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Changes in land surface properties during urbanization have a significant impact
on variations in precipitation. Little research has been carried out on spatial
heterogeneity and influence strength of the driving factors of precipitation
changes at different urbanization scales. Using a trend analysis and multi-scale
geographically weighted regression, this study analysed the spatial heterogeneity
and impact scale of driving factors of precipitation changes in 156 urban units in
the Beijing-Tianjin-Hebei urban agglomeration region (Jing-Jin-Ji). In summer,
RAD (radiation), RHU (relative humidity), WIN (wind speed), and POP (urban
population density) were found to act on a small regional scale, AOD (aerosol
optical depth) on a medium regional scale, and NDVI (normalized difference
vegetation index), NLI (night time light intensity), UHI (urban heat island intensity),
and AREA (urban area size) on a global scale. In winter, AREA and WIN acted on a
medium regional scale, UHI on a large regional scale, and AOD, NDVI and NLI on a
global scale. Across thewhole year, NDVI and AREA had amedium regional impact
and NLI a large regional one. Variations in natural factors, such as RAD and RHU,
had a great influence on the spatial heterogeneity of precipitation changes,
whereas human factors, such as NLI and UHI, had a small influence. In
summer, AOD mainly affected Tangshan and Qinhuangdao in the northeast
and Cangzhou in the southeast of the Jing-Jin-Ji. RHU and AREA primarily
affected the cities of Handan and Xingtai. In winter, NLI, AREA, WIN, and UHI
had significant effects in the cities of Handan and Xingtai, with AREA being the
most important factor. In the Shijiazhuang-Hengshui area, RAD and NLI played a
significant role; in the Beijing-Zhangjiakou-Chengde area, the most important
factor affecting precipitation changes was the variation in POP. These results
provide a scientific basis for flood disaster risk management in the Jing-Jin-Ji and
the establishment of differentiated climate policies in different cities.
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1 Introduction

Urbanization is rapidly expanding worldwide (Zhang and Seto,
2011; Elhacham and Alpert, 2021; Koroso et al., 2021; Ouyang et al.,
2021; Zhou et al., 2022). According to a report by UN-Habitat issued
in 2022, 56% of the global population now lives in urban areas.
Although COVID-19 has had a greater impact on urban areas, it will
not affect the progress of urbanization, and the proportion of the
global urban population will reach 68% by 2050 (UN-Habitat,
2020b). Further, in the process of urbanization the land area
used for urban construction is expanding, and the speed of urban
expansion exceeds the increase in the urban population. According
to the results of a global sampling survey of 200 cities with
populations of more than 100,000 people from 1990 to 2015, the
urban area of developed countries increased 1.8-fold during that
time period, while the urban population increased 1.2-fold. Relative
to the population, urban land area increased by a factor of 1.5,
whereas the area expansion was 3.5 times faster than the population
growth in developing countries. Between 2015 and 2050, urban land
expansion in developed and developing countries is expected to
increase 1.1-fold and 2.5-fold, respectively, despite effective
planning and management measures (UN-Habitat, 2020a).

The increase in the urban population, construction, and
expansion of land use has greatly changed the natural
environment. Urban surface albedo, evapotranspiration, soil
moisture, surface roughness, earth-air flux exchange, energy, and
water cycle changes all affect the atmospheric water thermal
equilibrium, and thus have a significant influence on precipitation
(Huang et al., 2022; Oleson et al., 2018; Seino et al., 2018; Song et al.,
2021; Su et al., 2021; Sun et al., 2021; Yuan et al., 2022; Yuan et al.,
2021; Zhang et al., 2018; Zhang Y. Z. et al., 2017; Zhao et al., 2014). In
turn, variation in the amount, intensity, and frequency of precipitation
in urban areas greatly affects the urban population, economy,
infrastructure, and environment (Peleg et al., 2022; Zhang et al.,
2018). Many studies have shown that when increases in urban heat
island intensity (UHI) enhancement and aerosol concentration are
superimposed with climate change, the impact of urbanization on
extreme precipitation events is amplified (Seino et al., 2018; Zhang
et al., 2018). Their frequency and intensity are aggravated (YuM. et al.,
2018; Zhang et al., 2018; Huang et al., 2022; Tang et al., 2022), the
probability of urban flood occurrence increases (Glisan et al., 2014;
Zhang et al., 2018), and densely populated urban areas are more
vulnerable to extreme weather conditions (Yu R. et al., 2018; Debbage
and Shepherd, 2019; Zhang et al., 2019). Urbanization intensifies
urban precipitation variability and enhances the occurrence of events
such as typhoons or hurricanes, making the risk of urban floods
several times higher than in suburban areas (Zhang et al., 2018). For
example, the storm that occurred in Beijing on 21 July 2012 was the
most serious storm in more than 60 years. Mountain floods and
building collapses took at least 77 people’s lives and forced nearly
60,000 people to evacuate their homeland, causing direct economic
losses of about 10 billion yuan (about 1.6 billion US dollars) (Qiu,
2012). This is a general statement about rains and urbanization
(https://www.nature.com/news/urbanization-contributed-to-beijing-
storms-1. 11086). Similarly, Tokyo (Uchiyama et al., 2018), Houston
(Zhang et al., 2018), Atlanta (Debbage and Shepherd, 2019), Mumbai
(Paul et al., 2018; Patel et al., 2019), Berlin (Lorenz et al., 2019), and
other cities have experienced extreme precipitation exacerbated by

urbanization. Meyer et al. (2009) showed that the occurrence
probability of and expected loss following extreme urban
rainstorms exponentially increased with the increase in rain
intensity and rainfall, which could have a serious impact on urban
traffic, residents’ lives, and life and property safety. Therefore,
studying the impact of urbanization on precipitation and clarifying
the underlying key factors can provide a scientific basis for flood
disaster risk management and formulation of differentiated climate
policies for cities in different regions.

To date, many studies have been conducted to reveal the main
driving factors influencing the effect of urbanization on
precipitation from different perspectives, such as urban heat
island (UHI) (Gu and Li, 2018; Yang et al., 2019; Steensen et al.,
2022; Yang and Yao, 2022), aerosol optical thickness (Han et al.,
2012; Zhong et al., 2017; Sarangi et al., 2018; Fan et al., 2020; Li et al.,
2022), underlying surface changes (urban impervious area,
vegetation cover, etc.) (Liu et al., 2020; Li et al., 2022), and
anthropogenic heat emissions in cities (Li et al., 2016; Dimitrova
et al., 2019). Some scholars have also revealed the physical
mechanism of the effects of urbanization on precipitation using
model simulations, suggesting that urbanization leads to friction
velocity (Zhao et al., 2014; Zhang et al., 2018; Li C. et al., 2019).
Furthermore, sensible and latent heat (Zhang et al., 2009) are said to
be one of the main factors influencing precipitation changes in
urban and suburban areas. Wei et al. (2020, 2022) combined socio-
economic and natural factors to reveal the key factors affecting
precipitation in the Beijing-Tianjin-Hebei urban agglomeration
(Jing-Jin-Ji) region across seasons through assessment of the co-
action of factors (Wei et al., 2022), single factors, and the interaction
among them (Wei et al., 2020).

