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The combined pollution of microplastics (MPs) and persistent organic pollutants
(POPs) have attracted increasing attention from the international community in
recent years. MPs can affect the toxicity, bioenrichment rate and bioavailability of
POPs through adsorption and other interactions. Dechlorane Plus (DP) is a
chlorinated flame retardant and a typical. DPs used mainly in various polymer
materials, such as electrical wire and cable coating. The pollutions of MPs and DPs
(syn and anti isomers, syn-DP [s-DP] and anti-DP [a-DP]) are ubiquitously present in
the environment. However, the effect of MPs on the bioaccumulation of DP has not
been reported. In this study, thick-shell mussels (Mytilus coruscus) were exposed to
DPs (10 ng/L, DP10), DPs and polystyrene microplastics (PS) (10 ng/L DP +10 μg/L
PS, DP10/PS10; 10 ng/LDP+20 μg/L PS, DP10/PS20) for 28 days to investigate the
effect of MPs on DPs enrichment. Thick-shell mussels accumulated DPs in the
adductor muscle, gill, and gonad showed an increasing trend with time, but the
concentration of DPs in the visceralmass does not showa time-dependentmanner.
The concentration of DPs in the gonads and gills was significantly affected by the
concentration of PS (p < 0.05), but there was no significant correlation between the
concentration of DPs and the concentration of PS in the adductor muscle and
visceral mass (p > 0.05). Moreover, DPs showed selective enrichment of syn-DP in
thick-shell mussel tissues, and there was no significant correlation between this
result and PS concentration (p > 0.05). These findings provide a new entry point for
studying the interaction between microplastics and persistent organic pollutants in
marine organisms.
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1 Introduction

Dechlorane Plus (DP) is a highly chlorinated cycloaliphatic flame retardant that has been
manufactured since the 1960s (Gagné et al., 2017). It was introduced into the market as an
alternative to Mirex, but has been extensively used today as an important additive in plastics,
textiles, electronic appliances, plastic building materials, and other combustible products to
improve their fire resistance (Alaee et al., 2003; Wang et al., 2016; Wang et al., 2016). DP is a
low production volume chemical in the European Union but a high production volume
chemical in the United States due to an estimated annual production of more than 450 t
(Gagné et al., 2017). The production of DP in China was carried out by Anpon Company in
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Jiangsu with an estimated production of 300 t per year (Ren et al.,
2018). Although DP has been widely manufactured and used for
nearly 50 years, it received little attention until it was first discovered
in sediments from the Great Lakes of North America in 2006 (Hoh
et al., 2006). Further researches have shown that DP is present not
only in air, water, and sediment, but also in aquatic species, human
blood and hair, indicating that DP is a universal pollutant (Gauthier
and Letcher, 2009; Wang et al., 2010; Zhao et al., 2011; Abdel Malak
et al., 2018; Chen et al., 2018). DP has been determined in surface
sediments of the Pearl River Estuary and Daya Bay from South
China, and the concentrations were 0.004–2.05 ng/g dry weight (dw)
and 0.005–0.24 ng/g dw, respectively (Hu et al., 2022). It has also
been reported in fish, shrimp and bivalves of the Yellow River Delta
(YRD), China, with a concentration ranging from 0.5 to 29 ng/g of
lipid weight (lw) (Zhang et al., 2020). Furthermore, DP has been
reported in the Antarctic biota (Na et al., 2017), the natural
mangrove ecosystems of South China (Qiu et al., 2019), and the
marine benthos of Longyearbyen, Svalbard (Carlsson et al., 2018).

