TC method was
used to compare the statistical index results. Table 2 describes the
assessment results derived from the three statistical indices.
Supplementary Tables S1, S2 describe the TC results.

ERA5, ESA-CCI, and RSSSM underestimate the soil moisture,
and the other three datasets ( GLDAS, MERRA-2, and SSM-Feng)
slightly overestimate the observed data. GLDAS and SSM-Feng had
the smallest RE with the same value of 0.002 m3/m3; the

corresponding RMSE values were 0.084 m3/m3 and 0.065 m3/m3.
The DISO values of the six datasets were approximately 1, with the
smallest value of 0.823 for the ESA-CCI (Table 2).

The correlation coefficient was calculated between the datasets and
combinations with a correlation coefficient greater than 0.5 were
excluded, as shown in Table 3. The triple collocation method was
used to calculate the errors among the multi-source soil moisture
datasets, and the following conclusions were obtained (Supplementary
Table S2). The error ranges of ERA5, ESA-CCI, and SSM-Feng were
0–0.12, 0–0.08, and 0–0.05, respectively. ERA5 had better precision
throughout the entire study area, and the area with an error between
0 and 0.02 is the largest. The dataset’s accuracy in the eastern part of the
arid region of Northwest China was higher than that in the
northwestern part. The accuracies of ERA5, GLDAS, and SSM-Feng
were similar, with error ranges of 0–0.15, 0–0.12, and 0–0.15,
respectively. From the spatial scale, an area with an error smaller
than 0.05 accounts for more than 90% of the total area (Supplementary
Figure S1), and the areas with poor accuracy for the three datasets are
the KunlunMountains and west of the southern slope of the Tian shan
Mountains. The soil moisture product with the highest accuracy was in
the combination ERA5 data. Among the three datasets, ESA-CCI had
the smallest overall error range, with the average of error being 0.0112,
and GLDAS had the higher overall error, with the average of error
being 0.0122 (Supplementary Figure S2).

The previously mentioned analysis shows that GLDAS, SSM-
Feng, and ESA-CCI datasets have higher precision in the arid area of
Northwest China. In contrast, accuracy evaluation using the TC
method showed that the ERA5 and ESA-CCI datasets had higher
accuracy than the different combinations. The difference between
the two methods may be due to the need for more soil moisture data
and the different depths of the soil surface layer in the multi-source
soil moisture datasets.

3.2 Temporal variations of soil moisture

3.2.1 Linear trends and abrupt changes of the
annual soil moisture

Because of the lack of data in the RSSSM, calculating the annual
SM linear trend was challenging. The inter-annual variation trends
of the five soil moisture products differed from 1981 to 2020 in the
arid region of Northwest China (Figures 2, 3, 5), in which the soil
moisture of ESA-CCI, GLDAS, and MERRA-2 showed an
increasing trend. ESA-CCI and GLDAS showed a significant
increasing tendency (p < 0.05). The annual SM of ERA5 and

TABLE 2 Evaluation results of the six soil moisture datasets.

CC RE RMSE DISO

ERA5 0.027 −0.102 0.114 1.009

ESA-CCI 0.203 −0.021 0.078 0.823

GLDAS 0.096 0.002 0.084 0.931

MERRA-2 0.148 0.651 0.126 1.103

RSSSM 0.179 −0.387 0.121 0.924

SSM-Feng 0.096 0.002 0.065 0.930
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SSM-Feng decreased significantly at rates of 1.31 × 10−4 m3/m3/
year and 1.01 × 10−4 m3/m3/year, respectively (p < 0.05).

For the abrupt changes, the Mann–Kendall results showed that
abrupt changes in ERA5 and ESA-CCI data were frequent; the
abrupt change in ERA5 data was concentrated in 1984, 1987, and
2006. The abrupt change years of ESA-CCI data were concentrated
in 2000, 2001, 2011, 2012, 2019, and 2020 (Table 4). The abrupt
change years of the GLDAS and MERRA-2 were concentrated in
2007 and 2015, respectively.

