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Introduction: Enhancing the green total factor productivity of dairy cows (GPDC) is
crucial for fostering the low-carbon sustainable development of the dairy industry.

Methods: This researchutilizes theMinimumdistance toweak efficient frontier–Meta
frontier–Malmquist–Luenberger (MinDW-MML) index to examine the GPDC using
the unbalancedpanel data on dairy cows in 26 provinces of China from2004 to 2020,
taking into account regional heterogeneity and unexpected output.

Results: The findings revealed that 1) from 2004 to 2020, China’s GPDC displayed a
fluctuating and declining trend, with the steepest decrease occurring from 2007 to
2010 (2.26%at the common frontier and 1.81%at the group frontier). The fundamental
cause of the low GPDC, as seen from the standpoint of efficiency decomposition, is
technical advancement (technological change, or TC); 2) the GPDC exhibits a
declining trend from east to west to central China for the two-level frontier. The
eastern region benefits clearly from technological advancement (TC) and improved
technical performance (EC), while the middle and western regions are mostly
constrained by TC; and 3) the GPDC displayed regional heterogeneity at several
scales. Although the efficiency values of medium- and small-scale aquaculture were
lowand large-scale aquacultureGPDC in the eastern andwestern regionswasgreater
than 1, the GPDC did not reach the effective state in the central region.

Discussion: Based on these findings, we propose policy recommendations such
as promoting technological innovation and low-carbon technology in dairy
farming, improving the technical system of dairy farming, and optimizing the
industrial layout of dairy farming, which will serve as a model for future high-
quality and sustainable dairy farming development in China, and provide an
experience for green dairy farming development in other countries.
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1 Introduction

Milk is a very important food product in the diet structure of a population and has a
significant effect on improving the quality of the human body and preventing non-
communicable diseases. Milk has become necessary for national consumption and has a
huge global consumer market (Zhou et al., 2002; Fuller et al., 2006; Cheng et al., 2015).
China’s dairy industry has made great achievements due to the pull of the consumer side, which
made milk production in China increase from 8.274 million tons in 2000 to 34.4 million tons in
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2020, and the per capita milk share increased from 6.6 kg in 2000 to
24.4 kg in 2020. Although the supply has greatly increased, the growth
rate of milk production is still lower than that of the total demand, and
the self-sufficiency rate of milk sources is on the low side. Calculations
by Liu and Han (2020), Liu and Han (2021), and Liu and Han (2022)
show that from 2019 to 2021, China’s milk sources were 65.6%, 65.3%,
and 62.9% self-sufficient, respectively, falling short of the 70% threshold
suggested in 2018. Raising the dairy cow production efficiency is one of
the most important variables in increasing the milk supply and
satisfying Chinese citizens’ daily consumption needs. Therefore,
measuring the total factor productivity of dairy cows in China is of
great practical significance.

Inevitably, there are two aspects to consider in the dairy farming
process: first, the climate issues arising from the farming process.
Pollutants such as methane, carbon dioxide, manure, sewage, and
garbage may be created during dairy cattle feeding. These pollutants
can contribute to the greenhouse effect, microbial contamination,
and other climate-related issues. The International Food and
Agriculture Organization (FAO) reported that animal husbandry
accounted for 18% of all greenhouse gas emissions in 2006. The FAO
increased this ratio to 14.5% in 2013, with beef and milk
contributing 41% and 19% of livestock-related greenhouse gas
emissions, respectively. According to Twine’s most recent
estimations, the lowest estimated value of greenhouse gas
emissions from animal husbandry, as a fraction of all greenhouse
gas emissions, should be 16.5%. As a result, encouraging green
farming in dairy cows is crucial to combating climate change and
changing the breeding industry’s broad production model to an
environment-intensive one. Second is the issue of regional
heterogeneity. On one hand, fresh milk has limited supply due to
transportation distance, has a short shelf life, and must be delivered
to factories and customers as quickly as feasible. China’s varied
regions have varying traffic levels, with the eastern and central
regions performing better than the western regions. Dairy cowsmust
be self-reliant in different places to guarantee sufficient milk supply.
On the other hand, the eastern, central, and western areas have
different levels of urbanization, resource endowment, and
environmental carrying capacity (Sobczyński et al., 2015; Leng
et al., 2017; Wang et al., 2023a). The eastern region benefits from
a strong economy, cutting-edge technology, and a large market (Mei
et al., 2015; Yu et al., 2019; Zhong et al., 2022b). The western part is
rich in pasture resources and sparsely inhabited for dairy
production, whereas the middle region has flat terrains and
strong industrial intensity (Shen et al., 2020). Therefore,
geographical variability must be considered while examining the
total factor productivity of dairy cows. Therefore, it is necessary to
analyze different situations to make recommendations that align
with local realities. In summary, this paper considers regional
heterogeneity while incorporating undesirable outputs into the
evaluation system, employing the Minimum distance to weak
efficient frontier–Meta-frontier–Malmquist–Luenberger (MinDW-
MML) model and analyzing the Chinese GPDC using data from
26 Chinese provinces from 2004 to 2020. We hope to provide
reference values for future policies to promote the sustainable
development of dairy farming in China and the broader region.
The rest of this paper is structured as follows: the second part is the
Literature review, and the third part is the Theoretical basis, a
detailed description of the model formula, input–output variables,

and data sources. The fourth part is the Empirical analysis and
results. The fifth part is the Conclusion and suggestions.

2 Literature review

On the issue of cow breeding efficiency, scholars from different
countries have made many contributions from different
perspectives. Using the fixed-effect production function and the
data on 96 dairy farms in Vermont from 1971 to 1984, Ahmad and
Bravo-Ureta (1995) found that the contribution rate of technological
progress to the total production efficiency was about 94%.
According to Brümmer et al. (2002), an analysis of the sources of
the total factor productivity (TFP) growth in dairy farms in
Germany, the Netherlands, and Poland revealed that
technological change primarily influences productivity growth in
Germany and Poland, while allocation efficiency primarily
influences productivity growth in the Netherlands. In dairy farms
from 2001 to 2007, Latruffe et al. (2012) discovered that Hungary
had superior technical efficiency to France under a common
boundary. Madau et al. (2017) examined the TFP of dairy farms
in 22 European nations between 2004 and 2012 using the data
envelopment analysis (DEA) method, and they discovered that there
was little room for dairy farms to increase their technical efficiency
and that the production efficiency of European dairy farming
declined. Different scholars have conducted in-depth studies on
the effect of the farm size on the total factor productivity of dairy
cows, but their conclusions differ. According to Newman and
Matthews (2006), major dairy farms in Ireland saw increased
productivity and quicker technological advancement between
1984 and 2000. SFA and the technical inefficiency model were
used by Cabrera et al. (2010) to investigate the factors
influencing the technical efficiency of 273 dairy farms in
Wisconsin. The findings demonstrate that farm size does not
affect productivity levels, which depend on technological
advances and efficiency. According to Moreira and Bravo-Ureta.
(2016), the farm size has no significant effect on dairy farm
productivity growth, but structural changes in the dairy industry
may promote the transition from small-scale to large-scale farms.
Olagunju et al. (2022) examined the factors influencing dairy cow
TFP in Northern Ireland farms using panel data from 2005 to 2016.
They discovered that the herd size and feeding density positively
impacted the TFP while emphasizing the importance of
technological complexity in improving dairy farm productivity.
The production efficiency of the dairy cow receives less attention
in Chinese academic studies on animal husbandry than pigs,
mariculture, laying hens, and other species. The environmental
effectiveness of pig production was examined in 30 Chinese
provinces between 2004 and 2012 using the stochastic frontier
model by Zhou et al. (2015). They discovered a strong
correlation between technology and environmental effectiveness,
and that areas with high environmental effectiveness also have high
technical efficiency levels. The huge data from China’s
2004–2010 rural fixed-point survey were analyzed using SFA by
Tian et al. (2015). They discovered that the eastern region’s
production efficiency was greater than that of the central and
western regions. Specialized pig farms had higher production
efficiency than other areas. Yan et al. (2020) used SFA and Tobit
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models to examine the environmental efficiency of 260 pig farms in
Hebei Province and discovered that the technical efficiency was
related to the farm size while the environmental efficiency was lower.
Wang and Ji (2017) assessed the effectiveness of mariculture in
10 Chinese coastal regions from 2003 to 2012 using DEA and Tobit
models. The study’s findings indicate that Tianjin, Guangxi, Hebei,
and other regions in China have comparatively poor mariculture
productivity overall, huge interprovincial productivity variations,
and lowmariculture productivity overall. In their analysis of China’s
laying hens breeding green total factor productivity (LHBG), Zhong
et al. (2021b) used the DDF-MML index. They discovered that the
LHBG shows a downward trend in the west–central–east region and
that scale and technical efficiency are more important than
management efficiency. In conclusion, research on dairy cows is
reasonably well-developed in the United States, Europe, Ireland,
Australia, and other nations but relatively scant in China. This work
can fill the knowledge gap in this area.