The commercial product of DP contains two stereoisomers (syn-DP
[s-DP] and anti-DP [a-DP]), and the a-DP accounts for approximately
75% of total DP. Due to differences in water solubility, photodegradation
efficiency and other properties, DP isomers exhibits a stereoselective
bioaccumulation manner in the environment (Moller et al., 2010; Zhao
et al., 2011). Most of the aquatic organisms showed a selective
enrichment of s-DP (Hoh et al., 2006; Tang et al., 2018; Zhang et al.,
2020), which may be due to its higher assimilation efficiency and lower
degradation efficiency (Hoh et al., 2006; Zhang et al., 2020). In addition,
the dominance of s-DP in aquatic biotas may affect by the DP
composition in environment matrices (Mo et al., 2013). The severe
effects of DP have been reported in many organisms (Wu et al., 2012; Li
et al., 2013a; Li et al., 2013b). Subacute toxicological results indicated that
prolonged skin exposure or inhalation of high concentrations of DP
could cause lung and liver tissue lesions (Wu et al., 2012; Li et al., 2013a;
Li et al., 2013b). A study of Cyprinus carpio has suggested that exposure
of carp embryos to concentrations of 30, 60 and 120 μg/L of DP after 3 h
of fertilization significantly affects the transcription of mRNA of genes
related to neural and skeletal development. Moreover, research shows
that DP is genotoxic to Mediterranean mussels, and could induce
oxidative stress and decrease cyclooxygenase activity in the blue
mussel (Gagné et al., 2017). Thus, it is critical to focus on the risk
and environmental fate of this pollutant (Chen et al., 2018; Zhou et al.,
2019).

The United Nations Environmental Programme (UNEP, 2014)
describes plastic debris in the marine environment as a key emerging
global environmental problem. Microplastics (≤5 mm) are ubiquitous
in the environment and have attracted widespread attention in recent
years (Farady, 2019; Tien et al., 2020). The characteristics of
microplastics depend on the raw material and chemical
composition, and low-trophic level fauna prefer to absorb small size,
high transparency of the microplastics (Wright et al., 2013) and are
transferred to higher trophic levels along the food chain, resulting in the
enrichment of microplastics in many marine organisms. Existing
studies have shown that in Mytilus edulis, smaller (3.0 µm)
polystyrene (PS) microspheres retain a stronger ability to transfer
from the gut cavity to the hemolymph than larger (9.6 µm) ones
(Browne et al., 2008). The particles then migrate through the
circulatory system to various tissues. Microplastics of 0.5 µm can
also be transferred from M. edulis to Carcinus maenas through

trophic transfer (Browne et al., 2008; Farrell and Nelson, 2013). In
addition to directly affecting the physiological functions of marine
organisms, MPs also have a highly hydrophobic surface that enable
them to act a vector of chemical transport into marine organisms. They
are highly compatible with and are capable of adsorbing hydrophobic
organic pollutants, which makes them potential carriers of persistent
organic pollutants, such as DP, polybrominated diphenyl ethers
(PBDEs), and polychlorinated biphenyls (PCBs) in the marine
environment (Cole et al., 2011; Besseling et al., 2013; Jeong et al.,
2018; Turner, 2018). Microplastics are reported to account for more
than 90% among marine plastic debris and have been identified in
many environmental matrices globally. Their environmental presence
and accumulation are increasing each year around the world due to the
increase in the world plastic production that also usually contains
increasing kinds of additives, such as the brominated flame retardants,
chlorinated flame retardants, and phthalates, which added to the
material to improve plastic characteristics. There is evidence that
microplastics can affect bioaccumulation or change the toxic effects
of organic pollutants by adsorption and interaction (Chen et al., 2017;
Zhu et al., 2019). A reduction in feeding activity and increased PCBs
bioaccumulation were observed at a low does of PS inArenicola marina
(Besseling et al., 2013). In addition, the presence of microplastic PS
(micro-PS) amplified the negative effect of decabromodiphenyl ether
(BDE-209) on hemocyte phagocytosis and histopathology of Chlamys
farreri, and the carrier role of micro-PS greater than its scavenger role
for BDE-209 (Bin et al., 2019). Gu et al. (2020) proposed that micro-PS
aggravates the adverse effects of 2, 2′, 4, 4′-tetrabromodiphenyl ether
(BDE-47) on physiological and defensive performance in Mytilus
coruscus (Gu et al., 2020).

The thick-shell mussel, M. coruscus, is an economically
important aquatic invertebrates that is widely distributed along
the coast of the East China Sea, especially on the coast of
Zhoushan, China (Wu et al., 2017). As a typical marine bivalve
mollusc,M. coruscus easily accumulates environmental pollutants in
the body due to its filter-feeding mode, offering an ideal indicator for
the long-term assessment of environmental pollution in a certain
area (Livingstone, 1991). In addition, their ability to accumulate and
tolerate high concentrations of pollutants has made them useful
biomonitoring tools for identifying temporal and geographical
pollution trends (Booij et al., 2002).