So far, studies on the effects of urbanization on precipitation
have made many achievements; however, most scholars primarily
focussed on a single city or factor analysis of urban rainfall changes,
the physical mechanism behind certain precipitation changes (Yu
M. et al., 2018; Song et al., 2019; Yang et al., 2019; Steensen et al.,
2022), and used different scales for the city’s for long-term data.
Additionally, they are characterised by the lack of large mesoscale,
and the research results may have some contingency, which presents
a poor baseline for long-term urban planning and climate policy-
making. In addition, there are significant differences in the degree of
urbanization and economic development between different regions
and cities, as well as in human activity intensity and underlying
surfaces. Hence, the key factors affecting urban precipitation
changes are not homogenous. Moreover, different combinations
of influencing factors may be present in different geographical
regions, and the relationship between these influencing factors is
spatially non-stationary (Wei et al., 2020). Therefore, the structure
and relationship between influencing factors varies between
geographical locations. In addition, the influence of natural
factors, such as wind speed, precipitation, and surface vegetation
changes, leads to spatial heterogeneity in the impact of urbanization
on precipitation, which may be significant on a regional scale, but
not a broader one. In addition, the impact of certain factors may be
trans-regional and have different spatial scales. Thus, it is necessary
to consider the scale of the factors to study the impacts of
urbanization on precipitation. However, there are few studies on
spatial heterogeneity and the specific influence of the various driving
factors of the effects of urbanization on precipitation. Accordingly,
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scientific measurement of the spatial heterogeneity and impact scale
of different influencing factors of precipitation have become a major
scientific problem that needs to be solved urgently.

Currently, geographically weighted regression (GWR) is frequently
used to reveal the spatial heterogeneity and impact scale of precipitation.
However, because of the fixedGWRbandwidth, the spatial scale of each
factor cannot be determined. With the development of science and
technology, a newmulti-scale geographically weighted regressionmodel
(MGWR) has recently emerged (Fotheringham et al., 2019). Compared
with theGWR, theMGWRhas the advantage that each variable can not
only generate its own level of spatial smoothness but also search for the
optimal bandwidth, which can be used as an indicator for the spatial
scale of each process, through an adaptive search method. Thus, more
accurate and useful spatial process models can be generated
(Fotheringham et al., 2019; Li et al., 2020; Li and Fotheringham,
2020). For example, at present, housing price prediction includes
numerous influencing factors and complex interrelationships (Shen
et al., 2020), air quality (Fotheringham et al., 2019;Wei et al., 2021), and
manufacturing location choice analysis (Yu et al., 2019). The MGWR
has proven to be a reliable tool for revealing the spatial heterogeneity of
geographical factors, but it has not yet been applied to study the effects
of urbanization on precipitation.

Accordingly, the aim of this study was to apply an MGWR to
explore the spatial differentiation characteristics and scale of
precipitation changes as well as their key driving factors in
156 urban units located in the Jing-Jin-Ji from 2000 to
2018 using natural and socio-economic data on its urbanization.
Then, to identify the importance ranking of the factors affecting
precipitation in major cities (herein referred to as representative
regions), this study investigated: 1) the spatial heterogeneity of the
factors influencing precipitation in the Jing-Jin-Ji between 2000 and
2018 and the scale of their influences; 2) the spatial agglomeration
effect of the scope of the impact factors and the existence of regions
with two or more superimposed impact factors; and 3) the most
important driving factors. The results of this study provide a basis
for the establishment of climate policies for the Jing-Jin-Ji region.

2 Materials and methods

2.1 Study area

This study chose 156 urban units in the Jing-Jin-Ji region, China,
as the target area (Figure 1) and attempted to summarise the urban
precipitation changes to provide a scientific basis for the coordinated
development of cities in this region. The Jing-Jin-Ji was selected
because this region has a large population, is one of the most densely
populated areas globally, and has experienced rapid urbanization in
recent decades. From 2000 to 2018, the urban area of the Jing-Jin-Ji
has increased by 9450.77 km2, which is 2.5 times its growth rate
between 1980 and 2000. Additionally, this region contains cities of
different sizes, including large, medium, and small ones. The use of
long-term data based on a large urban dataset can compensate for
the shortcomings of previous case studies focussing on single cities
and excluding conclusions of contingency. Further, the region is
dominated by plains, in which most of its cities are located. Thus, the
climate differences between cities are relatively small, suggesting that
the influence of the regional climate (climate change) can be

excluded. Lastly, this region is one of the areas with the highest
degree of urbanization in China. With a developed economy and
close development among regional cities, it is representative of
coordinated regional development. The development level and
management of cities can provide a reference for the coordinated
development of other cities at different levels in the near future.

2.2 Data sources

Considering the representativeness of factors and the
significance of changes with urban development, nine factors
were selected: urban area size (AREA), population density (POP),
aerosol optical depth (AOD), night time light intensity (NLI), urban
heat island (UHI), normalised difference vegetation index (NDVI),
radiation (RAD), relative humidity (RHU), and wind speed (WIN).
Wei et al., 2020, Wei et al., 2022 proved that changes in these nine
factors have significant impacts on urban precipitation. They have
discussed the key factors of different precipitation changes in various
urban units in the Jing-Jin-Ji taking into account single factors,
interactions between factors, and comprehensive effects of all
factors. However, they did not investigate the spatial distribution
characteristics of the heterogeneity of these factors across seasons,
the scope of their influence, and whether there is a spill-over effect.
Accordingly, here the rate of change of precipitation in different
seasons from 2000 to 2018 was taken as the dependent variable,
while the different seasonal change rates of the nine variables were
taken as the independent variables in the MGWR, allowing for
investigation of the spatial heterogeneity and scale of the influencing
factors of precipitation in different cities in the Jing-Jin-Ji.

Five-phase remote sensing monitoring data on land use and
cover status in 2000, 2005, 2010, 2015, and 2018 with a spatial
resolution of 30 m were obtained from the Data Center for
Resources and Environmental Sciences, Chinese Academy of
Sciences (http://www.resdc.cn/). The urban area of each unit was
calculated according to the AREA occupied by urban patches in the
land use data for each period. POP was within the limits of each
urban unit according to statistics from NASA’s Socioeconomic Data
Center (http://sedac.ciesin.columbia.edu/data/set/gpw-v4-
population-density-rev10), and had a spatial resolution of 30 km.
NLI was the mean value of the night light intensity index of each
town unit. The annual composite data were obtained using DMSP-
OLS after calibration and time correction, and the spatial resolution
was 1 km. AOD data were obtained from NASA’s latest air pollution
data (https://www.nasa.gov/), having a spatial resolution of 1 km.
NDVI, drawn from the Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences (http://www.
resdc.cn/DOI/doi. aspx?DOIid = 50), comprised monthly and
yearly data from 2000 to 2018 with a spatial resolution of 1 km.
Land surface temperature data were obtained using remote sensing
inversion products from the Geospatial Data Cloud (http://www.
gscloud.cn/), combining monthly surface temperatures from
DIDLT1M with a spatial resolution of 1 km and calculating the
UHI from the difference between urban and suburban average
temperatures. Since relatively dense small cities and towns were
included in this study, the 1 km resolution of the different types of
data could provide us with sufficient spatial details for comparisons.
RAD, RHU, WIN, and precipitation data from the China National
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Weather Service (http://data.cma.cn/data/detail/dataCode/A.0012.
0001.html) were obtained using ANUSPLIN software (https://
fennerschool-anu-edu-au.translate.goog/research/products/
anusplin?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=zh-CN&_x_tr_
pto=wapp) interpolation.