The analytical model used to investigate production efficiency
has also evolved over the years. Initially, scholars from various
countries studied production efficiency primarily using the
parametric method SFA and the non-parametric method DEA.
Since it was first developed, the SFA has found widespread use in
commerce, industry, and agriculture (Aigner et al., 1977; Meeusen
and van Den Broeck, 1977). In their analysis of 130 dairy farms’
balance panel data using the SFA, Alvarez and del Corral (2010)
discovered that intense technology outperforms extensive
technology and that intensive farms are more productive than
coarse farms. Ma et al. (2012) used the SFA to study the
elements that affected the total factor productivity of dairy cows
in China. They discovered that the technical efficiency of small and
big farms replaced general technological transformation as the
industry’s growth strategy. Jiang and Sharp (2015) discovered
heterogeneity in farm production technology located on various
islands after using the stochastic frontier model to assess the
technical efficiency and technological gap of 1,294 dairy farms in
New Zealand. There are certain restrictions to the SFA since its
fundamental hypothesis is complicated and unable to address issues
involving multiple inputs and outputs. A non-parametric efficiency
evaluation technique called the DEA was suggested by Charnes et al.
(1978). Its basic idea is to utilize linear programming to construct
the optimal production frontier using various DMU input–output
data and then calculate the production efficiency value by calculating
the distance between the DMU and the production frontier. In their
assessment of the complete environmental performance of Dutch
dairy farms using the SFA and DEA, Reinhard et al. (2000)
highlighted the benefits and drawbacks of the two methodologies
and discovered that energy efficiency significantly influences the
environmental efficiency score. The DEA model was used by
Lansink and Reinhard (2004) to examine the technical and
environmental performance of Dutch pig farms. They discovered
that the breeding scale was near the best technical scale and that the
average technical efficiency of Dutch pig farms was as high as 90%.
The relationship between the economic and environmental
performances of 56 dairy farms in Switzerland was assessed using
the life cycle assessment (LCA) and DEA techniques. According to
Jan et al. (2012), economic and environmental performances are
positively correlated. Green technology advancement can improve
the green growth rate, according to Wang et al.’s (2021) analysis of

the green growth rate of oil and gas resource cities in China from
2010 to 2017 using the non-radial and non-angular DEA-SBM
mode. Compared to the SFA, the premise assumption in the
DEA is looser and it can deal with output variables more flexibly,
so subsequent generations prefer the DEA method to measure the
production efficiency.

Non-expectation is gradually incorporated into the efficiency
analysis model through the continual speech of analysis methods. To
include the non-desired output in the DEA model, Chung et al.
(1997) introduced the directional distance function (DDF) and
Malmquist–Luenberger productivity index, which resolved the
efficiency evaluation problem of non-desired output production
activities and could accurately analyze the production efficiency
and its sources. Since then, many researchers have added an
unintended output to efficiency evaluation models and evaluated
the green total factor productivity using various techniques (Fisher-
Vanden et al., 2004; Li and Wu, 2017; Yao et al., 2018; Zhu et al.,
2018). The practice of animal husbandry also makes extensive use of
this technique. Using a directed distance function with greenhouse
gas emissions as a negative output, Njuki et al. (2016) assessed the
environmental efficiency of dairy farms in the northeastern
United States and discovered that larger farms were more
productive than smaller farms. Cecchini et al. (2018) evaluated
the environmental performance of 10 dairy farms in Umbria
(Italy) using LCA and SBM-DEA models with carbon dioxide
emission equivalents as a negative output and found that half of
the farms had improved environmental performance and that the
use of low-emission technologies and measures helped close the gap
with more environmentally friendly farms. Zhong et al. (2021a)
investigated the green total factor productivity of pig breeding
(PBG) in China from 2004 to 2018, using pollutant emissions as
a negative output, and discovered that an inefficient scale structure
was the primary cause of the decline in PBG.

Scholars at home and abroad have conducted in-depth analyses
on dairy farming and total factor productivity analysis methods and
produced many research results, which provide important
theoretical support and useful reference for this paper, but there
are still some things that still need to be addressed. 1) Although
research on dairy farming is abundant in the United States, Europe,
Ireland, Australia, and other countries, more research needs to be
conducted on the issue of productivity in Chinese dairy farming. 2)
The majority of the literature has used models such as DDF and
SBM, which can incorporate undesired outputs into the efficiency
evaluation system and are more consistent with production laws
than the traditional CCR and BBC models, but all of them have
limitations. The MinDW model has the advantages of dealing with
the problem of unreasonable treatment of non-desired outputs in
the DDF model and overcoming the shortcomings of the traditional
CCR and SBM models, in which the DMU is very far away from the
frontier, which leads to a decrease in the “motivation” to catch
up. The model effectively reduces data anomalies, increases the
objectivity of the analysis process, and improves the accuracy of the
assessment results (Liu and Gao, 2022). Therefore, the MinDW
model is used in this paper to measure the GPDC. 3) The majority of
the literature has analyzed the total factor productivity of dairy cattle
and its influencing factors from an overall perspective, but there are
differences in resource endowment, industrial structure, and
economic development levels in different regions due to

Frontiers in Environmental Science frontiersin.org03

Guo and Fu 10.3389/fenvs.2023.1164770

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1164770


differences in resource inputs and pollution emissions of different
farming scales. Most of the existing literature examines the total
factor productivity of dairy cows and its influencing factors in
aggregate. However, the resource input and pollution discharge
of different breeding scales differ, as do the resource endowment,
industrial structure, and level of economic development of different
regions (Li et al., 2021). This suggests that it is necessary to consider
scale and regional heterogeneity when analyzing such problems. As
a consequence, this paper divides the dairy farming scale into three
scales, large, medium, and small, and takes into account inter-
regional variability and the traditional division of agricultural
regions such as the East, Middle, and West.

The scientific value of this paper is reflected in the following
three points. First, there are few studies on the GTFP in China’s
dairy farming industry, and the topic of this paper is novel and has
the potential to compensate for the lack of existing studies in terms
of theory. Second, the MinDW-MML index will be applied in this
paper to overcome the traditional DEA model and the slack
measure-based SBM model, and to incorporate non-desired
output into the production efficiency evaluation system, which is
more in line with the production law and has practical significance.
Third, to better propose policy recommendations suitable for the
sustainable development of dairy farming, this paper considers
regional heterogeneity and the analysis of the GPDC in different
regions and scales under environmental constraints.

3 Methodology

3.1 MinDW

The MinDW model is the closest distance of the evaluated
DMU to the frontier surface and does not consider whether its
projection point on the frontier surface is strongly or weakly
effective. Referring to the methods of Charnes et al. (1996) and
Briec (1999), a MinDW model with non-desired outputs is
constructed. It is assumed that there are n DMU in the
manufacturing process, including m input variables x, f
expected output variables y, and g non-expected output
variables u, expressed as a matrix: X � (x1, x2, ..., xn) ∈ Rm×n,
Y � (y1, y2, ..., yn) ∈ Rf×n, and F � (u1, u2, ..., un) ∈ Rg×n. Then,
during the t period, the production possibility set of the
DMU is Pt(xt) � (xt , yt , ut): xt can produce (yt , ut){ },
where x ∈ Rm×n, y ∈ Rf×n, and u ∈ Rg×n. Then, the MinDW
method can be expressed as m + f + g linear programs (m is the
number of input indicators, f is the number of desired outputs, and
g is the number of non-desired outputs), as defined in Eq. 1:

max βz , z � 1, 2, . . . ,m + f + g ,

s.t.

∑n
j�1
αjxij + βzei ≤ xik, i � 1, 2, . . . ,m

∑n
j�1
αjxrj − βzer ≥ yrk, r � 1, 2, . . . , f

∑n
j�1
αjxpj + βzep ≤ upk , p � 1, 2, . . . , g

αj ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where x, y, and u are the input, expected output, and non-
expected output, respectively; β is the proportion of input or output
that can be expanded (reduced); and α is the weight assigned by the
DEA. ei , er, and ep are constants. In the model, only one is 1, and the
rest is 0, as defined in Eq. 2:

ei � 1, if i � z
0, if i ≠ z

{ ; er � 1, if r � z −m
0, if r ≠ z −m

{ ; ep � 1, if j � z −m − f ,
0, if j ≠ z −m − f .

