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Introduction: The inorganic coagulant AlCl3 is used in the traditional coagulation
method for the decolorization of industrial dye wastewater. We studied its
effectiveness in 41 kinds of dye with different structures, including azo,
anthraquinone, arylmethane, and indigo dyes.

Discussion: The optimal conditions for the removal of dye in the AlCl3 coagulation
system were alkaline > neutral > acidic conditions. Under alkaline conditions, the
hydrolysis colloid of AlCl3 is positively charged and easily combined with
negatively charged anionic dyes by electrostatic adsorption. Therefore, the
relationships between the dye removal behavior and molecular parameters
under alkaline conditions were analyzed.

Methods: Quantitative structure–activity relationship (QSAR) models were built
for the color removal rates (Rexp) of 41 dyes and 46 molecular parameters
computed by the density functional theory (DFT). Internal validation, external
validation, statistical tests, Y-randomization, and applicability domain tests
indicated that the optimal models are stable, accurate, reliable, and predictive.

Results: The optimal QSAR model showed that surface area (approx.) (SAA) and
molecular weight (MW) are two keymolecular parameters. Moreover, electrostatic
forces and hydrogen bonding are the predominant adsorption forces in this
coagulation process.
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1 Introduction

Textile industries consume large quantities of water and discharge high amounts of
wastewater during the process of printing and dyeing (Rajkumar and Kim, 2006; EI-Gohary
and Tawfik, 2009). The effluent from textile industries is considered among the most difficult
industrial wastewater because of its huge emissions, deep color, low biodegradability, a large
change in water quality, and complex composition (Verma et al., 2012; Silva et al., 2016; Guo
et al., 2021). Chemical coagulation–flocculation is a mature, stable, and widely practiced
technology for the treatment of textile wastewater due to its many advantages, including
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large treatment capacity, high removal efficiency, simple operation, and
low investment cost (Georgiou and Aivasidis, 2006; Verma et al., 2012;
Dotto et al., 2018; Es-sahbany et al., 2021). At present, aluminum (Al)
coagulants are the most widely used in industrial wastewater treatment
in China. Inorganic AlCl3 coagulant has long been commonly used due
to its low cost and the easy availability of raw materials (Bi et al., 2004;
Shi et al., 2007). However, variations of dye structures lead to great
differences in the coagulation effects of using AlCl3. Considering the
wide variety, large quantity, and complex structure of dyes, it is
impossible to perform experimental research on all dyes. Therefore,
theoretical models must be introduced and developed into practical
applications.

Quantitative structure–activity relationship research can be used to
determine the correlation between molecular structure parameters on
the microscale and material activity on the macroscale (Barua et al.,
2012; da Cunha Xavier et al., 2021; Su et al., 2016). It can predict and
evaluate the environmental behavior of existing and new pollutants,
which can save time and cost. QSAR has been widely used in the field of
environmental science. Michael Schindler established a QSAR
prediction model for the rate constants of degradation of volatile
organic compounds (VOCs) with nitrate radicals by using the
partial least squares technique. The most important descriptors were
the ionization potential and the energy of the highest occupied
molecular orbital (HOMO) (Schindler, 2016). Lee and von Gunten
(2012) developed 18 QSAR models based on 412 second-order rate
constants (k) and substituent descriptor variables, such as the Hammett
or Taft sigma constants of chlorine, chlorine dioxide, ferrate, and ozone
with organics, which were used to predict the rate constants of new
organic micropollutants. Xiao et al. (2015) established the optimal
QSAR model for the degradation rate of 85 trace organic contaminants
under the condition of sulfuric acid radical oxidation. They reported
that two descriptors, the number ratio of oxygen atoms to carbon atoms
(#O:C) and the energy gap of EHOMO-ELUMO (ELUMO-EHOMO),
mechanistically and statistically affected second-order rate constants
in the standardized QSAR model.

Many researchers have reported on the removal of single or several
typical dyes by coagulation, as well as the examination and development
of new coagulants (Shi et al., 2007; Imran et al., 2012; Fosso-Kankeu
et al., 2017). However, few QSAR model reports are available on the
removal of dyes with different structures using a traditional AlCl3
coagulation system. Therefore, it is imperative to build QSAR models
and study the removal mechanism of dyes in this coagulation system.