2.3 Methodology

2.3.1 Extraction of urban units in the Jing-Jin-Ji
In this study, based onmulti-source data, urban boundary and non-

urban land patches were combined and screened according to the
degree of patch continuity and the influence of the ocean or cities in
other provinces. Continuous patches were taken as research units, and
those affected by seawater or inaccurate classifications were excluded.
Thus, through screening and merging, 156 urban units were identified
(Figure 1B).

2.3.2 Measuring the impact of urbanization on
precipitation

To measure the impact of urbanization on precipitation,
ANUSPLIN software was used to interpolate meteorological data.
The average precipitation per unit area in different cities across time
periods was extracted from the urban boundary in 2000, and the
precipitation of the 10 km buffer zone extracted from outside the urban
unit boundary in 2018 was used as the background value. The average
precipitation within the boundary of urban units in 2000was subtracted
from the average precipitation outside the 10 km buffer zone of the
urban cell boundary in 2018 to obtain the influence of urbanization on
local precipitation change. This method was mainly used to ensure that,
between 2000 and 2018, the selected urban areas were located in cities
and suburban areas were confined to suburbs, ensuring that
precipitation changes between different cities were comparable
across periods. Compared with temperature, precipitation has
stronger spatial heterogeneity due to its spatial and temporal

discontinuity; therefore, this measurement method also reflected the
different characteristics of local hydrothermal combinations. In
addition, since global climate change impacts are large in scale, it
can be assumed that climate change impacts on inner urban areas (areas
within the urban boundary of 2000) and suburbs (10 km buffer zone
outside the urban boundary of 2018) were identical. Previous studies
have shown that the combination of urbanization and climate change
may increase the probability of extreme precipitation (Zhang et al.,
2018). Therefore, based on these calculations, it was assumed that the
impacts of climate change on urban areas were identical to those on
buffer zones on a small regional scale, and the joint impacts of climate
change were eliminated. The obtained precipitation changes not only
considered the impacts of urbanization, but also included the impacts of
the interaction between urbanization and climate change. Therefore,
based on this measurement method, the effects of urbanization on
precipitation were considered reliable.

2.3.3 Trend analysis
Trend analysis is a common spatial analysis method based on

the least-squares method (OLS) of the grid scale. It can better
explore the change trend, distribution pattern, and spatial
difference in geographical elements, and can be used to calculate
their change direction, rate, and amplitude in a change range. This
study used the trend analysis method to analyse the variation of
urban precipitation and its influencing factors in different seasons
from 2000 to 2018, and then the rate of change (Θslope) of
precipitation was used as the dependent variable, and the rate of
change of other factors was used as explanatory variables to input
into the next step of the multi-scale geographic weighted regression
model. The specific formula was as follows (Eq. (1)):

Θslope � n × ∑n
i�1i × Yi −∑n

i�1i∑
n
i�1Yi

n × ∑n
i�1i2 − ∑n

i�1i( )2
(1)

where Ѳslope is the slope of the linear regression reflecting the
changing trend and rate of precipitation (or influence factor) in a

FIGURE 1
Location of the study in the Jing-Jin-Ji region. (A) is the location of Jing-Jin-Ji in China, (B) is the city-level boundary and the extracted 156 urban
unit boundaries of Jing-Jin-Ji.
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specific period of time; n refers to the number of study years, and Yi
is the precipitation (or influence factor) of year i.

2.3.4 Multi-scale geographically weighted
regression model

The calculation formula of the MGWR was as follows (Eq.(2))
(Fotheringham et al., 2019):

yi � ∑
k

j�1
βbuj ui, vi( )xij + εi (2)

where buj represents the bandwidth used by the regression
coefficient of the j variable. (ui, vi) is the coordinate of i, xij is
the independent variable.εi is the residual.

Each regression coefficient of theMGWRwas obtained based on
a local regression, and the bandwidth possessed specificity (Li Z.
et al., 2019). The scale effects of the impact factors were determined
by their bandwidth, which was calculated by the model to obtain the
optimal bandwidth. The golden section was used to search for the
optimal bandwidth of each impact factor by constantly narrowing
the value range of the optimal value and comparing the optimisation
scores of each model. A Monte Carlo test was used to test the model
results and exclude the accidental results of influencing factor
changes, making the model results more reliable. Local parameter
estimates were obtained using theMonte Carlo test once, after which
new local parameter estimates were derived repeatedly after random
rearrangement of the data points to measure whether the change in
each parameter surface was likely to be accidental.

2.3.5 Hierarchical regression analysis
A Hierarchical Regression analysis (HR) was used to determine

the independent effects of different explanatory variables on the
effect of urbanization on precipitation. HR is a method based on
semi-parametric regression analysis that performs multiple random
transformations of the raw data matrix to obtain the relative
importance of each factor. Compared with traditional regression
analyses, the biggest advantage of this method is that it can
overcome the influence of multicollinearity common in
environmental variables, making it highly suitable for multi-
dimensional environmental data analysis (Mac Nally, 2000).
Herein, this method was mainly used to identify the dominant
factors of each area influenced by two or more factors (termed
typical areas). According to the HR results, the independent
importance was obtained using the variation in the R2 of each
factor. The greater the change in R2, the greater the influence of
that variable on precipitation. Then, results were re-ordered based
on the magnitude of change in R2 to determine the dominant factors
affecting urban precipitation in different seasons.