3.2.2 Linear trends and abrupt changes of the
seasonal soil moisture

For the seasonal variations, the six datasets exhibited different
linear trends (Figures 2, 3; Table 5). The GLDAS showed that soil
moisture increased significantly (p < 0.05) in all seasons, with the
smallest increase rate in summer (2.56×10-4 m3/m3/year) and the
most significant increase rate in winter (7.07 × 10−4 m3/m3/year).
The soil moisture drying rate was fastest in autumn (−1.31 ×
10−4 m3/m3/year), while the RSSSM dataset did not have enough

TABLE 3 Linear trends of the six soil moisture datasets in Northwest China.

Dataset Ann MAM JJA SON DJF Grow

ERA5 −1.31 × 10−4 −2.18 × 10−4* −1.74 × 10−4 −1.28 × 10−4 8.27 × 10−6 −1.73 × 10−4*

ESA-CCI 8.35 × 10−5 1.02 × 10−4 5.33 × 10−4* −3.84 × 10−6 −3.26 × 10−4 3.29 × 10−4*

GLDAS 4.86 × 10−4* 4.16 × 10−4* 2.56 × 10−4* 5.83 × 10−4* 7.07 × 10−4* 3.30 × 10−4*

MERRA-2 6.93 × 10−4* 4.03 × 10−4 6.65 × 10−4 8.82 × 10−4* 8.86 × 10−4* 6.64 × 10−4*

RSSSM — — 3.66 × 10−4* — — —

SSM-Feng −1.01 × 10−4* −7.1 × 10−5* −9.38 × 10−5* −1.31 × 10−4* −1.17 × 10−4 −8.88 × 10−5*

*(p < 0.05).

FIGURE 2
Temporal variations of annual and seasonal soil moisture in Northwest China (ERA5, ESA-CCI, GLDAS, RSSSM, and SSM-Feng), (A) ANN, (B)MAM, (C)
JJA, (D) SON, (E) DJF, (F) Grow.
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data for summer (3.66 × 10−4 m3/m3/year). In spring, ERA5 and
SSM-Feng datasets showed a significant trend of soil moisture
drying (p < 0.05), which were −2.18 × 10−4 m3/m3/year
and −7.1 × 10−5 m3/m3/year, respectively. In contrast, ESA-CCI
and MERRA-2 showed no significant trend. In summer, the
variation trends of ERA5 and MERRA-2 were not significant.
The ESA-CCI data showed that soil moisture increased
significantly at a rate of 5.33 × 10−4 m3/m3/year (p < 0.05) in

Northwest China. SSM-Feng showed a significant trend of soil
moisture drying (p < 0.05), with a rate of change of −9.38 ×
10−5 m3/m3/year. In autumn, the variation trends in ERA5 and
ESA-CCI were not significant. The MERRA-2 dataset showed
that soil moisture increased significantly (p < 0.05) at 8.82 ×
10−4 m3/m3/year. In contrast, SSM-Feng showed a significant
increase in soil moisture (p < 0.05) at 1.31 × 10−4 m3/m3/year. In
winter, the changing trend of ERA5, ESA-CCI, and SSM-Feng

FIGURE 3
Temporal variations of annual and seasonal soil moisture in Northwest China (MERRA-2). (A) ANN, (B) MAM, (C) JJA, (D) SON, (E) DJF, (F) Grow.

TABLE 4 Abrupt change years in the arid region of Northwest China from 1981 to 2020.

ANN MAM JJA SON DJF GRO

ERA5 1984/1987/2006 2007 1982/1989/1990/1992/1994/
1996/1997

1982/1989/1990/1992/1993/1994/
1997/1998/2004

1988/1991/1997/
2000/2003

1982/1988/
2004

ESA-CCI 2000/2010/2011/2012/
2019/2020

2016/2019/
2020

2002 _ 1982/2007/2018 2009

GLDAS 2007 2001 2016/2017/2019 2008/2011/2012 2002 2013

MERRA-
2

2015 2016/2017/
2020

2015 2008/2011/2014 2009/2011/2014/2017 2015
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datasets was insignificant, while the changing trend of MERRA-2
was significantly (p < 0.05) reduced, with a change rate of 8.86 ×
10−4 m3/m3/year.