This study analyzed the correlations between dye removal rates and
molecular parameters. An optimal QSAR model was constructed to
predict the feasibility of the removal of different dyes in the AlCl3
coagulation system. These optimal QSAR model parameters can
explain the mechanism involved in this process, which provides
deep insights into the coagulation treatment of dye wastewater.

2 Materials and methods

2.1 Experimental materials and methods

This study selected 41 dyes with different structures, including azo
dyes (such as methyl red), anthraquinone dyes (such as carmine),
arylmethane dyes (such as crystal violet), and indigo dyes (such as
indigo) (Supplementary Table S1). Among them, Disperse Red 60, Vat

Blue 4, and Vat Violet 1 were used to test the optimal QSARmodel. The
other 38 dyeswere used to construct the training set for theQSARmodel.

All concentrations (50 mg/L) of dye solutions were stirred and
dissolved at 298 ± 1 K and initial pH values of 4.0 ± 0.1, 7.0 ± 0.1, and
10.0 ± 0.1. Then, 100 mg/L Al3+ solution was added to each reactor at a
molar ratio of coagulant to tested dyes of 20:1. After stirring for 15 min
and standing for 30 min, the supernatant was filtered through 0.45-μm
microporous membrane and examined by UV spectrophotometry
(UV-1600, Shanghai Mapada Instruments Co., Ltd.) at their
maximum absorption wavelengths. All dyes and inorganic
compounds were of analytical grade and purchased from Sinopharm
Chemical Reagent Co., Ltd. or Aladdin Industrial Corporation.

2.2 Calculation of parameters

Four kinds of molecular parameters were selected for
calculation: geometric and physicochemical, electrical, molecular
frontier orbital energy, and other quantum chemical parameters. All
dye structures were initially optimized using HyperChem Release
8.0 and then deep optimized by density functional theory (DFT)
(B3LYP/6-311G (d, p) basis set) in Gaussian 09 software. A total of
38 molecular parameters (Supplementary Table S3) were calculated
using HyperChem 8.0, Materials Studio 7.0, and Gaussian 09. The
other eight combination descriptors (EGAP, EGAP

2, ESUM, ESP0.25,
ESP0.75, ∑q(O + N), ∑q(H)/NH, and ∑q(−)/NC) (Supplementary
Table S1) were obtained by simple mathematical calculations.

Seven dye parameters were calculated in HyperChem 8.0. Three
geometric parameters, surface area approximation (SAA), molecular
volume (V), and molecular weight (MW), were basic geometric
parameters that directly affect the structure and properties of
substances. According to the calculated results, dyes with the largest
SAA values, such asAcidBlue 93, AcidGreen 1,Direct Red 28, Ponceau S,
andReactive Yellow 3, also had the largestMW values among all the dyes,
indicating a significant positive correlation between SAA and MW
(Supplementary Table S5; Figure 2C). In addition, four
physicochemical parameters, hydration energy (HE), refractivity (R),
polarizability (Po), and oil–water partition coefficient (Log P), were
selected as the macro-descriptors of dyes.

Five descriptors describing the charge of a single atom on dye
molecules, qH+, q(CH+)n, q(CH+)x, q(C−)n, and q(C−)x, and seven
descriptors describing the charge of whole dye molecules, ∑q(O),
∑q(N), ∑q(O + N), ∑q(H), ∑q(H)/NH, ∑q (−), and ∑q(−)/NC, were
electrical parameters and obtained using Gaussian 09 software. The
electrical parameters also included the electrostatic potential of the
molecular surface (ESPMAX, ESPMEAN, ESPMIN, ESP0.25, and ESP0.75),
which were calculated using Materials Studio 7.0. The average ESPMAX

value of all dyes was 82.9850 a.u. Acid Blue 93 had the largest ESPMAX

value (209.1500 a.u), while Mordant Black 17 had the smallest ESPMAX

value (30.6940 a.u), a nearly seven-fold difference (Supplementary Table
S4-1). The electrostatic potential of the molecular surface (ESP), which is
closely related to the electron density distribution, is an effectivemolecular
descriptor to predict favorable sites of electrophilic and nucleophilic
reactions or reveal preferred sites of electrostatically dominated non-
covalent interactions (Tao et al., 2016; Scheiner, 2017).ESP can also reflect
the attack sites of electrostatic adsorption (Tanzifi et al., 2020). Disperse
Red 16 showed the largest q(C−)x (0.852 e) and the smallest q(C−)n
(−0.692 e) (Supplementary Table S4-1).
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The molecular frontier orbital energy parameters, including
EHOMO, ELUMO, ESUM, EGAP, EGAP