{
(2)

The efficiency value of each model is as follows (Eq. 3):

ϕ*
z �

1 − 1
m∑m

i�1
β*z ei
xik

1 + 1
f+g ∑f

r�1
β*z er
yrk

+∑g
p�1

β*z ep
upk

( ). (3)

The MinDW efficiency value is ϕ
*max (*z
max , and the large

efficiency value corresponds to the smallest β*, which is the
nearest distance to the front surface. The conventional DEA
model assumes that the technological level of the examined
DMUs is uniform when assessing the production efficiency of
various locations. This is not the case in reality production as
DMUs frequently experience varied features due to various
geographic locations, varying economic climates, endowed
resource bases, etc. To evaluate the technical efficiency of the
group frontier and common frontier, Battese et al. (2004)
presented a common frontier analysis paradigm (O’Donnell
et al., 2008). This paper divides dairy farming regions into
eastern, central, and western regions and considers the
common frontier and group frontier in the MinDW model.
Figure 1 depicts the connection between the group frontier
and the common frontier. Therefore, the frontier efficiency of
the DMU area can be solved by Eq. 4:

φgroup* � max
1 − 1

m∑m
i�1

βz ei
xik

1 + 1
f+g ∑f

r�1
βz er
yrk

+∑g
p�1

βz ep
upk

( ),

s.t.

∑n
j�1
αjxij + βzei ≤ xik, i � 1, 2, . . . ,m

∑n
j�1
αjxrj − βzer ≥ yrk, r � 1, 2, . . . , f

∑n
j�1
αjxpj + βzep ≤ upk , p � 1, 2, . . . , g

αj ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

Similarly, the value of the DMU common frontier efficiency can
be obtained by Eq. 5:

φmeta* � max
1 − 1

m∑m
i�1

βzei
xik

1 + 1
f+g ∑f

r�1
βzer
yrk

+∑g
p�1

βzep
upk

( ),

s.t.

∑n
j�1
αjxij + βzei ≤ xik, i � 1, 2, . . . ,m

∑n
j�1
αjxrj − βzer ≥ yrk, r � 1, 2, . . . , f

∑n
j�1
αjxpj + βzep ≤ upk , p � 1, 2, . . . , g

αj ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)
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Finally, the technology gap ratio (TGR) can be obtained by
calculating the ratio of the common frontier to the group frontier,
and the calculation equation is (Eq. 6)

0≤TGR � φmeta*

φgroup*
≤ 1. (6)

As shown in Figure 1, take the M point as an example
TGRt � (AM/AC)/(AM/AB) � AB/AC. The TGR reflects the
technological gap between the group frontier and the common
frontier. The higher the score, the higher the actual production
technology and the closer it is to the potential production efficiency.

3.2 Meta-frontier–Malmquist–Luenberger
index

Based on the non-parametric method, Färe et al. (1992) constructed
theMalmquist productivity index from period t to t + 1, which effectively
made up for the defect that the traditional DEA could not measure
dynamic efficiency. Since the Malmquist index cannot deal with
undesired output, Chung et al. (1997) combined the Malmquist and
Luenberger indexes to construct the Malmquist–Luenberger (ML)
productivity index containing the undesired output. However, the ML
index has some problems, such as a linear scale without feasible solution,
non-transitivity, and technical retrogression, which still has some
limitations. To solve the shortcomings of the ML index, Oh (2010)
proposed the global Malmquist–Luenberger (GML) index. At the same
time, Oh and Lee (2010) incorporated the meta-frontier method into the
Malmquist index and constructed the Meta-frontier–Luenberger
productivity index considering group heterogeneity. Therefore, this
paper refers to the method of Oh and Lee, constructs the Meta-
frontier–Malmquist–Luenberger (MML) index, and takes the MML
index as the GPDC.

To construct the MML index, two production points in adjacent
periods and their common frontier distance composition with

transferability are required. Then, the GPDC under the common
frontier and regional group frontier can be calculated by Eqs 7, 8,
respectively:

mGPDCt
t−1 �


1 − Dm

t−1 xt , yt , ut ; yt ,−ut( )
1 − Dm

t xt−1, yt−1, ut−1; yt−1,−ut−1( )
√
×

1 − Dm
t xt , yt , ut ; yt ,−ut( )

1 − Dm
t−1 xt−1, yt−1, ut−1; yt−1,−ut−1( ), (7)

gGPDCt
t−1 �


1 − Ds

t−1 xt , yt , ut ; yt ,−ut( )
1 − Ds

t xt−1, yt−1, ut−1; yt−1,−ut−1( )
√
×

1 − Ds
t xt , yt , ut ; yt ,−ut( )

1 − Ds
t−1 xt−1, yt−1, ut−1; yt−1,−ut−1( ). (8)

According to Wang et al. (2013), the GPDC index is
decomposed into technology change (TC) and efficiency change
(EC), that is, Eq. 9:

GPDCt
t−1 � TCt

t−1 × ECt
t−1

�


1 − Dt−1 xt , yt , ut ; yt ,−ut( )
1 − Dt−1 xt−1, yt−1, ut−1; yt−1,−ut−1( )

√
×

1 − Dt xt , yt , ut ; yt ,−ut( )
1 − Dt xt−1, yt−1, ut−1; yt−1,−ut−1( )

�

1 − Dt−1 xt−1, yt−1, ut−1; yt−1,−ut−1( )
1 − Dt xt−1, yt−1, ut−1; yt−1,−ut−1( )

√
×
1 − Dt−1 xt , yt , ut ; yt ,−ut( )
1 − Dt xt , yt , ut ; yt ,−ut( )

×
1 − Dt xt , yt , ut ; yt ,−ut( )

1 − Dt−1 xt−1, yt−1, ut−1; yt−1,−ut−1( ), (9)

where (xt−1, yt−1, ut−1) and (xt , yt , ut) denote t−1 and t period
input, that is, the expected output and non-expected output,
respectively. The larger the values of TCt

t−1 and ECt
t−1, the higher

their contribution to the GPDC.

3.3 Data and variables

Referring to the existing research, this paper selects five
indicators to construct the GPDC evaluation system, and the
specific content is as follows:

(1) Labor input: one measure of labor input is the number of workers
employed. The index is the number of day workers, and family
members worked together while dairy farming was in operation.

(2) Input of feed: this is measured in terms of the volume of
concentrate feed. Dairy cows can receive a variety of
minerals and vitamins from concentrate feed, which can
also improve disease resistance and raise cow yield and feed
return.

(3) Capital investment: this includes the total costs for water, fuel,
electricity, medical care and disease control, depreciation of
fixed assets, maintenance and repair, supplies, and equipment.

(4) Expected output: the milk output is shown here, as expressed by
the output of the principal product.

(5) Undesired output: represented by carbon dioxide emissions
during dairy farming. Ruminants like dairy cows emit

FIGURE 1
Double-hierarchy meta-frontier.
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greenhouse gases like CO2, CH4, and N2O when they eat, and
CH4 and N2O can turn into CO2 emissions (GWP). The specific
calculation equation is (Eq. 10)

ECGF � ANDC × ef 1,

EEMC � ANDC × ef 2,

EEMN � ANDC × ef 3, (10)
where ECGF , EEMC , and EEMN represent CH4 produced by

gastrointestinal fermentation, CH4, and N2O produced by fecal
excretion, respectively. ANDC is the average number of dairy cows,
expressed by the year-end stock of dairy cows. ef 1, f 2, and ef 3 represent
the emission coefficient. In this paper, the greenhouse gas emission
coefficient provided by the IPCC is adopted and f 1 � 68 kg/head,
ef 2 � 16 kg/head, and ef 3 � 1 kg/head are substituted into the
aforementioned formula. At the same time, concerning the global
warming potential provided by the FAO, CH4 is 21 and N2O is 310.
Then, the total carbon emission ETotal is expressed as Eq. 11:

ETotal � ECGF + EEMC( ) × 21 + EEMN × 310. (11)
Among the input–output indicators in this paper, data on the

number of workers used, concentrate feed consumption, water
consumption, fuel power, medical and epidemic prevention,
depreciation of fixed assets, repair and maintenance, tools and
materials, and milk production were obtained from the
2004–2020 National Compilation of Information on Costs and
Benefits of Agricultural Products, and data on year-end dairy cattle
inventory were obtained from the 2004–2020 China Rural Statistical
Yearbook. To eliminate the influence of price fluctuation, the fixed

assets’ investment price index in the China Statistical Yearbook is used
to reduce the depreciation of fixed assets, repair and maintenance costs,
and tool material costs. The fuel–power index was used to deflate water
consumption, fuel and power costs, and medical and epidemic
prevention costs, and the year 2004 was used as the base period.