Ecotoxicological studies on micro-PS and DP are well-represented
in the literature. Unfortunately, there is little information on the
combined exposure of micro-PS and DP as pollutants and their
bioaccumulation in aquatic species, particularly in bivalves.
Therefore, in the present study, thick-shell mussels were exposed to
selected doses ofDP and PS, and the accumulation and stereoselectivity
of DP in the adductor muscle, gill, gonad and visceral mass were
analyzed to investigate the effects of PS on the bioaccumulation of DP
and to provide a basis for further research on the effects of interactions
between PS and DP on the health of aquatic organisms.

2 Materials and methods

2.1 Chemicals and materials

Individual solutions of s-DP (purity ≥ 98.0%, CAS 135821-03-
3), a-DP (purity ≥ 98.0%, CAS 135821-74-8) isomers (50 g/mL, in
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toluene), n-Hexane (water ≤ 0.01%, CAS 110-54-3) and acetone
(water = 0.5%, CAS 67-64-1) were purchased from ANPEL
Laboratory Technologies Inc. (Shanghai, China). Polystyrene
beads (diameter 20 µm) were obtained from the BaseLine
ChromTech Research Centre (Tianjin, China). S-DP and a-DP
were dissolved in an acetone solution to obtain 5 g/mL stock
solutions. The microplastics were diluted to 10 g/L with Milli-Q
water and stored at 4°C away from light for later use. Silica gel
(100–140 mesh) was supplied by ANPEL Laboratory Technologies
Inc. and activated overnight at 180°C. The solvents and reagents
used were of analytical grade. Anhydrous sodium sulfate (CAS 7757-
82-6) was purchased from Maclin Biochemical Technology
(Shanghai, China).

2.2 Experimental design

Adult mussels (n = 160, half female and half male) with shell
lengths of 70–90 mm were collected from Zhoushan City, Zhejiang
Province, China. Mussels were housed in a light- and temperature-
controlled aquaculture facility with a light: dark period of 14: 10 h
at a temperature of 19°C ± 1°C. Mussels were fed a phytoplankton
(4–10 µm) suspension (PhytōGold-S; Brightwell Aquatics, PA,
United States) twice daily. After 7 days of acclimatization in
artificial seawater, all mussels were randomly assigned to eight
tanks (20 L volume). Each closed-loop system provided 15 L of
aerated artificial seawater (Tropic Marin, Wartenberg, Germany)
with a salinity of 30 g/L for the duration of the experiment. Four
experimental conditions were set up in duplicate: control, 10 ng/L
DP (DP10), and DP + micro-PS (10 ng/L DP + 10 μg/L PS [DP10/
PS10], 10 ng/L DP + 20 μg/L PS [DP10/PS20]). The selection of the
concentration of DP is the same as in a previous study (Gagné
et al., 2017) and on the basis of the reported concentration of DP of
water samples from the coastal shore of northern China (up to
1.8 ng/L) (Jia et al., 2011). The entire volume of water in each
experimental tank was replaced daily with artificial seawater
containing the corresponding concentrations of PS and DP, and
the water quality was checked daily. Then, four mussels sacrificed
at the 3rd, 10th, 15th, 21st, and 28th day after changed the solution.
The gonads, adductor muscles, gills, and visceral masses of the
mussels were collected. All animals were treated in accordance
with the criteria outlined in the Guide for the Care and Use of
Laboratory Animals of the National Institute of Health. The Ethics
Committee of Zhejiang Ocean University approved all animal
experiments.

2.3 Sample preparation

The tissues were freeze-dried, weighed, and homogenized with
anhydrous sodium sulfate and the target DP was extracted from the
tissues using a 20 mL mixture of hexane and acetone (1:1, v/v). The
samples were centrifuged at 3,000 rpm for 3 min (Centrifuge 5,810,
Eppendorf, Hamburg, Germany), and the extraction procedure was
repeated three times. The extract was concentrated to 1 mL using a
rotary evaporator (R210, Buchi Laboratory Equipment Trading Ltd.,
Shanghai, China) and reconstituted to 10 mL with hexane. The lipid
content of the tissues was analyzed using the gravimetric method

(Kim et al., 2015). Briefly, 1 mL of lipid content was determined by
gravimetry. The remaining 9 mL was transferred to a new glass
centrifuge tube and sulfonated with 6 mL concentrated sulfuric acid
(China National Pharmaceutical Group, Beijing, China), shaken,
swirled, and separated at 5,000 rpm for 5 min. Subsequently, the
lower layer of the colored phase was discarded, and sulfonation was
repeated until the upper liquid level became clear. Milli-Q water was
then added, and the sample was centrifuged at 3,000 rpm for 3 min.
The supernatant was then concentrated at a reduced pressure at 35°C
in a rotary evaporator to a volume of 1 mL.