During the growing season (from April to October), the soil
moisture of ESA-CCI, GLDAS, and MERRA-2 increased
significantly (p < 0.05) at rates of 3.29 × 10−4 m3/m3/year, 3.30 ×
10−4 m3/m3/year, and 6.64 × 10−4 m3/m3/year, respectively.

Mann–Kendall abrupt change detection was used to analyze the
soil moisture change characteristics in the arid area of Northwest
China (Figure 5). The ERA5 data are frequently abrupt in summer,
autumn, and winter. The abrupt years are concentrated in
1992–2004, consistent with the inter-annual mutation of soil
moisture. The MERRA-2 dataset also showed frequent abrupt
changes during winter, mainly from 2009 to 2017.

3.3 Spatial variations of soil moisture

The spatial variations in soil moisture at annual and seasonal
scales were calculated by linear regression, and the variation
characteristics of soil moisture in different seasons were analyzed.
The spatial variation trends of soil moisture were different between
datasets, and the spatial variation of soil moisture in the same dataset
was also different at different time scales. Spatial trends were tested
using Mann–Kendall trend analysis.

The conclusion was consistent with the linear regression
analysis. Unfortunately, the spatial analysis of the RSSSM is not
provided because of serious missing data in space.

3.3.1 Spatial variations of the linear trends of the
annual soil moisture

The spatial distributions of linear trends derived using the linear
least-squares approach are shown in Figures 4, 5. For further
analysis, the area percentages with a significantly increasing trend
of annual soil moisture were calculated, as shown in Figure 5. As per
ERA5, most areas had decreased annual soil moisture from 1981 to
2021 (Figure 4A). ESA-CCI, GLDAS, and MERRA-2 had similar
spatial distributions of annual soil moisture, with significantly
increased areas of 67% and 53%, respectively (Figures 4, 6). The
significantly increased areas of the annual soil moisture were
distributed over the Tian shan Mountains, southern areas of the
Tarim Basin and the Kunlun Mountains, the Hexi Corridor and
Alxa Plateau from GLDAS (Figure 4C), and most areas of the Altay
Mountains and Tarim Basin for Hexi Corridor and Alxa Plateau

from MERRA-2 (Figure 4D). SSM-Feng showed a significantly
decreasing trend in annual soil moisture across the study area
(Figure 4E).

3.3.2 Spatial variations of the linear trends of the
seasonal soil moisture

Figure 5 shows the spatial distributions of the linear trends in the
growing season surface soil moisture from ERA5, ESA-CCI,
GLDAS, MERRA-2, and SSM-Feng during 1981–2020. The
spatial distributions of the linear trends for the four seasons
(i.e., MAM, JJA, SON, and DJF) are shown in Supplementary
Figure S3–S6. The growing season soil moisture data from ERA5,
ESA-CCI, GLDAS, and MERRA-2 had similar spatial distributions
of linear trends (Figure 7) to that of the annual soil moisture as
illustrated in Figure 4. The SSM-Feng dataset showed positive linear
trends over the northern and eastern parts of the study area, except
the areas with the most decreased soil moisture (Figure 7E), which
differ from the decreasing trends of the annual soil moisture
(Figure 4F).

The five datasets for the four seasons had significantly different
linear trends (Supplementary Figures S3-S6). Specifically, for MAM
(Supplementary Figure S2), ERA5 dataset showed that soil moisture
decreased in most areas, and there was a significant drying trend in
the Tarim Basin and Hexi Corridor. ERA5, GLDAS, and MERRA-2
showed significantly increased soil moisture in the western Tian
shan Mountains. For JJA (Supplementary Figure S2), ERA5 dataset
showed the soil moisture in the Tarim Basin had a significant
decreasing trend; ESA-CCI dataset showed the soil moisture has
significantly increasing trends in most areas, except the Tarim
Basin and Altay Mountains. The GLDAS dataset showed that the
soil moisture in western Tian shan and Kunlun Mountains
increased significantly, and the southeast of Xinjiang showed a
drying trend. The MERRA-2 dataset showed a significant
increasing trend in the northern part of the arid region in
Northwest China. The soil moisture trends in the SSM-Feng
dataset in the northern part of the arid region in Northwest
China showed a drying–wetting–drying trend from west to east
in the horizontal direction.