3 Results and discussion

3.1 Validation of MGWR model accuracy

The reliability of the model was determined by comparing its
predicted and measured values. Figure 2 shows a comparison between
the measured precipitation changes and the simulated results based on
the MGWR in different urban units of the Jing-Jin-Ji. The spatial

distribution characteristics (Figures 2A–F) and trend (Figure 3) of the
MGWR fitting precipitation changes were consistent with the actual
observed values regardless of the season. The spatial variation in
precipitation throughout the year showed an increasing trend in the
north and a decrease in the south. Then, to verify the accuracy of the
MGWR results, they were comparedwith the GWR commonly used for
spatial heterogeneity analysis focussing on three factors: the goodness of
fit (R2), Akaike InformationCriterion (AIC), and residual square sum. If
R2 increases, the goodness of fit is better; AIC is constructed based on
the concept of entropy, which is used to balance the complexity of the
estimated model and the excellence of the model fitting data. Under the
same conditions, the smaller the AIC value, the better the model
simulation. As can be seen from Table 1, globally, the adjustment R2

of the MGWR was larger than that of the GWR throughout the year,
especially for the annual precipitation change, where the adjusted R2 of
theMGWRwas 0.52 higher than that of theGWR. Similarly, in terms of
spatial distribution (Figures 2G–I), the minimum value of R2was much
higher than the maximum value of the GWR in all seasons. In addition,
the AIC value and residual sum of theMGWRwere much smaller than
those of the GWR,which further confirmed that theMGWRmodel was
superior overall. Finally, the MGWR results were compared with the
residual results of theOLS (Figure 4), and it was found thatMGWRhad
smaller residuals throughout the year, which indicated that it was more
advantageous than the GWR and OLS.

3.2 Spatiotemporal distribution
characteristics of precipitation variation

The changes in precipitation in various cities during different
seasons in the Jing-Jin-Ji are shown in Figures 2A–C. For the
differences in precipitation between urban and suburban areas,
the slope of the changes in urban precipitation in five periods
was calculated using a trend analysis, and the results are shown
in Supplementary Figure S1. Precipitation in the Jing-Jin-Ji mainly
occurred during summer, accounting for more than 70% of the
overall precipitation throughout the year, while there was little
precipitation in winter. Therefore, only the evolution diagrams
that show the differences between the average precipitation and
background value in summer and throughout the whole year are
presented herein (Supplementary Figures S2, S3).

As shown in Supplementary Figure S1, the average
precipitation changes in various urban units in the Jing-Jin-Ji
during different seasons from 2000 to 2018 differed significantly
(Wei et al., 2022). In summer, the areas with increased
precipitation were the large urban areas of Beijing, which was
consistent with the results reported by Yang et al. (2019), and
small towns located in the northeast of Zhangjiakou and
Qinhuangdao and the south of Shijiazhuang, Xingtai, and
Handan. Cities and towns such as Baoding and Tianjin
(Supplementary Figure S1A) were areas with reduced
precipitation. In winter, precipitation increased slightly in
downtown areas and was primarily distributed across urban
areas of Beijing, consistent with the results of Song et al.
(2019), Baoding city and its surrounding towns, and
Shijiazhuang. In contrast, in Tianjian, the northeast of
Tangshan and Qinhuangdao, and in towns and cities in the
south of Handan and Xingtai, precipitation decreased

Frontiers in Environmental Science frontiersin.org05

Wei et al. 10.3389/fenvs.2023.1161106

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1161106


(Supplementary Figure S1B). Over the whole year
(Supplementary Figure S1C), precipitation in different cities
and towns showed a decreasing seasonal trend. Areas with
significant decreases were mainly located in the south of the
Jing-Jin-Ji, whereas the decrease was relatively low in the
northern region, highlighting a decreasing gradient from south
to north. Compared with the background value, the trend of
precipitation changes in the entire Jing-Jin-Ji inner urban area
was not obvious, with a coefficient of −0.012 (p < 0.01)
(Supplementary Figure S2), which is consistent with the
results of Jiang and Li (2014). During summer, the variation

trend of the imparity between the urban areas across the entire
Jing-Jin-Ji and of the background value over time was slightly
positive (coefficient 0.0772, p < 0.01) (Supplementary Figure S3).
However, urban precipitation in different regions varied greatly
in space.

It is thus evident that there were significant variations in
precipitation across different areas despite similar geographical
locations and climate. Additionally, the contrast analysis shown
in Supplementary Figures S1A–C shows that the precipitation in
different cities, urban areas, and suburbs varied significantly, thus
highlighting that the differences in degree of urbanization had a

FIGURE 2
Comparison of changes in observed (A–C) and MGWR predicted (D–F) values in the Jing-Jin-Ji from 2000 to 2018, positive values indicate an
increasing trend, negative values indicate a decreasing trend; (G–I) the are the goodness of fit of the MGWR. Panel A, D, and G visualise values during
summer; b, e, and h those during winter; and C, F, and I the overall annual trends.
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FIGURE 3
Comparison of changes in observed (y) and MGWR predicted (MGWR_y) values in the Jing-Jin-Ji from 2000 to 2018. The abscissa was the different
urban units in Jing-Jin-Ji, and the ordinate was the change rate (slope) of precipitation corresponding to different urban units. A, B, and C are summer,
winter, and annual respectively. (A–C) are summer, winter, and annual respectively.

TABLE 1 Comparison of model indexes between MGWR and GWR.

Comparison of indicators MGWR GWR

Summer Winter Annual Summer Winter Annual

Adjusted R2 0.77 0.71 0.82 0.38 0.19 0.30

AIC 261.94 296.33 228.1 369.62 409.62 389.49

Residual sum of squares 25.52 34.69 20.13 88.01 114.91 99.54
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great influence on precipitation. As such, it is necessary to analyse
the spatial heterogeneity and scale of the driving factors of
precipitation changes.

3.3 Scale effect analysis of impact factors

Spatial scale effects can be determined using the bandwidths of
different influencing factors after MGWR regression (Li et al., 2020;
Li and Fotheringham, 2020; Wei et al., 2021). The smaller the
bandwidth, the smaller the scale of the influence. Since urban
units were the focus of this research, the scales encompassing
areas larger than cities were categorised as regional or global
scales. However, at present there is no unified definition of scale
size. Therefore, this study combined the sample sizes with variable
bandwidth ratios to re-define the scale: a bandwidth ratio of 0%–
30% was defined as a small regional impact; 30%–50% a medium
regional impact; 50%–70% a large regional impact; and >70% was
defined as a global impact.

It can be seen from Table 2 that the bandwidths of all factors
passed the 95% significance test. However, there were certain
distinctions between the impact scales of the variables in

different seasons. In summer, the average bandwidth of the
intercept was ≤44, accounting for approximately 28.21% of the
total, thus belonging to the small regional scale. Notably, since the
minimum bandwidth in the model was 44, values of less than 44 all
had a bandwidth of 44. Due to the complexity of the factors affecting
precipitation changes, certain variables (e.g.,: urban form, landscape
fragmentation, etc.) were omitted in this study. Therefore, the
intercept indicated the influence of different geographical
locations on the precipitation change for selected variables (Shen
et al., 2020).