According to the availability and completeness of the data, this
paper selects 26 provinces as the research object and divides them
into the eastern, central, and western regions, as shown in Figure 2.
The provinces in the eastern region include Beijing, Shanghai,
Tianjin, Hebei, Fujian, Shandong, Guangdong, Jiangsu, Zhejiang,
and Liaoning; the provinces in the central region include Inner
Mongolia, Heilongjiang, Jilin, Shanxi, Anhui, Henan, Hubei, and
Hunan; and the provinces in the western region include Yunnan,
Gansu, Guangxi, Chongqing, Shaanxi, Xinjiang, Ningxia, and
Qinghai. Based on the division of the scale of dairy cows in the
National Collection of Costs and Benefits of National Agricultural
Product Cost and Benefits Data Compilation, 10–50 cows are small-
scale, 50–500 are medium-scale, and more than 500 are large-scale.

4 Results and discussions

4.1 Spatiotemporal dynamic characteristics
of GPDC regions and scale under double
frontiers

As shown in Figure 3, the fluctuation trend of the GPDC is
consistent under the common frontier and the group frontier. The

FIGURE 2
Different regional divisions in China.
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annual average efficiency values under the common frontier are 1.0049,
1.0079, 0.9916, 0.9773, 0.9979, 0.998, 1.0037, 1.0002, 0.9984, 0.9952,
1.009, 1.0035, 1.0075, 1.0031, 0.9987, and 1.0033. From 2004 to 2020,
the annual average values of the GPDC under the two frontiers are
0.9999 and 0.9987, indicating a decreasing trend of the GPDC in China,
which, in further analysis, is mainly caused by the low technological
progress index (0.9988 under the common frontier and 0.9982 under
the cluster frontier). It can be concluded that, on one hand, China’s
GPDC is mainly constrained by technological progress, which needs to
be more advanced in terms of a green environment, and the overall
technical progress efficiency value needs to be higher. On the other
hand, the technical efficiency value of China’s dairy cow is high, which
indicates that the overall resource allocation level is good, and the green
environment resources are used efficiently and managed at a high level.

Over the 17 years, GPDC decreased in 2007–2010 and
2013–2014, with the largest decrease in the former (2.26% under
the common frontier and 1.81% under the cluster frontier) and a
decreasing decrease in the latter. The primary causes of the GPDC’s
decrease from 2007 to 2010 are as follows. First off, the majority of
farmers have much expertise with feeding, but they need a base for
producing feed or silage, and the service guarantee system needs to
be more effective. A lack of understanding of scientific formulas for
feeding, breeding, and epidemic prevention occasionally causes cow
diseases to develop, resulting in poor cow output and breeding
effectiveness. Second, farmers’ profit margins are significantly
reduced, and their motivation to breed is declining due to rising
feed prices and low milk prices. Third, China strengthened the
supervision of dairy farms and businesses, following the milk
powder disaster in 2008, and implemented pertinent policies to

support the expansion of our dairy market. Fresh milk was in high
demand in 2013, and the dairy market experienced robust demand.
As international milk imports surged and domestic farmers scaled
up their operations one after the other, market supply and demand
shifts were triggered. “Milk shortage” to “milk leftover” took just
1 year. China has continued implementing pertinent regulations to
increase the scale, intensification, and standardization of cow
farming and to promote integrated professional management and
breeding technology quickly after experiencing “milk scarcity” in
2013 and “milk leftover” in 2014. Thanks to the peak green total
factor productivity and technological progress index of dairy cows in
2015, the efficiency of technological progress has been substantially
accelerated. However, the inconsistent changes in technical
efficiency and technological advancement in 2015 demonstrate
that the pace of resource consumption and technical efficiency
has lagged behind the rate of technological advancement,
indicating that China’s dairy cow is steadily improving in its
mode of operation, indemnification service system, and epidemic
prevention system; the management efficiency is improved, the
resource utilization rate is more appropriate, and the
technological efficiency started to rise after 2016.

As shown in Figure 4, the overall GPDC under the double
frontier does not reach the effective state (the efficiency value under
the common frontier is 0.9995 and 0.9987 under the group frontier),
indicating that the overall level of the GPDC in China shows a
downward trend. Through efficiency decomposition, TC mostly
affects the low GPDC, and under twin frontiers, the overall TC is
less than 1. The eastern region has the highest efficiency value,
followed by the western region and then the center region, according

FIGURE 3
China’s GPDC and decomposition target during 2004–2020.
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to further examination of the regional disparities. The key factor
limiting the GPDC in the central region is the efficiency of
technological advancement, where the EC is high and TC is low.
In conclusion, China’s GPDC has a declining trend and is mostly
constrained by the TC based on time and overall dimensions.

As shown in Figure 5, the GPDC has different trends under
different culture scales, with the highest efficiency on a large scale
(1.0002 under the common frontier and 1.0008 under the group
frontier), followed by a medium scale (common frontier 0.9993 and
group frontier 0.9991), and the lowest in a small scale. From 2004 to
2020, the average growth rate of the GPDC under the common frontier
was 0.04%, while that of the GPDC under the group frontier is 0.03%,
and the increase is limited. Under the common frontier, the
technological advancement index has an average yearly rise of 0.19%
and an average annual decline of 0.16%, as seen from the standpoint of
efficiency decomposition. The main driver of large-scale GPDC growth
is technological advancement, which hinders technical efficiency,
although there is still potential for improvement. Both medium- and
small-scale GPDC need to be more effective; medium-scale GPDC is
constrained by technological efficiency and advancement, while small-
scale GPDC is mostly constrained by technological advancement.
Under the melamine crisis in 2008, the GPDC’s performance on all
three scales reached a low point in terms of time. Regarding market
changes between 2013 and 2014, large-scale efficiency was the highest,
while medium-scale and small-scale efficiencies were below 1. This is
mostly due to large-scale aquaculture’s more sophisticated equipment,
improved resource utilization efficiency, and environmental protection,
all of which help strengthen its ability to mitigate risk and support total
factor productivity growth.

4.2 Regional heterogeneity analysis of the
GPDC

As shown in Figure 6, the average annual GPDCs of the eastern,
central, and western regions under the common frontier are 1.0003,

0.9979, and 1.0002, respectively, and those under the group frontier
are 0.9996, 0.9972, and 0.9994, respectively. Under the two frontiers,
there is a decreasing trend in the east, west, and middle, and there is
still much room for improvement in the central region. Regarding
geographical distribution, the eastern region—which includes
Beijing, Shanghai, Zhejiang, Guangdong, and Shandong—has a
higher economic level, established transportation, and the benefit
of industrial agglomeration, whichmakes for more effective resource
usage. Scientific breeding technology has progressed, reducing
resource waste and environmental degradation. The eastern
region has more notable geographic benefits due to its higher
population density, stronger dairy product consumption
potential, higher dairy product consumption, and closer
proximity of the dairy cows to the consumer market. The GPDC
of the eastern and western areas is greater than that of the central
regions, and policy considerations may also have an impact. In
2016, the Ministry of Agriculture issued the “National
Agricultural Product Processing Industry and Rural Primary,
Secondary, and Tertiary Industry Integration Development Plan
(2016–2020),” proposing to seize the opportunity to pay full
attention to mobile internet, big data, cloud computing, Internet
of Things, and other information technology, which has injected
inexhaustible impetus for the development of agricultural and
livestock product processing industry and industrial integration.
Establishing dominant regions for aquaculture products,
enhancing the building of bases for processing raw materials,
and accelerating the development of initial processing and high-
value comprehensive utilization, logistics systems, and platforms
for information sharing are all important. In addition to
establishing significant producing areas in large cities’
northeast, north, northwest, south, and suburbs, we will
continuously work to standardize and moderate-scale
aquaculture. The development of dairy cows in the east and
west has more benefits because of the program. Among the eight
provinces in the central region, five provinces (Henan,
Heilongjiang, Hunan, Inner Mongolia, and Shanxi) with TC

FIGURE 4
National average GPDC and its decomposition index.
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less than 1 under the double frontiers are the main factors
restricting the GPDC in the central region.