For SON and DJF (Supplementary Figure S5, S6), GLDAS and
MERRA-2 showed a larger increasing trend in areas than MAM and
JJA. The areas with increasing trend values of GLDAS and MERRA-
2 are mainly distributed in the Tian shan Mountains, Tarim Basin,
and Hexi Corridor. The ERA5 data showed that the soil moisture in
the northern and southwestern parts of the arid region of Northwest
China decreased slowly in winter. The GLDAS data showed that the
soil moisture in winter increased considerably, and the increasing
speed gradually slowed down from west to east. The MERRA-2
surface soil moisture products showed a significant increasing trend
in the Tian shan Mountains, Turpan–Hami Basin, southeastern
Tarim Basin, Hexi Corridor, and Alxa Plateau.

3.3.3 EOF results of annual soil moisture
The variance contribution rate of the first EOF mode (EOF-1)

was much higher than that of the other modes, with variance
contributions of 23.76% (ERA5), 32.37% (ESA-CCI), 56.28%
(GLDAS), 59.27% (MERRA-2), and 46.48% (SSM-Feng)
(Table 5). At the 95% confidence level, the variance contribution
rate of MERRA-2 was the largest, indicating that EOF-1 can reveal

TABLE 5 Variance contribution rate (VCR) and time-coefficient standard
deviation (TCSD) of EOF-1, EOF-2, and EOF-3.

Dataset EOF-1 EOF-2 EOF-3

VCR % TCSD VCR % TCSD VCR % TCSD

ERA5 23.76 0.2027 20.19 0.1870 7.77 0.1160

ESA-CCI 32.37 0.1515 21.73 0.1246 5.91 0.0647

GLDAS 56.28 0.2737 10.96 0.1307 7.28 0.1065

MERRA-2 59.27 0.6179 10.17 0.2560 5.44 0.1872

SSM 46.48 0.0786 16.95 0.0475 8.11 0.0329
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FIGURE 4
Spatial distributions of linear trends of annual soil moisture, (A) ERA5, (B) ESA-CCI, (C) GLDAS, (D) MERRA-2, (E) SSM-Feng.

FIGURE 5
Spatial distributions of linear trends of annual soil moisture, (A) ERA5, (B) ESA-CCI, (C) GLDAS, (D) MERRA-2, (E) RSSSM, (F) SSM-Feng.
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the most spatial variations in soil moisture. However, the spatial
variations of the EOF first-mode performance of different data are
different. The ERA5 and SSM-Feng data showed that the soil
moisture in most areas shows a drying trend. The center of

variation is in the east of the Kunlun Mountains. The GLDAS
and MERRA-2 data showed that soil moisture in most areas of the
arid region of Northwest China increases, and the change rate
gradually decreases from west to east. The ESA-CCI and RSSSM

FIGURE 6
Percentages of significantly increased soil moisture (p < 0.05).

FIGURE 7
Spatial distributions of linear trends of annual soil moisture, (A) ERA5, (B) ESA-CCI, (C) GLDAS, (D) MERRA-2, (E) SSM-Feng.
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datasets had missing data that could not show the spatial variation
trend of soil moisture in Northwest China (Figure 9).

The variance contribution rate of the second EOFmode (EOF-2)
was much higher than that of the other modes, with variance
contributions of 20.19% (ERA5), 21.73% (ESA-CCI), 10.96%
(GLDAS), 10.17% (MERRA-2), and 16.95% (SSM-Feng)
(Table 5). The variance contribution rate of the third EOF mode
(EOF-3) was much higher than that of the other modes, with
variance contributions of 7.77% (ERA5), 5.91% (ESA-CCI),
7.28% (GLDAS), 5.44% (MERRA-2), and 8.11% (SSM-Feng)
(Table 5).