As shown in Figure 5A, regardless of the season, the intercept
had the smallest bandwidth, which indicated that precipitation
changes in different seasons were sensitive to regional factors.
Further, in line with our hypothesis, natural and human factors
varied with locations owing to the different geographical
conditions, and the inter-connected impact factors were
getting more complex. Since this study focussed on impact
factors with certain typical features, some variables (such as
urban form, landscape fragmentation, etc.) were omitted. In
such a case, the bandwidth of the intercept became very small,
indicating that the location factor had strong spatial
heterogeneity. Additionally, in summer, the average bandwidth

FIGURE 4
Comparison of prediction residuals between MGWR and OLS in different urban units. The abscissa was the different urban units in Jing-Jin-Ji, and
the ordinate was the change rate (slope) of precipitation corresponding to different urban units.
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of RAD, RHU, WIN, and POP was ≤44, which was similar to that
of the intercept and accounted for 0%–30% of the sample size.
This indicated that the scope of the influence of these four
variables could be classified as being on a small regional scale,
indicating that there was significant spatial heterogeneity in the
influence of these factors on precipitation during the summer.
Among these four variables, RAD, RHU, and WIN were natural
factors, while POP was a social factor. As such, changes in natural
factors caused by urbanization may have had a greater impact on
the variation in precipitation than socio-economic factors, which
is consistent with the conclusions of a study conducted by Wei
et al. (2020). The average bandwidth of AOD was 62, accounting
for 39.74% of the total; being within 30%–50%, this indicated that
its influence acted on a medium regional scale. The proportions
of the other variables were all greater than 80%, suggesting little
to no spatial heterogeneity and global impact.

In winter, the average bandwidths of RAD, RHU, and POP
were also ≤44, accounting for 28.21%, thus belonging to the small
regional impact scale, which is consistent with the results for
summer. As shown in Figure 5B, RAD, RHU, and POP had a
small regional impact on the annual changes irrespective of the
season, indicating that variations in these three factors had a
strong, spatially heterogeneous effect on precipitation changes in
the Jing-Jin-Ji throughout the year. The average bandwidths of
AREA and WIN were 58 and 64, accounting for 37.18% and
41.03%, respectively, thus having a medium regional impact. UHI
accounted for 66.03%; therefore, being in the range of 50%–70%,
it was categorised as belonging to the large regional scale. The
bandwidth ratios of the other factors were all greater than 80%,
which indicated that they did not have spatial heterogeneity and
that their impacts were global. In terms of the annual change
scale, it can be seen in Figure 5C that, among the small-scale
factors influencing precipitation, natural factors were more
dominant, whereas on the large and global scales,
anthropogenic factors such as NLI, AOD, and UHI were more
dominant.

3.4 Spatial heterogeneity of impact factors
affecting precipitation across seasons

3.4.1 Spatial heterogeneity analysis of impact
factors based on a global perspective

In the MGWR regression results, the number of factors that
passed the Monte Carlo 95% significance test varied across seasons
(Table 3). Except for the intercept, the overall coefficients of AOD,
RAD, RHU, WIN, and POP were significant in summer and passed
the Monte Carlo significance test (p < 0.05), whereas the regression
coefficients of NDVI, NLI, UHI, and AREA were not significant (p >
0.05) (Table 3). In winter, in addition to location factors, variables
that passed the Monte Carlo 95% significance test included RAD,
RHU, WIN, UHI, POP and AREA (Table 3). There were more
factors affecting precipitation and passing the 95% significance test
in winter than in summer, which indicated that the mechanisms that
influence precipitation changes in cities of the Jing-Jin-Ji in winter
may be more complex owing to a decrease in temperature, which is
similar to the conclusion of Wei et al. (2020). In terms of annual
changes, only RAD, RHU, and POP passed the Monte Carlo
significance test (p < 0.05). Factors that passed the 95%
significance test had strong spatial heterogeneity in their impact
on precipitation, whereas those that failed to pass it had weak to no
spatial heterogeneity. The spatial heterogeneity of AOD, RAD,
RHU, WIN, and POP in summer was relatively strong; similarly,
the spatial heterogeneity of RAD, RHU,WIN, UHI, POP, and AREA
in winter and that of RAD, RHU, and POP throughout the year was
relatively strong. As shown in Figures 5A–C, the influences of the
factors that passed the 95% significance test were mostly of a
medium and small scale, which further indicated relatively strong
spatial heterogeneity. In terms of summer, winter, and annual
precipitation changes, changes in natural factors, such as RHU
and RAD, had a significant impact on precipitation during
urbanization, whereas socio-economic factors, such as population
changes, had a greater impact on the spatial distribution of urban
precipitation changes.

TABLE 2 MGWR bandwidths (Bandwidth Confidence Intervals: 95%).

Variables Summer Winter Annual

Bandwidth Range Bandwidth Range Bandwidth Range

Intercept 44 (44, 52) 44 (44, 52) 44 (44, 52)

AOD 62 (58, 83) 148 (109, 148) 149 (84, 149)

NDVI 142 (83, 146) 148 (109, 148) 62 (52, 68)

NLI 148 (83, 148 148 (109, 148) 108 (84, 125)

RAD 44 (44, 58) 44 (44, 52) 44 (44, 84)

RHU 44 (44, 52) 44 (44, 58) 44 (44, 58)

WIN 44 (44, 52 64 (58, 83) 149 (109, 149)

UHI 148 (109, 148 103 (83, 124) 149 (109, 149)

POP 44 (44, 83) 44 (44, 58) 44 (44, 58)

AREA 148 (83, 148) 58 (52, 83) 68 (58, 109)
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As can be seen in Table 4, in summer, the intercept (location)
had both positive and negative impacts on precipitation, and the
average value was small but negative, indicating that geographical
location changes had an important impact on the spatial
distribution pattern of precipitation changes. The minimum
bandwidth of the constant in Table 2 and Figure 4 further
indicated that the zone had significant spatial heterogeneity.
The average AOD values in different seasons were positive
and negative. The minimum, maximum, and mean values of
the AOD in summer were positive, indicating that AOD had a
positive effect on precipitation in summer. Due to the temperate
monsoon climate in the Jing-Jin-Ji, the humidity in summer is
relatively high, and AOD can be used as an indicator for
condensation, which can be conducive to higher precipitation.
Since the AOD did not pass the 95% significance test in winter
and over the whole year, the spatial heterogeneity of the negative

effect of AOD changes on precipitation was concluded to be
relatively small or non-existent. However, both the maximum
and minimum values of the AOD coefficient were negative, which
was consistent with our understanding of the Jing-Jin-Ji. Since
the weather in the Jing-Jin-Ji is cold and dry during winter, the
relative humidity of the atmosphere is low. When AOD
concentration increases, the impact efficiency of water
droplets is reduced; thus, the precipitation probability
decreases accordingly.