In Figure 7, the GPDC of large, medium, and small sizes under
the common frontier is 1.0026, 0.9999, and 0.9968 in the eastern
region; 0.9982, 0.9983, and 0.9974 in the central region; and
1.004266, 0.999404, and 0.997535 in the western region,
respectively. The eastern and western regions have witnessed
good growth in large-scale aquaculture, whereas the central
region has yet to attain an efficient level under three sizes,
suggesting that the central region has greater potential. Under
the region’s frontier, the GPDC of large, medium, and small sizes
are 1.000853, 0.999562, and 0.997497 in the eastern region;
0.997814, 0.998741, and 0.99546 in the central region; and
1.003455, 0.999049, and 0.996125 in the western region,
respectively. According to the aforementioned data, the large-
scale GPDC is the highest in the eastern and western regions,
while the three scales in the center region are still below the
effective level. It demonstrates that large-scale farming is more
productive on a green total factor basis in the eastern and
western regions when the scale and area are considered.

On one hand, the eastern region benefits from capital and
technology, and this region’s resource allocation and
management are more effective. On the other hand, the eastern
region has stricter pollution prevention and control regulations, and
it invests more money than the central and western regions. The
following factors make the western region ideal for industrial-scale
farming. First, large-scale dairy farming is more suitable in natural
pastures due to their abundant resources and high vegetation
coverage. Second, there is national policy support, which has
benefited significantly from financial and technological advances.
The central region’s large-scale GPDC technical efficiency and
technological progress index are 0.9996 and 0.9989, respectively,
under the common frontier, and 1.0013 and 0.9966, respectively,
under the group frontier. It demonstrates that the central region’s
technical development and efficiency indices have the opportunity
for improvement of 0.04% and 0.11%, respectively, under the
common frontier. The technical efficiency index of the large-scale
GPDC in the central region under the common frontier is lower
than that under the group frontier. This may be due to the common
frontier being the group frontier’s envelope, which includes the

FIGURE 5
China’s various-sized GPDC and decomposition targets during 2004–2020.
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FIGURE 6
GPDC in three regions during 2004–2020.

FIGURE 7
Various-scaled GPDC in different regions.
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potential best technical efficiency level in the nation, whereas the
technical efficiency index of the large-scale GPDC in the central
region under the common frontier has a higher room for
improvement. In the central region, medium- and small-scale
GPDCs still have space for improvement.

4.3 GPDC spatiotemporal variation
decomposition

As shown in Figure 8, under the common frontier, there are
11 provinces with GPDCs greater than 1 and the remaining
15 provinces with GPDC less than 1, with significant regional
differences. The top five provinces in GPDC are Guangdong
(1.0094), Gansu (1.0052), Beijing (1.0051), Hubei (1.0042), and

Fujian (1.0033), followed by Guangxi (0.9953), Inner Mongolia
(0.9944), Liaoning (0.9939), Anhui (0.9939), and Shaanxi
(0.9896). The top five provinces are Guangdong, Beijing, Gansu,
Xinjiang, and Shandong, while the last five are Henan, Inner
Mongolia, Guangxi, Liaoning, and Shaanxi. In the group, there
are 13 provinces with GPDCs greater than 1 and 13 with GPDCs less
than 1. Under the two frontiers, the top provinces are primarily
found in the east and west, and as a result, the east and west’s GPDC
is greater than that of the central region’s. The detailed study reveals
that the top GPDC provinces, including Guangdong, Gansu, and
Beijing, have higher technical efficiency and technological progress
indices than 1. For instance, the technical efficiency index and
technological progress index for Guangdong Province is
1.0049 and 1.0044, respectively, under the common frontier, and
1.0031 and 1.0033 under the group frontier, respectively. This shows

FIGURE 8
GPDC in different provinces during 2004–2020.

FIGURE 9
GPDC’s decomposition target in different provinces.
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that the GPDC of Guangdong Province is driven by both the
technical efficiency and technological progress indexes.

As shown in Figure 9, the provincial EC and TC show
differences between the common and group frontiers. Under
the group frontier, Yunnan, Anhui, Shanxi, and Hebei are mainly
restricted by the technological progress index, while under the
common frontier, these four provinces are still restricted by the

technical efficiency index, and there is still room for
improvement in technical efficiency. Under the two frontiers,
the technical efficiency index and the technological advancement
index limit Inner Mongolia, Guangxi, Liaoning, and Shaanxi, and
the contribution of the green total factor production is
insufficient. Although Inner Mongolia and Liaoning are
important regions for dairy farming in China and are

FIGURE 10
GPDC in different periods.
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supported by pertinent national policies, their low GPDC
indicates issues with management effectiveness, iterative pace,
and the promotion of dairy cow breeding technology. High-tech
entrepreneurship is the driving force of productivity. The
government should encourage enterprises to start their own
businesses by promoting and improving the business
environment (El Ghak et al., 2021). To promote GPDC, Inner
Mongolia and Liaoning should maximize their geographic and
policy advantages, advance technical change, pay attention to
staff training for dairy cows, and increase managerial
effectiveness. Various factors may contribute to Guangxi and
Shaanxi’s low technical efficiency and technological progress
indices. On one hand, the two regions are not dominant dairy
farming regions, have scarce natural resources, and need more
capacity to treat pollution. On the other hand, Guangxi is a region
home to ethnic minorities, making the promotion of aquaculture
technology challenging and the technical level of aquaculture
personnel low. The technical advancement indices of Guangxi
and Shaanxi increased under a common boundary at a slow-
growing average yearly rate of 0.10% and 0.17%, respectively.

In the past 17 years, the average value of the TC in each province
was low (0.9997 under the common frontier and 0.9984 under the
group frontier), while the EC value was higher (1.0001 under the
common frontier and 1.0006 under the group frontier), indicating
that the main factor restricting the improvement of the GPDC in
China is still technological progress. Excessive economic disparities
between regions are not conducive to economic development and
achieving carbon reduction targets (Wang et al., 2023b). China’s
regions vary in economic growth, industrial agglomeration,
breeding history, and natural resource endowment. To promote
the improvement of GPDC in China, the government should take
the lead in reducing regional disparities and promoting
technological innovation in underserved regions. More effective
methods include guiding dominant enterprises to settle down
and strengthening breeder skill training.

As shown in Figure 10, 26 provinces show different trends in
different periods, with great differences among provinces.
Combined with the development of dairy cows in China, the
period from 2004 to 2020 is divided into three stages: the first
stage is the rapid development stage from 2004 to 2007; the
second stage is the quality-driven stage from 2008 to 2015; and
the third stage is the steady progress stage from 2016 until now.
Under the double frontier, there are 12 provinces in the first
stage with GPDC values of more than 1, of which six are in the
eastern area. The eastern region has a location advantage
regarding dairy cows, and its economic development and
technological advancement are greater than those of the
central and western regions. The 2008 melamine issue caused
customers to become alarmed about dairy products. China
released many relevant policies to address the dairy cow. The
dairy cow brought about a significant reorganization, and the
dairy cow evolved as a result. The quality of fresh milk and
removing pollutants are considered more in dairy farming,
which has evolved from small-scale to medium- and large-
scale operations. In this setting, the dairy cow in the central
and western regions ushered in development chances, and
Qinghai, Yunnan, Guangxi, and other provinces placed
highly in GPDC in the second stage. As it moves into the
third stage, China pays greater attention to the
environmental protection of the aquaculture sector and
gradually closed low-quality farms between 2016 and 2020;
dairy farming has also undergone additional changes, and
breeding restrictions have been raised. The third level shows
blatant inequalities between provinces. Jiangsu, Heilongjiang,
and Yunnan rank at the bottom, and the GPDC has more
potential for improvement. Guangdong, Zhejiang,
Chongqing, and other provinces are at the top. Jiangsu and
Heilongjiang’s GPDC is low and primarily impacted by EC
restrictions. Technical efficiency may need to catch up with how
quickly technology advances.

FIGURE 11
Average TGR in different regions.