3.3.4 Characteristics of soil moisture variation in
different sub-regions

The linear trends of the six annual soil moisture datasets in the nine
sub-regions also differed (Figure 10). In the Altay Mountains, the ESA-
CCI and MERRA-2 showed significant increase (p < 0.05). In the Alxa
region, the six datasets showed a slow wetting trend, where GLDAS and
MERRA-2 showed significant (p < 0.05) wetting trends of 1.53 ×
10−4 m3/m3/year and 1.04 × 10−3 m3/m3/year, respectively. The GLDAS,
MERRA-2, and RSSSM datasets show an increasing trend in the Hexi
Corridor, which are significant for GLDAS and MERRA-2 (p < 0.05),
with values of 5.53 × 10−4 m3/m3/year and 8.23 × 10−4 m3/m3/year,
respectively. In the Kunlun Mountains, the GLDAS dataset showed a
significant increase (p < 0.05) at a rate of 6.25 × 10−4 (m3/m3/year), but
the SSM-Feng dataset showed an opposite trend. The ERA and SSM-
Feng datasets showed a significant decreasing trend in the Tarim Basin
(p < 0.05). All datasets showed the same increasing trends in the

northern and southern Tian shan Mountains at different magnitudes
(Figure 10). In the Turpan–Hami Basin, only MERRA-2 showed a
decreasing trend of soil moisture. In contrast, in the Junggar Basin, the
ESA-CCI, GLDAS, and MERRA-2 datasets showed a significantly
increasing trend. In expressing the annual soil moisture change
trend, the ERA5 and SM-Feng datasets showed the same trend;
ESA-CCI, GLDAS, and MERRA-2 showed the same trend; RSSSM
only had enough data pertaining to Alxa, Hexi Corridor, Kunlun, and
northern Tian shan, and the trend was the same as that of ESA-CCI,
GLDAS, and MERRA-2.

Regarding seasonal soil moisture, the variation trends of the sub-
regions in different seasons differed. In spring, ERA5
(Supplementary Table S3) dataset showed that only soil moisture
in the Turpan–Hami Basin showed a weak, increasing trend, with a
growth rate of 7.45 × 10−5 m3/m3/year, while other sub-regions
showed a decreasing trend. The ESA-CCI dataset (Supplementary
Table S4) show that the Alxa Plateau, Junggar Basin, Kunlun
Mountains, and Tarim Basin showed a weak decreasing trend,
whereas the other regions showed an increasing trend, among
which the Altay Mountain Range, Tian shan Mountain Range,
and Turpan–Hami Basin showed a significant increasing trend
(p < 0.05). The growth rates were 7.75 × 10−4 m3/m3/year, 1.24 ×
10−4 m3/m3/year, 2.55 × 10−4 m3/m3/year, and 1.39 × 10−4 m3/m3/
year. GLDAS dataset (Supplementary Table S5) showed that soil
moisture on the southern slope of the Tian shan Mountains
decreased at a rate of 6.18 × 10−4 m3/m3/year. The MERRA-2
dataset (Supplementary Table S6) showed only a drying trend
for soil moisture in the Turpan–Hami Basin. The SSM-Feng

FIGURE 8
Spatial distributions of linear trends of annual soil moisture, (A) ERA5, (B) ESA-CCI, (C) GLDAS, (D) MERRA-2, (E) RSSSM, (F) ESA-CCI.
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dataset (Supplementary Table S8) showed a weak trend of soil
moisture increase in the Alxa Plateau and the Turpan–Hami
Basin. In summer, the ERA5 (Supplementary Table S3) dataset
showed a decreasing trend in all sub-regions and a significant
decreasing trend in the Altay Mountains, Junggar Basin, and the
north slope of Tian shan Mountains (p < 0.05). The ESA-CCI
(Supplementary Table S4) dataset showed that soil moisture
increased significantly in all nine sub-regions (p < 0.05), and
the region with the fastest growth rate was Kunlun Mountains,
with a growth rate of 8.83 × 10−4 m3/m3/year. In the Altay
Mountains and Alxa Plateau, the GLDAS dataset
(Supplementary Table S5) showed a drying trend. MERRA-2