The mean value of the RAD coefficient was negative across
seasons, while the minimum and maximum values were positive
and negative, respectively, indicating that there was a large
difference in the influence of RAD between different cities.
The mean value of the RHU coefficient was positive both in
summer and winter and the absolute value of the average
coefficient was large, presenting as 0.14 and 0.18 respectively.
This indicated that high humidity was conducive to precipitation.
However, for the whole year, the average coefficient was −0.02,
and its median was 0.00. Thus, comparing most urban units,
relative humidity had a weak influence on annual precipitation
changes. However, it is possible that relative humidity had a weak
influence on precipitation in both spring and autumn, thus
weakening its influence over the entire year. The mean WIN
coefficient was negative in summer and over the whole year,
with −0.02 and −0.20, respectively, but 0.13 in winter. This
suggested that the mean WIN coefficient may also be negative
in spring and autumn. From summer to winter, the influence of
the WIN gradually changed from negative to positive. Generally,
wind has both direct and indirect effects on precipitation. First,
owing to the urban canopy, the air stream bifurcates and bypasses
the urban area, then converges and lifts downwind to form
precipitation or promote the convergence and rise of water
vapour. Second, wind can indirectly affect precipitation
through UHIs. Some scholars have shown that when wind
speed increases, UHIs are weaker and atmospheric movement
is dominated by dynamic thermal action. Urban atmospheric
instability is enhanced and urban precipitation is increased

FIGURE 5
Percentages of the bandwidths of each impact factor, where the
blue bars represent a small regional scale, the red ones a medium
regional scale, the green ones a large regional scale, and the yellow
bars a global scale. (A–C) are summer, winter and Annual
respectively.

TABLE 3 Monte Carlo test for spatial variability.

Variables P-Value

Summer Winter Annual

Intercept 0.000 0.000 0.000

AOD 0.016 0.642 0.595

NDVI 0.271 0.895 0.385

NLI 0.941 0.444 0.480

RAD 0.004 0.000 0.014

RHU 0.000 0.028 0.027

WIN 0.007 0.023 0.816

UHI 0.667 0.022 0.892

POP 0.034 0.002 0.000

AREA 0.950 0.012 0.638
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(Zhang H. Y. et al., 2017; Jiang et al., 2020). The fact that the data
used in this study were collected for the inner city may explain why
WIN was found to have a negative impact on precipitation in summer.

However, since more than 75% of the precipitation in the Jing-Jin-Ji
occurs in summer, a negative average annual variation coefficient can be
expected. In winter, when relative humidity is low and wind speeds are

TABLE 4 Summary statistics for MGWR parameter estimates.

Variables Summer Winter Annual

Mean STD Min Median Max Mean STD Min Median Max Mean STD Min Median Max

Intercept −0.01 0.38 −0.73 0.10 0.49 0.73 0.28 0.27 0.75 1.24 0.26 0.69 −0.90 0.40 1.16

AOD 0.05 0.16 0.26 0.08 0.37 −0.04 0.02 −0.08 −0.04 −0.02 −0.31 0.02 −0.34 −0.31 −0.28

NDVI 0.06 0.04 0.01 0.06 0.13 −0.14 0.01 −0.17 −0.14 −0.11 0.02 0.14 −0.27 0.02 0.26

NLI 0.06 0.01 0.05 0.06 0.09 −0.14 0.03 −0.18 0.14 −0.08 −0.03 0.03 −0.11 −0.03 0.04

RAD −0.16 0.20 −0.48 −0.15 0.25 −0.05 0.77 −1.36 0.41 0.88 −0.09 0.19 −0.46 −0.04 0.17

RHU 0.14 0.34 −0.30 −0.01 0.77 0.18 0.21 −0.19 0.21 0.71 −0.02 0.21 −0.49 0.00 0.33

WIN −0.02 0.16 −0.46 −0.01 0.23 0.13 0.21 −0.23 0.13 0.42 −0.20 0.01 −0.22 −0.20 −0.17

UHI −0.03 0.02 −0.06 −0.02 −0.01 −0.18 0.11 −0.36 0.19 0.03 −0.02 0.02 −0.04 −0.02 0.00

POP −0.15 0.22 −0.64 −0.10 0.15 0.13 0.29 −0.58 0.13 0.94 −0.36 0.29 −0.88 −0.29 0.03

AREA −0.13 0.01 −0.15 −0.13 −0.12 0.27 0.16 −0.52 −0.27 0.50 −0.11 0.04 −0.19 −0.11 0.00

Mean, STD, Min, Median, and MAX are the mean, standard deviation, minimum, median, and maximum of each variable coefficient are highlighted in bold.

FIGURE 6
Spatial patterns of theMGWRcoefficients in summer,where the coloured solid points are cities that passed 95% significance test (p<0.05) and the gray solid
points are cities that did not pass the 95% significance test (p > 0.05). (A) is the intercept, (B) the AOD, (C) the RAD, (D) the RHU, (E) the WIN, and (F) the AREA.
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relatively high, the air flow converges and lifts at a higher height when
blocked by the urban canopy. Hence, water vapour can easily condense
to form precipitation. The mean UHI coefficient in summer and over
the whole year did not pass the significance test (p > 0.05), indicating
that the influence of UHI on the spatial distribution characteristics of
precipitation changes did not have distinctive features in those periods.
However, in winter the average coefficient showed a weak negative
correlation, which is consistent with the conclusions drawn by Wang
et al. (2018); Gu and Li (2018) carried out experimental studies on the
sensitivity of UHIs and precipitation in theUnited States and found that

UHI intensity was positively correlated with precipitation in summer
but associated with less precipitation in winter. This conclusion was
confirmed by ESM2Mb and Princeton forced experiments (Gu and Li,
2018). The so-called “urban dry islan” effect results in less precipitation
in winter because UHIs enhance the sub-cloud evaporation process and
reduce surface precipitation. The relationship between UHIs and
precipitation in the Jing-Jin-Ji based on the MGWR found in this
study conforms with these findings.

The mean POP coefficient had similar trends in summer and
over the whole year, but had both negative and positive values in

FIGURE 7
Spatial patterns of the MGWR coefficients in winter, where the coloured solid points are cities that passed 95% significance test (p < 0.05) and the
gray solid points are cities that did not pass the 95% significance test (p > 0.05). (A) is the intercept, (B) the NDVI, (C) the NLI, (D) the RAD, (E) the RHU, (F)
the WIN, (G) the UHI, (H) the POP, and (I) the AREA.
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winter. In terms of the maximum and minimum values of the
coefficients, the maximum values in summer, winter, and over the
whole year were positive, whereas the minimum values were
negative, and the modes were negative. These results indicated
that the influence of POP was spatially heterogeneous across
different regions. The average AREA coefficient in summer and
over the whole year did not pass the significance test (p > 0.05);
however, in winter the maximum was positive (0.50), the minimum
was negative (−0.52), and the average was positive (0.16) (p < 0.05).
Similar to POP, this may indicate large spatial heterogeneity in
winter, which needs to be analysed further.

3.4.2 Spatial heterogeneity of impact factors based
on a regional perspective

To better observe the spatial distribution characteristics of
variables with significant spatial heterogeneity, the cities that
passed the 95% significance test for each variable were extracted
and plotted on a map (Figures 6, 10, 11). Figures 6, 7, 8 demonstrate
the spatial distribution of the influencing factors in summer, winter,
and over the whole year across the Jing-Jin-Ji, respectively.