Frontiers in Environmental Science frontiersin.org13

Guo and Fu 10.3389/fenvs.2023.1164770

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1164770


4.4 TGR

As shown in Figure 11, the TGR reflects the gap between the
technological level under the group frontier and the technological
level under the potential common frontier under a specific
environmental system. When the TGR is closer to 1, it shows
that the actual technical level of the DMU is closer to the
technical level under the potential common frontier, that is, the
technical level is higher in the environment. From the regional level,
the average TGR of the three regions is less than 1; the TGR of the
eastern region is 0.9672, the central region is 0.9671, and the western
region is 0.9727. Among them, the TGR in the western region is
higher than that in the eastern and central regions, indicating that it
is close to the technical level under the potential common frontier
and reaches 97.27% of the GPDC under the potential best technical
level. However, the TGR in the eastern region is lower, but there is
still an opportunity for a 3.27% increase in efficiency. The eastern
region’s economy is growing, the industrial cluster effect is strong,
and complex businesses are progressively incorporating new
technology, but the care given to dairy cows could be better in
the western and central regions. From the interprovincial level, the
TGR of 26 provinces in China is greater than 0.9. The highest in
Yunnan Province is 0.9969, and the lowest in Tianjin is 0.9192,
indicating a small gap between the technical level of each province
and the potential best technological level. From a scale perspective,
large-scale culture in the eastern region has a higher TGR than
medium- and small-scale cultures, and its efficiency is more in line
with its theoretical ideal efficiency. In the center, the small-scale
TGR was 0.9753. The small-scale efficiency is near the efficiency
value under the common frontier, but the large-scale and medium-
scale efficiencies have greater potential for growth from 2012 to
2020, as evidenced by the fact that it has been higher than the large-
scale and medium-scale efficiencies. The western region’s large-scale
TGR is 0.9821, higher than the small- and medium-scales’. Large-
scale aquaculture thrives in the eastern and western regions, whereas
a small-scale cow is more productive in the middle region. The TGR
gap between the various regions is shrinking as well.

5 Conclusion and policy implications

The conclusions are as follows. 1) China’s GPDC demonstrated
a varying and negative pattern over time from 2004 to 2020, with
GPDC values of less than 1 in 2007, 2010, 2013, and 2019, with the
years 2007–2010 seeing the biggest decrease (2.26% at the common
frontier and 1.81% at the front of the group). The primary cause of
the low GPDC is the TC. This conclusion is contrary to the
conclusion drawn by Zhong et al. (2022a), who suggested that
China’s GPDC is on an upward trend. 2) Under the two-level
frontier, the GPDC exhibits a declining tendency in the spatial
direction from east to west to the middle. The middle and western
regions are mostly constrained by the TC, while the eastern region
benefits from the EC and TC. Provinces differ among one another.
The EC and TC promote Guangdong, Beijing, and Gansu while
restricting Inner Mongolia, Guangxi, Liaoning, and Shaanxi. 3)
Large-scale aquaculture varies greatly from region to region.
Although the efficiency values of medium- and small-scale
aquaculture are low and the GPDC of large-scale aquaculture

exceeds 1 in the eastern and western areas, it still needs to reach
the effective state in the center region. This conclusion also differs
from the results of Liu et al. (2022). They believe that small and
medium-sized green plants are on the rise. 4) Although there is still
potential for improvement in the eastern region by 3.27%, the TGR
in the western region is higher than in the eastern and central
regions. The efficiency of small-scale aquaculture is higher in the
central region, while large-scale aquaculture performs best in the
eastern and western regions. A trend is toward closing the TGR gap
between the three aquaculture scales across regions.

In light of the current dairy cow issue in China, the following are
some countermeasures and recommendations:

(1) Strengthen dairy farming technology innovation and low-
carbon technology promotion. On one hand, the government
can encourage the dairy industry to accelerate the adoption of
low-carbon technologies by providing financial incentives and
other policies that promote high-quality and sustainable dairy
farming development. It can increase government funding for
research institutions, create dairy farming-related research and
innovation teams, improve genetic testing capabilities, and
encourage iterative breeding technology upgrades. On the
other hand, as renewable energy has a significant inhibitory
effect on carbon dioxide emissions (Wang et al., 2022), the
government should actively establish a modern green
aquaculture industrial park and increase the effective use of
renewable energy such as wind and solar energies in the
breeding process (Wang et al., 2023c) to control carbon
emissions generated in the dairy farming process and
optimize the energy structure. At the same time, it promotes
the technological innovation of manure treatment and the
return of manure to the field, and organically combines dairy
farming and green agriculture to reduce carbon emissions.

(2) Optimize the scale and layout of the dairy industry. Each region
should adjust measures to the local conditions, improve the
regional planning and layout of dairy farming according to its
situation, and fully use the economic and geographical
environment and natural resources’ endowment to maximize
breeding benefits. We should support the development of large-
scale farming in terms of funds and policies, promote the
transition from medium-scale to large-scale farming, and
improve the industrial technology system of dairy cattle
farming through the effect of industrial agglomeration. In
addition, we should promote intensive dairy cow farming
technology, improve energy efficiency, and reduce carbon
emissions in the dairy cow breeding process. The western
region should continue to investigate breeding models that
are appropriate for the region’s development, and
appropriately strengthen large-scale and medium-scale
aquaculture. Moreover, we should organically combine the
dairy industry, dairy processing industry, and marketing
industry, create a dairy industry with local characteristics by
combining “online and offline,” and promote industry
development through brand effect. Improving milk quality
can also lead to increased efficiency.

This paper incorporates unexpected output into the GPDC
evaluation system and employs the MinDW-MML model to
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comprehensively measure the green total factor productivity of
China’s small, medium, and large-scale dairy industries under
environmental constraints. This paper is a comprehensive static
and dynamic perspective on the current state of the dairy industry in
various provinces. Finally, adaptive policy recommendations are
made to optimize China’s dairy industry’s green and low-carbon
development. It is a useful supplement to existing achievements and
a reference for the dairy industry’s future development and policy
guidance. Unfortunately, this paper still has limitations despite
tentative breakthroughs on some issues. In the future, we plan to
concentrate on it and improve it. To begin with, according to spatial
econometric theory, the flow of factors between different regions will
result in the spatial correlation of input–output activities. This paper
analyzes the GPDC of China based on regional heterogeneity but
does not consider the spatial correlation between regions and the
interaction between neighboring regions. In future research, it is
necessary to quantitatively study the spatial spillover effects of the
GPDC on different regions from the perspective of spatiotemporal
correlations. Second, today’s economic development is accompanied
by serious problems such as resource overdraft, ecological
degradation, and environmental pollution, which requires the
government to strengthen ecological supervision and protection
and the legal protection of the ecological environment. Therefore,
in future research, it is necessary to investigate the impact of
environmental regulation on the green total factor productivity of
the dairy industry in China.

Data availability statement

Publicly available datasets were analyzed in this study. These
data can be found at: https://data.cnki.net/yearBook/single?id=
N2006010336, https://data.cnki.net/ yearbook/Single/N2019120280,
and https://data.cnki.net/yearbook/ Single/N2021120010.

Author contributions

JG and YF contributed to the conception and design of the study.
FY organized the database, conducted the statistical analysis, and
wrote the first draft of the manuscript. JG wrote parts of the
manuscript and was responsible for the review and supervision of
the manuscript. All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it for publication.
All authors contributed to the article and approved the submitted
version.

Funding

This study was funded by the National Natural Science
Foundation of China (72274029 and 71774027) and the National
Social Science Foundation Major Projects of China (20&ZD169).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahmad, M., and Bravo-Ureta, B. E. (1995). An econometric decomposition of dairy
output growth. Am. J. Agric. Econ. 77, 914–921. doi:10.2307/1243814

Aigner, D., Lovell, C. A. K., and Schmidt, P. (1977). Formulation and estimation of
stochastic frontier production function models. J. Econom. 6, 21–37. doi:10.1016/0304-
4076(77)90052-5

Alvarez, A., and del Corral, J. (2010). Identifying different technologies using a latent
class model: Extensive versus intensive dairy farms. Eur. Rev. Agric. Econ. 37, 231–250.
doi:10.1093/erae/jbq015

Battese, G. E., Rao, D. S. P., and O’Donnell, C. J. (2004). A metafrontier production
function for estimation of technical efficiencies and technology gaps for firms operating
under different technologies. J. Product. Anal. 21, 91–103. doi:10.1023/B:PROD.
0000012454.06094.29

Briec, W. (1999). Hölder distance function and measurement of technical efficiency.
J. Product. Anal. 11, 111–131. doi:10.1023/A:1007764912174

Brümmer, B., Glauben, T., and Thijssen, G. (2002). Decomposition of productivity
growth using distance functions: The case of dairy farms in three European countries.
Am. J. Agric. Econ. 84, 628–644. doi:10.1111/1467-8276.00324

Cabrera, V. E., Solís, D., and del Corral, J. (2010). Determinants of technical
efficiency among dairy farms in Wisconsin. J. Dairy Sci. 93, 387–393. doi:10.3168/
jds.2009-2307