The extracts were cleaned onmulti-layer columns (1 cm internal
diameter, i.d.) that had been wet-loaded sequentially with 8 cm
deactivated silica gel (silica gel: Milli-Q water, w/w, 3%), 8 cm acidic
silica gel (silica gel: sulfuric acid, w/w, 44%), and 2 cm anhydrous
sodium sulfate from the bottom to the top. The column was
activated with 4 mL of hexane solution. After the extract solution
was added to the column, the rotary vial containing the sample
solution was eluted four times with 40 mL of hexane/
dichloromethane (1:1, v/v), and the eluent solution was then
added to the column until the extract solution almost entered the
filler, and the effluent was collected in a rotary flask. The purified
solution was concentrated to 200 µL using rotary evaporation for
Gas chromatography-mass spectrometry (GC-MS) analysis (Agilent
7890B-7000C, Agilent Technologies, Santa Clara, CA,
United States). The collected mixed solvent was rotary
evaporated to 1 mL, blown to near dryness under a gentle N2

stream (N-EVAP-112, Organomation, MI, United States), and
redissolved in 50 µL of hexane for GC-MS analysis.

2.4 Instrumental analysis

S-DP and a-DP were determined by GC-MS with a DB-5HT
capillary column (15 m × 0.25 mm × 0.1 μm, Agilent 122-5711,
Agilent Technologies, Santa Clara, CA, United States), using an
electron capture negative ionization (ECNI) source and in the
selective ion-monitoring (SIM) mode. Samples (1 µL) were
injected in the splitless mode at an injection port temperature of
280°C. The GC oven temperature started at 110°C for 1 min,
increased to 290°C (and maintained there for 1 min) at 25°C/min,
then ramped to 320°C at 30°C/min, and was held for 10 min. The
monitoring ions were 653.8 and 655.8. The target analytes were
quantified using an internal calibration method based on five-point
calibration curves for the individual compounds.

2.5 Quality assurance/quality control

All analytical procedures were monitored using strict quality
assurance and control measures. To avoid interference from
potential contaminants, program blanks were analyzed
simultaneously with samples, and the blank sample was tested
below the quantitative limit. The linear coefficient (r2) of the
correction curves for all targets was greater than 0.99. The
method detection limits (MDLs) of s-DP and a-DP were three
times the standard deviation of the blank target value. For
compounds that were not detected in the blank, MDLs were
defined as concentrations with a signal-to-noise ratio of 5:1. The
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average recovery of s-DP was 81.4% ± 5.1%, and that of a-DP was
85.6% ± 7.4%.

2.6 Statistical analysis

The results obtained were expressed as mean ± standard error.
Comparisons of bioaccumulations between point of time and among
different mixtures concentrations of polystyrene microplastics (PS)
on Dechlorane Plus (DP), using a two-way analysis of variance
(ANOVA) with interactions between the two factors (days and
concentration), followed by the Tukey multiple comparison test. A
p-value <0.05 was considered statistically significant.

3 Results

3.1 Dechlorane plus quantification in mussel
tissues

Dechlorane Plus was not detected in any of the tissues tested
from the thick-shell mussels of the control group. All concentrations
are reported as means ± SE.

3.1.1 Visceral mass dechlorane plus concentrations
DP concentrations in the visceral mass of thick-shell mussels

increased in the first 15 days of exposure in all three treatment
groups and then decreased in the remaining exposure time in the
DP10 and DP10/PS20 group (Figure 1A). The highest DP

concentration in the DP10, DP10/PS10 and DP10/PS20 group
appeared on the 15th day, with the value of 761.00 ± 81.53,
707.20 ± 153.30, 673.30 ± 100.20 ng/g dw, respectively (Table 1).
The lowest concentration of DP in visceral mass has been detected in
the DP10/PS20 group, except on the 3rd day of exposure.