As can be seen from the figures, in summer (Figure 6A), winter
(Figure 7A), and over the whole year (Figure 8A), the intercept was
charaterised by a gradient from north to south. Areas with positive

FIGURE 8
Spatial patterns of the MGWR coefficients in annual, where the coloured solid points are cities that passed 95% significance test (p < 0.05) and the
gray solid points are cities that did not pass the 95% significance test (p > 0.05). (A) is the intercept, (B) the AOD, (C) the NDVI, (D) the RAD, (E) the RHU, (F)
the WIN, (G) the POP, and (H) the AREA.
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coefficients were mainly located in the north, such as Beijing,
Baoding, and Zhangjiakou. In the southern regions, such as in
the cities of Handan and Xingtai, the intercept showed a negative
trend. In addition, the spatial variation of the coefficient generally
showed a trend from south to north and gradually turned from
negative to positive, especially in the mountainous region to the
northwest. The spatial heterogeneity was highly significant,
indicating that the changes in location had an important impact
on precipitation diversity.

In summer, the impact of AOD on precipitation was mainly
distributed in the northeast of the Jing-Jin-Ji, including southeast
Chengde, Tangshan, and Qinhuangdao, as well as the southeast,
represented by Cangzhou. These included the northeast regional
AOD, where a negative effect on precipitation was found, and the
positive effect of AOD in the southeast (Figure 6B). The spatial
heterogeneity in other regions was not significant. Over the entire
year, the influence of AOD on precipitation was negative, and the
absolute value gradually decreased from south to north (Figure 8B).
The spatial heterogeneity of the annual variation of the effect of
AOD on precipitation in summer was more evident than across the
whole year. The areas with significant RAD spatial heterogeneity in
summer were mainly those in the northern and north-western parts,
including Beijing, Tianjin, Zhangjiakou, and Chengde; in the south,
spatial heterogeneity was weak or non-existent. The influence of
RAD on precipitation in these regions was mainly negative, and the
absolute value of the coefficient in the northwest was larger than that
in Chengde in the north (Figure 6C). The spatial heterogeneity of
RAD in winter was more significant. In the south, Handan, Xingtai,
Hengshui, and some urban units in the northwest and northeast had

negative values, whereas the central region, including Shijiazhuang,
Baoding, Beijing, and Tianjin, had positive ones (Figure 7D). The
variation in RAD was negatively correlated with precipitation
throughout the whole year, and the distribution of significant
areas with spatial heterogeneity was similar to that in summer. In
annual, the spatial heterogeneity in Qinhuangdao and Tangshan in
the northeast differed significantly (Figure 8D), resulting in this
disparity. The spatial heterogeneity of the RHU varied across
seasons. In summer, the spatial heterogeneity of the RHU was
mainly distributed across Handan, Xingtai, Shijiazhuang, and
other places in the south (Figure 6D). In winter, only some cities,
such as Cangzhou in central Baoding, had strong spatial
heterogeneity, while other regions had no or weak spatial
heterogeneity (Figure 7E). Throughout the whole year, the spatial
heterogeneity of RHU was relatively strong in Handan, some cities
in Xingtai in the south, and in Zhangjiakou in the northwest
(Figure 8E). In terms of the relationship with precipitation, the
RHU across seasons was positively correlated with precipitation,
indicating that the higher the humidity, the more conducive it is to
precipitation. The areas with significant WIN spatial heterogeneity
in summer were mainly cities such as Cangzhou in the southeast,
Qinhuangdao in the northeast, and Tangshan and Zhangjiakou in

FIGURE 9
Typical regional distribution in summer. The red solid points are
areas with a superposition of RHU and AREA.

FIGURE 10
Typical regional distribution in winter. RHU and AREA show
regions with significant spatial heterogeneity. where the coloured
solid points are cities that passed 95% significance test (p < 0.05) and
the gray solid points are cities that did not pass the 95%
significance test (p > 0.05). The green solid points (region 1) are areas
with a superposition of POP, RAD, and AREA, the blue solid points
(region 2) are areas with a superposition of RAD and NLI, thee red solid
points (region 3) are areas with a superposition of RAD, NLI, AREA,
WIN, and UHI.
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the northwest. However, compared with the entire Jing-Jin-Ji, the
number of urban units with spatial heterogeneity in the impact of
WIN on precipitation was small (Figure 6E). The higher the
humidity, the more conducive it was to precipitation. In winter,
significant spatial heterogeneity of WIN was mainly found in
Handan, Xingtai, and Cangzhou in the south and west, and in

Zhangjiakou in the northwest. The positive effect of WIN on
precipitation primarily appeared in the south, while the negative
effects were mainly observed west of Zhangjiakou. Throughout the
whole year, the distribution of the influence ofWIN on precipitation
appeared negative, and the degree of the negative effect gradually
weakened from Baoding and Langfang, located in the middle, to the

FIGURE 11
Ranking of important factors in three regions in winter. Regions 1–3 correspond to the regions represented by the solid dots of the same colour in
Figure 10.

FIGURE 12
Typical regional distribution of annual changes, where the coloured solid points are cities that passed 95% significance test (p < 0.05) and the gray
solid points are cities that did not pass the 95% significance test (p > 0.05). The blue solid points (region 1) are areas with a superposition of RAD, AOD, and
WIN, the green solid points (region 2) are areas with a superposition of AOD, NDVI, POP, AREA, and WIN, the red solid points (region 3) are areas with a
superposition of POP, RHU, WIN and AOD, the black solid points (region 4) are areas with a superposition of RAD, AOD, WIN, and NDVI.

Frontiers in Environmental Science frontiersin.org15

Wei et al. 10.3389/fenvs.2023.1161106

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1161106


outer boundaries in the south. The significant spatial distribution of
AREA differed between seasons. However, as can be seen from
Figures 6F, 7I, and H8H, the impact of AREA on precipitation in
areas with significant spatial heterogeneity was mainly negative. The
regions with significant spatial heterogeneity of UHI were mainly
those in the southeast of Beijing, Tianjin, and Hebei in winter, and
the effect was mainly negative (Figure 7G). This may be related to
the fact that UHIs change the saturation of atmospheric water
vapour.

3.5 Significance ranking of regional impact
factors

As can be seen from Figures 6–8, there may be two or more
factors with significant spatial heterogeneity superimposed in
certain regions with a significant agglomeration effect across
seasons, which were defined as a typical region. To detect the
significance ordering of the main impact factors on precipitation
changes in different cities, a hierarchical regression analysis was used
to obtain the independence of the explanation of each influence
factor. The greater the changes in R2, the greater the influence of the
corresponding factor on precipitation. A multi-level regression was
used to analyse the importance of the selected factors since they were
clustered in space, indicating that their variance across layers was
small. Therefore, the use of multi-level regression to calculate
specific regions could reduce the error to a minimum to obtain
more reliable conclusions.

According to the MGWR results, there was a significant
agglomeration phenomenon of impact factors areas in summer, with
the typical areas that passed the significance test mainly distributed in
town units in the south of Xingtai and Handan (Figure 9). This resulted
in a significant spatial heterogeneity in both RHU and AREA. The
regression results showed that the R2 variation of AREA was 0.175 (p <

0.05) while that of RHU was 0.08 (p < 0.05). Therefore, the change in
AREA was the most important factor influencing precipitation changes
in Xingtai and Handan in summer.