(Supplementary Table S6) showed a decreasing trend in the
Turpan–Hami Basin. The SSM-Feng dataset showed an
increasing trend in the Alxa Plateau, Kunlun Mountains, and
Turpan–Hami Basin but a decreasing trend in other areas. In
autumn, the ERA5 (Supplementary Table S3) dataset showed that
soil moisture in the Alxa Plateau increased at a rate of 1.9 ×
10−4 m3/m3/year. In contrast, soil moisture in other regions showed
a decreasing trend, but only in the Tarim Basin, it showed a
significant decreasing trend (p < 0.05), with a rate of 2.89 ×
10−4 m3/m3/year. In the ESA-CCI dataset (Supplementary Table
S4), only the Altay Mountain Range and the northern slope of Tian
shan Mountain showed significant changes (p < 0.05). The Altay

FIGURE 9
Spatial distributions of linear trends of annual soil moisture, (A,B) ERA5; (C,D) GLDAS; (E,F) MERRA-2; (G,H) SSM-Feng.
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Mountain Range showed a significantly increasing trend at a rate of
3.29 × 10×10−4 m3/m3/year, while the northern slope of Tian Shan
Mountains showed a significantly increasing trend at a rate of
1.24 × 10−4 m3/m3/year. The GLDAS dataset (Supplementary Table
S5) showed that soil moisture in the Hexi Corridor, Tarim Basin,
and northern Slope of Tian ShanMountains increased significantly
(p < 0.05), and the growth rates were 5.11 × 10−4 m3/m3/year, 4.79 ×
10−4 m3/m3/year, and 9.63 × 10−4 m3/m3/year, respectively.
However, soil moisture on the southern slope of Tian shan
gradually decreased. The MERRA-2 (Supplementary Table S6)
dataset showed that soil moisture in the Turpan–Hami Basin
showed a decreasing trend. As per the SSM-Feng data
(Supplementary Table S8), only the southern slope of Tian shan
Mountains showed a significant change trend (p < 0.05), and soil
moisture decreased at a rate of 7.1 × 10−5 m3/m3/year. In winter, a
small amount of ESA-CCI (Supplementary Table S4) data was
missing in the partial region due to snow and ice. The ERA5
(Supplementary Table S3) and SSM-Feng datasets showed similar
variation trends of soil moisture in the Altay Mountains, Hexi
Corridor, the northern and southern slopes of the Tian shan
Mountains and the Turpan–Hami Basin. The MERRA-2 dataset
(Supplementary Table S6) showed a decreasing trend in the
Turpan–Hami Basin, with a rate of 1.12 × 10−5 m3/m3/year.
During the growing season (April–October), the ERA5 dataset
(Supplementary Table S3) showed a decreasing trend of soil
moisture in all sub-regions. However, they only showed a
significant decreasing trend in four regions: the Altay Mountain

Range, Kunlun Mountain Range, and the northern and southern
slopes of the Tian shan Mountains. The corresponding rate of
change is 3.18 × 10−4 m3/m3/year, 2.07 × 10−4 m3/m3/year, 3.17 ×
10−4 m3/m3/year, and 3.83 × 10−4 m3/m3/year, respectively. The
ESA-CCI dataset (Supplementary Table S4) showed a significant
growth trend in mountainous regions (p < 0.05), and the fastest
growth rate was 7.15 × 10−4 m3/m3/year on the northern slope of
the Tian shan Mountains. The GLDAS (Supplementary Table S5)
dataset showed that soil moisture decreased slowly at a rate of
2.39 × 10−4 m3/m3/year in the Altay Mountains but increased in
other areas. The MERRA-2 (Supplementary Table S6) dataset still
showed a decreasing trend in the Turpan–Hami Basin, with a rate
of change of 4.92 × 10−5 m3/m3/year.

In addition, the soil moisture variation trends of different data at
the growing season and inter-annual scales were similar.