A two-way ANOVA of the obtained data revealed that the
bioaccumulation of DP in visceral mass was only significantly
affected by exposure time (p < 0.01), but not by PS
concentration (p = 0.5095). In addition, there was no significant
difference in DP concentrations between the three groups on the
same days of exposure.

3.1.2 Gonadal dechlorane plus concentrations
DP concentrations in the gonad of thick-shell mussels were

increased throughout the exposure period in the DP10 and DP10/
PS10 groups, while the DP level increases during the first 15 days
and then decreases in the DP10/PS10 group (Figure 1B). The
maximum value of DP concentrations in the gonad of thick-shell
mussels of DP10, DP10/PS10 and DP10/PS20 were 12.76 ± 3.99,
15.64 ± 3.44 and 9.68 ± 3.42 ng/g dw, respectively (Table 1). DP
concentrations in the gonad of the same number of exposure days
decreased from DP10 to DP10/PS10 to DP10/PS20 expect the
15th day. Different from the situation in the visceral mass,
bioaccumulation of DP in the gonads was significantly affected
by both exposure time and PS concentration (p < 0.05).

3.1.3 Dechlorane plus concentrations in gill tissues
The addition of microplastics and longer exposure times

significantly increased DP enrichment in the gills (two-way

FIGURE 1
Concentrations (ng/g, dw) of Dechlorane Plus in different tissues of thick-shell mussels after exposure phases. Note: (A) Visceral mass; (B) Gonad;
(C) Gill; (D) Adductor muscle; PS, Polystyrene; DP, Dechlorane Plus. Results are expressed as the mean concentration (n = 4).
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analysis of variance, p < 0.001). DP bioaccumulation in the thick-
shell mussel gills of the three experimental groups showed a time-
dependent increase during the 28 days of exposure (Figure 1C). DP
concentrations in gills from DP10, DP10/PS10 and DP10/
PS20 groups ranged from 1.52 ± 0.33 to 151.5 ± 11.56, 3.41 ±
1.64 to 341.40 ± 41.55 and 4.82 ± 1.10 to 67.11 ± 16.69 ng/g
dw,respectively (Table 1). Specifically, concentrations of DP
increased in the 28 days approximately 100 times in the
DP10 and DP10/PS10 group and increased approximately
14 times in the DP10/PS20 group. Gills of the thick-shell
mussel in DP10/PS10 group accumulated more DP than the
other two groups Figure 2.

3.1.4 Adductor muscle dechlorane plus
concentrations

The DP enrichment in the adductor muscle tissues was
similar to that in the gills, with a slow increase in
concentration at the 3rd day to the 15th day and a dramatic
increase in the following 13 days (Figure 1D). DP concentrations
in the adductor muscle significantly affected by exposure time
(p < 0.01). On day 28, maximum DP concentrations were
observed in DP10, DP10/PS10 and DP10/PS20 group with the
values of 42.51 ± 10.37, 61.2 ± 10.45 and 67.96 ± 17.43 ng/g dw,
respectively (Table 1).

3.2 Comparison of s-DP and a-DP
proportion in tissues

A selective enrichment of DP was observed in all tissues of thick-
shell mussels throughout the period of the exposure experiment,
with the fanti (fraction of a-DP to ΣDP) value ranging from 0.18 to
0.40, 0.31 to 0.48, 0.24 to 0.42, and 0.27 to 0.50 in visceral mass,
gonads, gills, and adductor muscle, respectively. There were no
significant differences in the fanti values between different tissues
(p > 0.05).

Since the two individual DP isomers solution were used in the
exposure experiments, the proportions of the two isomers are equal
(fanti = 0.5). Almost all four tissues showed selective enrichment of
s-DP. On the 3rd day of exposure, fanti showed a tendency to
decrease with the increasing of PS concentration in the four
tissues, but this trend disappeared with the duration of the
exposure experiment.

4 Discussion

Microplastics are small, have a large specific surface area, and are
strongly hydrophobic, making them ideal carriers for many
pollutants in the environment. Various POPs, such as PCBs,
dichlorobiphenyl trichloroethane (DDT), hexachlorocyclohexanes
(HCHs), and polycyclic aromatic hydrocarbons (PAHs) have been
detected on microplastics from beaches around the world (Ogata
et al., 2009; Hirai et al., 2011; Heskett et al., 2012; Rochman et al.,
2013). It is widely believed that microplastics can affect the
environmental behavior of organic pollutants and have a
significant influence on the key processes of migration,
transformation, and bioenrichment (Lee et al., 2014). Studies
have found substantial POP enrichment in polymers, where
concentrations are often more than 100 fold their concentrations
in solution (Lohmann, 2017). In addition, aquatic organisms are
prone to ingesting microplastics carrying organic pollutants during
the feeding process (Egbeocha et al., 2018).