Figure 10 shows the three regions that had significant spatial
agglomeration factors and passed the significance test in winter.
Specifically, region 1 mainly included urban units in cities of the
Beijing-Zhangjiakou-Chengde area. The factors of significant spatial
heterogeneity in this region were POP, RAD, and AREA, and the
△R2 was 0.291 (p < 0.05), 0.019 (p < 0.05), and 0.084 (p < 0.05),
respectively. Thus, in region 1, the change in POP was the most
important factor affecting precipitation changes in winter, followed
by the change in RAD. Region 2 mainly contained urban units
located in the Shijiazhuang-Hengshui area, where the factors with
significant spatial heterogeneity were RAD and NLI, indicating that
radiation change and human activity intensity had an important
impact on precipitation changes in this region. The R2 variation was
0.111 (p < 0.05) and 0.091 (p < 0.05), respectively, indicating that the
change in RAD was the main factor affecting this region. Region
3 mainly consisted of urban units in the Handan-Xingtai region, and
the significant factors influencing precipitation change in this region
included RAD, NLI, AREA, WIN, and UHI. Among them, AREA
had the most significant influence, with an△R2 of 0.310, followed by
NLI with 0.017. The changes in RAD, UHI, andWIN were relatively
small, with 0.007, 0.002, and 0.003, respectively. As such, the most
important factors affecting the change in urban precipitation in
winter in the Handan-Xingtai area were related to urban expansion
and human activity intensity (Figure 11).

At the annual scale, four typical regions with significant
agglomeration factors passed the significance test, as shown in
Figure 12. Region 1 mainly comprised most urban units located
in the northern Beijing-Tianjin-Hebei region, such as Beijing,
Zhangjiakou, Chengde, Tangshan, and Qinhuangdao. This
region mainly had superimposed RAD, AOD, and WIN
(Figure 13) and the R2 values of these variables were 0.058

FIGURE 13
Ranking of important factors of annual changes in four regions. Regions 1–4 correspond to the regions represented by the solid dots of the same
colour in Figure 12.
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(p < 0.05), 0.059 (p < 0.05), and 0.086 (p < 0.05), respectively.
Thus, it can be concluded that changes in WIN were the main
factor affecting precipitation in this region (Figure 12), whereas
the changes in RAD and AOD had little influence. Region
2 mainly included urban units located in the Tianjin-
Cangzhou-Langfang and eastern Baoding regions, with a
superposition of AOD, NDVI, POP, AREA, and WIN. Their
R2 values were 0.006 (p < 0.05), 0.198 (p < 0.05), 0.394 (p < 0.05),
0.023 (p < 0.05), and 0.001 (p < 0.05), respectively. Thus,
population changes had the greatest influence on precipitation
in this region. Region 3 mainly included Handan and other urban
units in the southern part of the Jing-Jin-Ji, with a superposition
of POP (△R2 = 0.046), RHU (△R2 = 0.357), WIN (△R2 = 0.001),
and AOD (△R2 = 0.005). Among them, RHU was the most
important influencing factor, which could explain 35.7% of the
precipitation variation in the region. Region 4 mainly comprised
most urban units in the northeast of the Jing-Jin-Ji, such as
Qinhuangdao, northern parts of Tangshan, and eastern regions
of Chengde. In addition to the three elements present in region 1,
this region was also affected by NDVI. The △R2 of RAD, AOD,
WIN, and NDVI was 0.447 (p < 0.05), 0.092 (p < 0.05), 0.015 (p <
0.05), and 0.027 (p < 0.05), respectively. Therefore, RAD was the
most important influencing factor here.

4 Conclusion

Based on an MGWR, this study analysed the impact scale and
spatial heterogeneity distribution characteristics of influencing
factors of urban precipitation changes in 156 urban units in the
Jing-Jin-Ji. The following conclusions were drawn.

(1) In summer, the influence of RAD, RHU, WIN, and POP was on
a small regional scale; AOD acted on a medium regional scale;
NDVI, NLI, UHI, and AREA did so on a global scale. In winter,
AREA and WIN had a medium regional influence, UHI are
large one, and AOD, NDVI, and NLI had global ones.
Considering the whole year, the influence of NDVI and
AREA was at a medium regional scale, that of NLI on a
large regional scale, and that of AOD, WIN, and UHI on a
global scale.

(2) Natural factors, such as RAD and RHU, had a greater impact on
the spatial heterogeneity of precipitation changes across
seasons, whereas human factors, such as NLI and UHI, had a
smaller impact. In summer, the significant area of influence of
AOD comprised the southeast of Tangshan and northeast of
Qinhuangdao in the Beijing-Tianjin-Hebei and Cangzhou
regions. The areas significantly affected by RAD were Beijing,
Zhangjiakou, and Chengde, where it had a negative effect on
precipitation. The areas significantly affected by RHU and
AREA were primarily Handan and Xingtai in the south.
AREA changes had the greatest influence and a negative
effect on precipitation, being the most important influencing
factor of precipitation reduction in most urban units in Handan
and Xingtai in summer. In winter, RAD, NLI, AREA, WIN, and
UHI showed significant spatial heterogeneity in the urban units
of Handan and Xingtai in the southern part of the Beijing-
Tianjin-Hebei region, and, among them, AREA had the most

significant effect. In the Shijiazhuang-Hengshui area, RAD and
NLI played important roles. In the Beijing-Zhangjiakou-
Chengde area, the most important factor affecting
precipitation changes was variation in POP. In terms of
annual variation, in most urban units in the northern
Beijing-Tianjin-Hebei region, changes in WIN were the
most important factor affecting precipitation changes. In
the Tianjin-Cangzhou-Langfang area and eastern urban
units of Baoding, changes in POP had the greatest impact
on precipitation, and in Handan and other urban units in the
southern Beijing-Tianjin-Hebei region, RHU had the highest
effect.

The inclusion of a large number of urban units of the Jing-Jin-
Ji compensated for the limitations of previous studies focussing
on single cities and enabled us to avoid problems of contingency.
The results can provide a solid foundation for the coordinated
development of the Jing-Jin-Ji and the formulation of
differentiated climate policies for different cities. However,
this study had some limitations. To investigate the
precipitation changes resulting from urbanization of inner
cities in different periods, this study used the year 2000 for
border extraction. This approach guaranteed that the classified
urban areas were always within the limit of the actual urban areas,
but did not take into account that the city’s influence on regional
precipitation is not only confined to the inner city. Thus, this
study did not investigate the factors leading to precipitation
changes outside of urban areas. Furthermore, this study
focussed on the effects of urbanization on precipitation, while
the physical mechanisms of precipitation changes (e.g., latent
heat, sensible heat flux, and albedo changes) were not
investigated. As such, future studies should be appropriately
combined with a WRF model and analyse the hidden factors
influencing precipitation changes resulting from urbanization.
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