4 Discussion

4.1 Uncertainties of the soil moisture
variations from multi-source soil moisture
datasets

In this study, we employed six gridded datasets to analyze
spatiotemporal variations in soil moisture across arid regions of
Northwest China. Large uncertainties exist in the different soil
moisture variations, which may be caused by different factors,

FIGURE 10
Annual linear trend of soil moisture in sub-regions, (A) Altay region, (B) Alxa Plateau, (C) Hexi Corridor, (D) Junggar Basin, (E) Kunlun Mountains, (F)
Tarim Basin, (G) northern Tian shan Mountains, (H) southern Tian Shan Mountains, and (I) Tuha Basin.
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such as different input data and model structures in GLDAS and
ERA-5 and different soil moisture depths for all gridded datasets.
Moreover, these factors are the primary reasons for the different
performances of the gridded datasets against the OBS and the highly
uneven distribution of meteorological stations. The detailed reasons
of the uncertainties of the soil moisture variations for each gridded
dataset are as follows.

The ESA-CCI and RSSSM are soil moisture datasets based on
microwave remote sensing monitoring, which are affected by the
atmosphere detection process and can produce atmospheric errors.
Because of the limited microwave penetration, vegetation and snow
cover will affect microwave remote sensing monitoring data,
resulting in inaccurate data (Kerr, 2006). In addition, the ESA-
CCI soil moisture product selected here is an active–passive
combination product, and Dorigo et al. (2017) found a low
correlation for the combination product. Beck et al. (2021) found
poor applicability of ASCAT satellite data; the overall poor
applicability of ESA-CCI may be due to the inclusion of ASCAT
satellite data. Moreover, owing to the limited number of remote
sensing satellites and the revisit cycle, many missing remote sensing
data may be related to the poor correlation of remote sensing soil
moisture products.

The GLDAS land model simulated soil moisture,
ERA5 reanalysis data, MERRA-2 reanalysis data, and the SSM-
Feng dataset also showed large deviations. To calculate soil
moisture, the model needs to input relevant auxiliary data such
as soil temperature, surface roughness, and vegetation index.
Different model algorithms have different sensitivities to
auxiliary data, and the uncertainties of the auxiliary data are
the primary error sources in the calculation process of the
model (Hu et al., 2021b).

In the absence of ground observation data, the TC method can
be used to evaluate the accuracy of multiple soil moisture datasets,
but the accuracy evaluation results are affected by the data itself and
the correlation between the datasets.

4.2 Comparison with the soil moisture
variations over other regions

Berg et al. (2017) conducted a study using CMIP5 data. The
results showed that the surface soil moisture in Central Asia showed
a downward trend in the context of global warming during
1976–2005. Gu et al. (2019b) showed that under the effect of
global warming, the drying trend of soil moisture in Eurasia
during the warm season intensified, and the dry area of soil
moisture expanded. A dry soil moisture trend was identified in
69.2% of Eurasia, and the area with a significant drying trend
accounted for 40% of the total area. The soil moisture decrease
rate in the warm season of Eurasia was 0.008 kg/m2/year. The result
is consistent with the trend of soil moisture change shown by the
ERA5 and SSM-Feng datasets, and the decreasing rate of soil
moisture is 1.31 × 10−4 m3/m3/year and 1.01 × 10−4 m3/m3/year.

According to the CPC soil moisture data from the NOAA
Physical Sciences Laboratory (https://psl.noaa.gov/data/gridded/
data.cpcsoil.html), Northwest China showed a significant wetting
trend from 1950 to 2015 with centers in mountainous areas (Hu
et al., 2019a), which is consistent with GLDAS andMERRA-2 in our

study. Furthermore, the wetting results of the GLDAS were similar
to those of a previous study (Hu et al., 2021a).