Until now, the effects of PS on the bioaccumulation of frequently
detected POPs, DPs in the thick-shell mussel tissues are still
unknown. The result of the experiment indicated that no
significant effects of PS on the distribution of DP among tissues
of thick-shell mussel were observed.

A higher concentration of DP accumulated in the visceral mass
of the three treatment groups after 10 days of exposure. This may
be attributed to the fact that the visceral mass in this study
contained the liver and the intestinal tract, which are usually

TABLE 1 Concentrations (ng/g, dw) of Dechlorane Plus in different tissues of thick-shell mussels.

D3 D10 D15 D21 D28

Visceral mass DP10 1.88 ± 0.69 95.01 ± 58.23 761.00 ± 81.53 523.00 ± 70.70 200.20 ± 81.49

DP10/PS10 42.48 ± 8.99 19.50 ± 3.10 707.20 ± 153.30 418.60 ± 35.59 467.30 ± 92.10

DP10/PS20 2.39 ± 1.14 11.99 ± 4.67 673.30 ± 100.20 353.60 ± 62.22 143.60 ± 49.52

Gonad DP10 0.27 ± 0.06 7.89 ± 1.25 10.34 ± 3.26 12.09 ± 5.46 12.76 ± 3.99

DP10/PS10 0.25 ± 0.09 6.90 ± 1.58 6.56 ± 1.51 6.57 ± 1.70 15.64 ± 3.44

DP10/PS20 0.26 ± 0.06 4.51 ± 1.45 9.68 ± 3.42 6.13 ± 2.01 5.05 ± 0.60

Gill DP10 1.52 ± 0.33 1.90 ± 0.49 18.43 ± 4.01 70.80 ± 8.53 151.5 ± 11.56

DP10/PS10 3.41 ± 1.64 8.06 ± 3.38 20.80 ± 4.30 55.01 ± 13.80 341.40 ± 41.55

DP10/PS20 4.82 ± 1.10 8.09 ± 3.28 16.44 ± 0.98 50.37 ± 18.53 67.11 ± 16.69

Adductor muscle DP10 0.82 ± 0.16 0.57 ± 0.07 2.72 ± 0.80 34.25 ± 8.31 42.51 ± 10.37

DP10/PS10 1.34 ± 0.41 1.07 ± 0.39 1.61 ± 0.17 23.88 ± 9.11 61.20 ± 10.45

DP10/PS20 0.42 ± 0.16 1.17 ± 0.25 2.09 ± 0.65 10.36 ± 2.31 67.96 ± 17.43
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the sites where organisms have higher concentrations of POPs due
to the high amounts of fat and the transformation of MPs, e.g.,
after 7 days exposure, all three types of MPs (PE, PP, PVC) were
identified in the liver and intestinal tract of zebrafish but none MPs
were observed in the brain and gonad, also, the concentration of
triclosan in the gut (191.56 μg/g) and liver (63.92 μg/g) was higher
than that in the brain (21.32 μg/g) and gonad (23.19 μg/g) (p <
0.05) of the zebrafish (Sheng et al., 2021). Furthermore, the
concentration in the visceral mass of DP10/PS10 group was
higher than in the other two groups. Previous studies have
reported similar results of polychlorinated biphenyls (PCBs),
where a low concentration of microplastics (the PS
concentration is equivalent to 0.074% DW PS in sediment) can

improve the bioenrichment and toxicity of POPs, but at higher
doses (7.4% DW PS in sediment), bioaccumulation decreased
compared to the low dose (Besseling et al., 2013).

The DP concentration in the gills follows that of the visceral
mass, indicating that gill has a stronger DP enrichment ability in this
exposure experiment. This may be due to the filter feeders filtering
and ingesting food and pollutants in water through their gills.
Microplastics adsorb DP and are ingested during the feeding
process, leading to an increase in DP content in the gills (Fossi
et al., 2014). DP bioaccumulation in gill of three treatment groups is
similar to that of visceral mass, briefly, a low concentration of PS
facilitates the DP enrichment, while a higher concentration of PS
reduced the enrichment in the gills.