Cecchini, L., Venanzi, S., Pierri, A., and Chiorri, M. (2018). Environmental efficiency
analysis and estimation of CO2 abatement costs in dairy cattle farms in Umbria (Italy):
A SBM-DEA model with undesirable output. J. Clean. Prod. 197, 895–907. doi:10.1016/
j.jclepro.2018.06.165

Charnes, A., Cooper, W. W., and Rhodes, E. (1978). Measuring the efficiency of
decision making units. Eur. J. Oper. Res. 2, 429–444. doi:10.1016/0377-2217(78)90138-8

Charnes, A., Rousseau, J. J., and Semple, J. H. (1996). Sensitivity and stability of
efficiency classifications in data envelopment analysis. J. Product. Anal. 7, 5–18. doi:10.
1007/BF00158473

Cheng, L., Yin, C., and Chien, H. (2015). Demand for milk quantity and safety in
urban China: Evidence from beijing and harbin. Aust. J. Agric. Resour. Econ. 59,
275–287. doi:10.1111/1467-8489.12065

Chung, Y. H., Färe, R., and Grosskopf, S. (1997). Productivity and undesirable
outputs: A directional distance function approach. J. Environ. Manage. 51, 229–240.
doi:10.1006/jema.1997.0146

El Ghak, T., Gdairia, A., and Abassi, B. (2021). High-tech entrepreneurship and total
factor productivity: The case of innovation-driven economies. J. Knowl. Econ. 12,
1152–1186. doi:10.1007/s13132-020-00659-9

Färe, R., Grosskopf, S., Lindgren, B., and Roos, P. (1992). Productivity changes in
Swedish pharamacies 1980–1989: A non-parametric malmquist approach. J. Product.
Anal. 3, 85–101. doi:10.1007/BF00158770

Fisher-Vanden, K., Jefferson, G. H., Liu, H., and Tao, Q. (2004). What is driving
China’s decline in energy intensity? Resour. Energy Econ. 26, 77–97. doi:10.1016/j.
reseneeco.2003.07.002

Fuller, F., Huang, J.,Ma,H., andRozelle, S. (2006). Gotmilk? The rapid rise of China’s dairy
sector and its future prospects. Food Policy 31, 201–215. doi:10.1016/j.foodpol.2006.03.002

Jan, P., Dux, D., Lips, M., Alig, M., and Dumondel, M. (2012). On the link between
economic and environmental performance of Swiss dairy farms of the alpine area. Int.
J. Life Cycle Assess. 17, 706–719. doi:10.1007/s11367-012-0405-z

Jiang, N., and Sharp, B. (2015). Technical efficiency and technological gap of
New Zealand dairy farms: A stochastic meta-frontier model. J. Product. Anal. 44,
39–49. doi:10.1007/s11123-015-0429-z

Frontiers in Environmental Science frontiersin.org15

Guo and Fu 10.3389/fenvs.2023.1164770

https://data.cnki.net/yearBook/single?id=N2006010336
https://data.cnki.net/yearBook/single?id=N2006010336
https://data.cnki.net/%20yearbook/Single/N2019120280
https://data.cnki.net/yearbook/%20Single/N2021120010
https://doi.org/10.2307/1243814
https://doi.org/10.1016/0304-4076(77)90052-5
https://doi.org/10.1016/0304-4076(77)90052-5
https://doi.org/10.1093/erae/jbq015
https://doi.org/10.1023/B:PROD.0000012454.06094.29
https://doi.org/10.1023/B:PROD.0000012454.06094.29
https://doi.org/10.1023/A:1007764912174
https://doi.org/10.1111/1467-8276.00324
https://doi.org/10.3168/jds.2009-2307
https://doi.org/10.3168/jds.2009-2307
https://doi.org/10.1016/j.jclepro.2018.06.165
https://doi.org/10.1016/j.jclepro.2018.06.165
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1007/BF00158473
https://doi.org/10.1007/BF00158473
https://doi.org/10.1111/1467-8489.12065
https://doi.org/10.1006/jema.1997.0146
https://doi.org/10.1007/s13132-020-00659-9
https://doi.org/10.1007/BF00158770
https://doi.org/10.1016/j.reseneeco.2003.07.002
https://doi.org/10.1016/j.reseneeco.2003.07.002
https://doi.org/10.1016/j.foodpol.2006.03.002
https://doi.org/10.1007/s11367-012-0405-z
https://doi.org/10.1007/s11123-015-0429-z
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1164770


Lansink, A. O., and Reinhard, S. (2004). Investigating technical efficiency and
potential technological change in Dutch pig farming. Agric. Syst. 79, 353–367.
doi:10.1016/S0308-521X(03)00091-X

Latruffe, L., Fogarasi, J., and Desjeux, Y. (2012). Efficiency, productivity and
technology comparison for farms in Central and Western Europe: The case of field
crop and dairy farming in Hungary and France. Econ. Syst. 36, 264–278. doi:10.1016/j.
ecosys.2011.07.002

Leng, B.-B., Gong, J., Zhang, W., and Ji, X.-Q. (2017). Study on the measurement and
calculation of environmental pollution bearing index of China’s pig scale. IOP Conf. Ser.
Earth Environ. Sci. 94, 012052. doi:10.1088/1755-1315/94/1/012052

Li, B., and Wu, S. (2017). Effects of local and civil environmental regulation on green
total factor productivity in China: A spatial durbin econometric analysis. J. Clean. Prod.
153, 342–353. doi:10.1016/j.jclepro.2016.10.042

Li, R., Wang, Q., Liu, Y., and Jiang, R. (2021). Per-capita carbon emissions in
147 countries: The effect of economic, energy, social, and trade structural changes.
Sustain. Prod. Consum. 27, 1149–1164. doi:10.1016/j.spc.2021.02.031

Liu, C., Cui, L., and Li, C. (2022). Impact of environmental regulation on the green
total factor productivity of dairy farming: Evidence from China. Sustainability 14, 7274.
doi:10.3390/su14127274

Ma, H., Oxley, L., Rae, A., Fan, C., Huang, J., and Rozelle, S. (2012). The evolution of
productivity performance on China’s dairy farms in the new millennium. J. Dairy Sci.
95, 7074–7085. doi:10.3168/jds.2012-5529

Madau, F. A., Furesi, R., and Pulina, P. (2017). Technical efficiency and total factor
productivity changes in European dairy farm sectors. Agric. Food Econ. 5, 17. doi:10.
1186/s40100-017-0085-x

Meeusen, W., and van Den Broeck, J. (1977). Efficiency estimation from cobb-
douglas production functions with composed error. Int. Econ. Rev. 18, 435. doi:10.
2307/2525757

Mei, G., Gan, J., and Zhang, N. (2015). Metafrontier environmental efficiency for
China’s regions: A slack-based efficiency measure. Sustainability 7, 4004–4021. doi:10.
3390/su7044004

Moreira, V. H., and Bravo-Ureta, B. E. (2016). Total factor productivity change in
dairy farming: Empirical evidence from southern Chile. J. Dairy Sci. 99, 8356–8364.
doi:10.3168/jds.2016-11055

Newman, C., and Matthews, A. (2006). The productivity performance of Irish dairy
farms 1984–2000: A multiple output distance function approach. J. Product. Anal. 26,
191–205. doi:10.1007/s11123-006-0013-7

Njuki, E., Bravo-Ureta, B. E., and Mukherjee, D. (2016). The good and the bad:
Environmental efficiency in northeastern U.S. Dairy farming. Agric. Resour. Econ. Rev.
45, 22–43. doi:10.1017/age.2016.1

O’Donnell, C. J., Rao, D. S. P., and Battese, G. E. (2008). Metafrontier frameworks for
the study of firm-level efficiencies and technology ratios. Empir. Econ. 34, 231–255.
doi:10.1007/s00181-007-0119-4

Oh, D. (2010). A global Malmquist-Luenberger productivity index. J. Product. Anal.
34, 183–197. doi:10.1007/s11123-010-0178-y

Oh, D., and Lee, J. (2010). A metafrontier approach for measuring Malmquist
productivity index. Empir. Econ. 38, 47–64. doi:10.1007/s00181-009-0255-0

Olagunju, K. O., Sherry, E., Samuel, A., and Caskie, P. (2022). Unpacking total factor
productivity on dairy farms using empirical evidence. Agriculture 12, 225. doi:10.3390/
agriculture12020225