4.3 Factors affecting soil moisture

Soil moisture is affected by temperature, precipitation,
evapotranspiration, and other meteorological factors (Seneviratne
et al., 2010; Wang et al., 2020; Li et al., 2021). In the past 50 years,
the temperature in the arid region of Northwest China has been
increasing at a rate of 0.34 °C/10 a, which is significantly higher than
the global average. In addition, potential evapotranspiration showed
an increasing trend after 1993, with an increasing rate of 10.7 mm yr−1

(Chen and Small, 2018).
Potential evapotranspiration (PET), precipitation (PRE), and

temperature (TMP) were analyzed by unitary linear regression,
which showed an increasing trend at the inter-annual scale,
among which PET and TMP showed a significant increasing
trend, with a change trend of 1.75 mm/year and 0.0357°C/year,
respectively (Supplementary Figure S9). At the growing season scale,
PET, PRE, and TEM also showed an increasing trend, among which
potential evapotranspiration and air temperature showed a
significant increasing trend, with a change trend of 1.46 mm/year
and 0.0386°C/year (Supplementary Figure S9), respectively. The
correlation between soil moisture datasets and three
meteorological elements was calculated, and it was found that
most soil moisture datasets were negatively correlated with PET,
positively correlated with PRE, and positively correlated with TMP,
irrespective of the inter annual or growing season. Detailed data are
given in Supplementary Tables S9, S10. It can be concluded that the
increase of PET will lead to the decrease of soil moisture, and PRE
has a positive influence on soil moisture, while TMP is positively
correlated with soil moisture.

There are seasonal and spatial differences in the temperature
variation in Northwest China. The change rate of precipitation in
Northwest China increases from southeast to northwest regions.
Hence, most soil moisture data show that soil moisture is
increasing significantly in the northwest of the arid region of
Northwest China. In addition, the soil moisture trends of
mountain ranges, basins, and plateaus are different, and the
trends of the northern and southern slopes of the Tian shan
Mountains are also different; therefore, the soil moisture change
may have a specific relationship with topography. The relationship
will be explored in a future analysis.

5 Conclusion

In this study, the arid area of Northwest China was taken as
the research area. Six soil moisture datasets, namely remote
sensing inversion of soil moisture dataset ESA-CCI, land
simulation soil moisture dataset GLDAS, ERA5 soil moisture
dataset, MERRA-2 reanalysis soil moisture dataset, RSSSM soil
moisture dataset, and SSM-Feng soil moisture dataset, were used.
The spatiotemporal variations in soil moisture at seasonal and
annual scales during 1981–2020 were analyzed, including linear
trends, abrupt changes, and spatial modes. The main conclusions
are as follows.
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(1) According to the ESA-CCI, GLDAS, and MERRA-2 datasets, the
annual soil moisture in the arid region of Northwest China
increased slowly from 1981 to 2020, with annual change rates
of 8.35 × 10−5 m3/m3/year, 4.86 × 10−4 m3/m3/year, and 6.93 ×
10−4 m3/m3/year, respectively. In contrast, according to the
ERA5 and SSM-Feng data, the soil moisture in the arid region
of Northwest China decreased, with annual change rates of−1.31 ×
10−4 m3/m3/year and −1.01 × 10−4 m3/m3/year, respectively.

(2) Seasonal soil moisture changes in the arid areas of Northwest
China from 1981 to 2020 were different. In spring and summer,
most soil moisture products showed a slow increase in soil
moisture, whereas in autumn and winter, only the GLDAS and
MERRA-2 data showed a significant increasing trend. ESA-CCI,
GLDAS, and MERRA-2 datasets for the growing season showed a
significantly increasing trend. RSSSM could not describe the soil
moisture change trend in the growing season in the arid region of
Northwest China due to missing data; the ERA 5 and SSM-Feng
datasets showed a significant decreasing trend.

Most of the data show that the spatial variation of soil moisture
shows a slowly increasing trend. The rate of soil moisture gradually
increases from west to east and south to north, such as in GLDAS
andMERRA-2. According tomost datasets, the Tarim Basin shows a
slow drying trend. Soil moisture is always used to detect drought
variations as a drought index and has been widely used to reveal dry
and wet changes over regional and global scales (Hu et al., 2019b;
Zhao et al., 2021). Moreover, the correlation between soil moisture
and climate factors and the impacts of soil moisture on the
vegetation in this study area still require further analysis. This
study provides a scientific basis for soil moisture variations and
other hydroclimate studies in Northwest China, which may play a
key role in understanding water resource circulation in arid regions.
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