FIGURE 2
The proportion of syn-DP and anti-DP in different thick-shell mussel tissues of each experimental group after exposure phases.
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DP concentrations in the gills and adductor muscles of the thick-
shell mussel showed a time-dependent increased, especially from the
15th to 28th day. The result may suggest that co-exposure-treated
mussels exhibited only a moderate increase during the exposure
phases. The rapid uptake in the gills and adductor muscles may be
explained by the direct contact of these tissues with chemicals
dissolved in water (Banni et al., 2017; Lucia Pittura et al., 2018).

Of the four tissues, the gonad has the lowest DP concentration,
possibly because it could not adsorb the pollutant directly from
surrounding seawater like other tissues. The DP concentration in the
DP10 group was higher than in the other two groups with a co-
presence of PS, which may be due to the negative concentration
gradient between the pollutants loaded onto microplastics and those
in biological lipids (Magara et al., 2018). Additionally, the result may
suggest a reduction in DPmigration ability in vivo that caused by the
interaction between DP and PS in other tissues. But further research
is needed to supply evidence for that.

In this study, two DP monomers were used in the exposure
experiments. Therefore, the DP composition in the mussels reflects
the selective enrichment of the two DP isomers, regardless of the
proportion of s-DP and a-DP in industrial DP products. The results
showed that on day 3, some individuals in the mixed-exposure group
of PS and DP had an fanti value of 1 in the adductor muscle, possibly
because the concentration of s-DP was below the detection limit, a
similar result was observed in exposure with low concentration DP
(0.001 ng/L) to the blue mussel (Gagné et al., 2017). Because the
response factor of a-DP on common GC-MS is higher than that of
s-DP, when the total DP content is low, a-DP can be detected, while
s-DP cannot (Ghelli et al., 2021). Additionally, on day 3, the
proportion of a-DP in the total DP of each tissue in the
experimental group treated with co-exposure was lower than in
the group treated with DP alone. The reason for this phenomenon
may be similar to the enrichment of s-DP in Oncorhynchus mykiss,
and s-DP has higher assimilation efficiency and lower purification
speed compared with a-DP (Tomy et al., 2008). In addition, selective
enrichment of s-DP was found in all the tissue types, which suggests
the selective enrichment of s-DP in aquatic organisms (Hoh et al.,
2006; Klosterhaus et al., 2012) and the possible existence of selective
metabolism or excretion of a-DP (Zeng et al., 2014; Tang et al., 2018).
However, the fanti value increased slightly with increasing exposure
time, and the concentration of a-DP in some individual tissues was
even greater than that of s-DP on the end of the experiment.
Continuous exposure to pollutants may damage the metabolic
system of mussels, thus affecting the selective metabolism of a-DP.
In terms of the overall DP composition, fanti values (in increasing
order) in different tissues were visceral mass, gills, adductor muscles,
and gonads, which might be caused by the differences in fat content
and metabolic rate of DP in the different tissues. The selective
enrichment of DP was affected by the DP concentration in
organisms (Chen et al., 2013), tissue fat content (Peng et al., 2012),
and other factors, but not by the addition of microplastics.

5 Conclusion

The co-exposure of DP and PS in thick-shell mussels resulted in a
time-dependent bioaccumulation of DP. The concentration of DP in all
tissues, except the visceral mass gradually increased with increasing

exposure time. The concentration of DP in the visceral mass first
increased and then decreased after 15 days of exposure, which may be
due to liver detoxification. PS significantly affected DP bioaccumulation
in the gonads and gills, but did not significantly affect the
bioaccumulation of DP in the visceral mass and adductor muscles,
which might be caused by the filter-feeding habit of mussels and the
transfer of DP in vivo. The results of the composition of the DP isomer
in thick-shell mussels showed that s-DP was selectively enriched in all
mussel tissues regardless of the concentration of PS in the exposed
group, whichwas similar to the results of the selective enrichment of DP
in the environment. In view of the increased production and increasing
detection of both DP and PS in aquatic environment around the world,
the combined pollution of PS and DP should be a subject of long-term
monitoring; furthermore, the toxicity of the combined pollution of PS
and DP to aquatic organisms would also require further research.
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