Reinhard, S., Knox Lovell, C. A., and Thijssen, G. J. (2000). Environmental efficiency
with multiple environmentally detrimental variables; estimated with SFA and DEA. Eur.
J. Oper. Res. 121, 287–303. doi:10.1016/S0377-2217(99)00218-0

Shen, Y., Yue, S., Sun, S., and Guo, M. (2020). Sustainable total factor productivity
growth: The case of China. J. Clean. Prod. 256, 120727. doi:10.1016/j.jclepro.2020.
120727

Sobczyński, T., Klepacka, A. M., Revoredo-Giha, C., and Florkowski, W. J. (2015).
Dairy farm cost efficiency in leading milk-producing regions in Poland. J. Dairy Sci. 98,
8294–8307. doi:10.3168/jds.2014-9030

Tian, X., Sun, F., and Zhou, Y. (2015). Technical efficiency and its determinants in
China’s hog production. J. Integr. Agric. 14, 1057–1068. doi:10.1016/S2095-3119(14)
60989-8

Wang, P., and Ji, J. (2017). Research on China’s mariculture efficiency evaluation and
influencing factors with undesirable outputs—An empirical analysis of China’s ten
coastal regions. Aquac. Int. 25, 1521–1530. doi:10.1007/s10499-017-0131-4

Wang, Q., Wang, L., and Li, R. (2023a). Trade protectionism jeopardizes carbon
neutrality – decoupling and breakpoints roles of trade openness. Sustain. Prod. Consum.
35, 201–215. doi:10.1016/j.spc.2022.08.034

Wang, Q., Wang, X., and Li, R. (2022). Does urbanization redefine the environmental
kuznets curve? An empirical analysis of 134 countries. Sustain. Cities Soc. 76, 103382.
doi:10.1016/j.scs.2021.103382

Wang, Q., Yang, T., and Li, R. (2023b). Does income inequality reshape the
environmental kuznets curve (ekc) hypothesis? A nonlinear panel data analysis.
Environ. Res. 216, 114575. doi:10.1016/j.envres.2022.114575

Wang, Q., Zhang, F., and Li, R. (2023c). Revisiting the environmental kuznets curve
hypothesis in 208 counties: The roles of trade openness, human capital, renewable energy and
natural resource rent. Environ. Res. 216, 114637. doi:10.1016/j.envres.2022.114637

Wang, Q., Zhang, H., and Zhang, W. (2013). A Malmquist CO 2 emission
performance index based on a metafrontier approach. Math. Comput. Model. 58,
1068–1073. doi:10.1016/j.mcm.2012.05.003

Wang, Y., Li, Y., Zhu, Z., and Dong, J. (2021). Evaluation of green growth efficiency of
oil and gas resource-based cities in China. Clean. Technol. Environ. Policy 23,
1785–1795. doi:10.1007/s10098-021-02060-9

Yan, Z., Wang, C., and Liu, T. (2020). An analysis of the environmental efficiency of
pig farms and its determinants—A field study from China. Environ. Sci. Pollut. Res. 27,
38084–38093. doi:10.1007/s11356-020-09922-7

Yao, X., Feng, W., Zhang, X., Wang, W., Zhang, C., and You, S. (2018). Measurement
and decomposition of industrial green total factor water efficiency in China. J. Clean.
Prod. 198, 1144–1156. doi:10.1016/j.jclepro.2018.07.138

Yu, Y., Huang, J., and Zhang, N. (2019). Modeling the eco-efficiency of Chinese
prefecture-level cities with regional heterogeneities: A comparative perspective. Ecol.
Model. 402, 1–17. doi:10.1016/j.ecolmodel.2019.03.012

Zhong, S., Li, J., Chen, X., and Wen, H. (2021a). A multi-hierarchy meta-frontier
approach for measuring green total factor productivity: An application of pig breeding
in China. Socioecon. Plann. Sci. 101152, 101152. doi:10.1016/j.seps.2021.101152

Zhong, S., Li, J., Chen, X., andWen,H. (2021b). Research on the green total factor productivity
of laying hens in China. J. Clean. Prod. 315, 128150. doi:10.1016/j.jclepro.2021.128150

Zhong, S., Li, J., and Qu, Y. (2022a). Green total factor productivity of dairy cow in
China: Key facts from scale and regional sector. Technol. Forecast. Soc. Change 183,
121949. doi:10.1016/j.techfore.2022.121949

Zhong, S., Li, J., and Zhang, D. (2022b). Measurement of green total factor
productivity on Chinese pig breeding: From the perspective of regional differences.
Environ. Sci. Pollut. Res. 29, 27479–27495. doi:10.1007/s11356-021-17908-2

Zhou, Y., Zhang, X., Tian, X., Geng, X., Zhang, P., and Yan, B. (2015). Technical and
environmental efficiency of hog production in China – a stochastic frontier production
function analysis. J. Integr. Agric. 14, 1069–1080. doi:10.1016/S2095-3119(14)60990-4

Zhou, Z.-Y., Tian, W.-M., and Zhou, J.-L. (2002). The emerging dairy economy in
China: Production, consumption and trade prospects. Australas. Agribus. Rev. 10, 1–17.
doi:10.22004/ag.econ.206159

Zhu, X., Chen, Y., and Feng, C. (2018). Green total factor productivity of China’s
mining and quarrying industry: A global data envelopment analysis. Resour. Policy 57,
1–9. doi:10.1016/j.resourpol.2017.12.009

Frontiers in Environmental Science frontiersin.org16

Guo and Fu 10.3389/fenvs.2023.1164770

https://doi.org/10.1016/S0308-521X(03)00091-X
https://doi.org/10.1016/j.ecosys.2011.07.002
https://doi.org/10.1016/j.ecosys.2011.07.002
https://doi.org/10.1088/1755-1315/94/1/012052
https://doi.org/10.1016/j.jclepro.2016.10.042
https://doi.org/10.1016/j.spc.2021.02.031
https://doi.org/10.3390/su14127274
https://doi.org/10.3168/jds.2012-5529
https://doi.org/10.1186/s40100-017-0085-x
https://doi.org/10.1186/s40100-017-0085-x
https://doi.org/10.2307/2525757
https://doi.org/10.2307/2525757
https://doi.org/10.3390/su7044004
https://doi.org/10.3390/su7044004
https://doi.org/10.3168/jds.2016-11055
https://doi.org/10.1007/s11123-006-0013-7
https://doi.org/10.1017/age.2016.1
https://doi.org/10.1007/s00181-007-0119-4
https://doi.org/10.1007/s11123-010-0178-y
https://doi.org/10.1007/s00181-009-0255-0
https://doi.org/10.3390/agriculture12020225
https://doi.org/10.3390/agriculture12020225
https://doi.org/10.1016/S0377-2217(99)00218-0
https://doi.org/10.1016/j.jclepro.2020.120727
https://doi.org/10.1016/j.jclepro.2020.120727
https://doi.org/10.3168/jds.2014-9030
https://doi.org/10.1016/S2095-3119(14)60989-8
https://doi.org/10.1016/S2095-3119(14)60989-8
https://doi.org/10.1007/s10499-017-0131-4
https://doi.org/10.1016/j.spc.2022.08.034
https://doi.org/10.1016/j.scs.2021.103382
https://doi.org/10.1016/j.envres.2022.114575
https://doi.org/10.1016/j.envres.2022.114637
https://doi.org/10.1016/j.mcm.2012.05.003
https://doi.org/10.1007/s10098-021-02060-9
https://doi.org/10.1007/s11356-020-09922-7
https://doi.org/10.1016/j.jclepro.2018.07.138
https://doi.org/10.1016/j.ecolmodel.2019.03.012
https://doi.org/10.1016/j.seps.2021.101152
https://doi.org/10.1016/j.jclepro.2021.128150
https://doi.org/10.1016/j.techfore.2022.121949
https://doi.org/10.1007/s11356-021-17908-2
https://doi.org/10.1016/S2095-3119(14)60990-4
https://doi.org/10.22004/ag.econ.206159
https://doi.org/10.1016/j.resourpol.2017.12.009
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1164770

	Green total factor productivity of dairy cows in China: essential facts from the perspective of regional heterogeneity
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 MinDW
	3.2 Meta-frontier–Malmquist–Luenberger index
	3.3 Data and variables

	4 Results and discussions
	4.1 Spatiotemporal dynamic characteristics of GPDC regions and scale under double frontiers
	4.2 Regional heterogeneity analysis of the GPDC
	4.3 GPDC spatiotemporal variation decomposition
	4.4 TGR

	5 Conclusion and policy implications
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