2, I, A, η, S, χ, CP, and ω, were
calculated in Gaussian 09. The energy of the highest occupiedmolecular
orbital (EHOMO) and energy of the lowest unoccupied molecular orbital
(ELUMO) were closely related to the activity of the chemical reaction
(Lamya et al., 2021; Amri et al., 2023; Bensalah et al., 2023; Lebkiri et al.,
2023). The higher the EHOMO, the stronger the electron-donating
capacity of the molecule and vice versa. ELUMO represents the
electronic affinity, in which the smaller the value, the stronger the
electron-accepting ability of the molecule (Fukui, 1982; Regti et al.,
2016). The gap in ELUMO and EHOMO (EGAP) was used to describe the
chemical and kinetic stability of the molecules. Molecules with a small
EGAP were generally reactive, while molecules with a large EGAP were
stable and unreactive (Zhang & Musgrave, 2007).

In this study, other quantum chemical parameters were selected
for analysis using Gaussian 09 and Materials Studio 7.0, including
the total energy of a molecule (EB3LYP), dipole moment (μ), bond
order (BOn/BOx), and Fukui indices (f(+)n/f(+)x, f(−)n/f(−)x, and

f(0)n/f(0)x). These quantum chemical parameters were important
indicators of the physicochemical properties of organic matter. They
are useful to reveal the degradation mechanism of organic matter in
oxidation and coagulation processes (Jia et al., 2015; Su et al., 2016;
Cheng et al., 2018b; Cheng et al., 2018c). The total energy (EB3LYP)
directly reflects the degree of difficulty of the reactions between
molecules. The average EB3LYP value of all dyes was −2679.8717 kcal/
mol, while the highest and lowest values were observed for isatin
(−513.19 kcal/mol) and bromocresol green (−11879.78 kcal/mol),
respectively, a 23-fold difference, demonstrating the large structural
diversity of the dyes selected in this study (Supplementary Table S4-
1). The dipole moment (μ) was used to investigate intermolecular
interactions. The greater the dipole moment, the stronger the
interaction force between molecules (Johnson & Otero-de-la-
Roza, 2012; Kumar et al., 2014). Bond order (BO) reflects the
stability of a chemical bond. Usually, the BO is <4. The larger
the BO, the more stable the molecule, and vice versa (Mayer, 1984;
Su et al., 2016).

FIGURE 1
Rexp of 38 dyes by AlCl3 under different pH conditions.

TABLE 1 Comparison of Rexp of 38 dyes by AlCl3 and the zeta potentials of AlCl3 at different pH values.

Coagulant pH = 4 pH = 7 pH = 10

Rexp Zeta (mV) Rexp Zeta (mV) Rexp Zeta (mV)

AlCl3 0.1756 1.26 0.2403 11.74 0.4311 −28.57
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2.3 Construction method and validation of
models

According to the previous research (Cheng et al., 2018b; Tan et al.,
2021a; Tan et al., 2021b), the 38 dyes in modeling were divided into
training and test sets in a ratio of approximately 4:1. First, IBM SPSS
Statistics forWindows, version 25.0 was used to analyze the correlations
between color removal rates (Rexp) and 46 parameters and identify the
molecular parameters with the great correlations. Then, the stepwise
linear regression (MLR) method was applied to develop the QSAR

models with Rexp as the dependent variable and the molecular
parameters as the independent variables. The squared regression
coefficient (R2), standard deviation (SD), root mean square error
value (RMSE), significance testing (P), Akaike information criterion
(AIC), t-test, and Fisher’s tests were used to evaluate the quality and
performance of the constructedmodels (Ma et al., 2010; Tropsha, 2010).
The variation inflation factor (VIF) test was applied to check for
multicollinearity among the selected descriptors for each model
(Gupta & Basant, 2016). When the values of leave-one-out internal
validation (Q2

INT) and external validation (Q
2
EXT) usingMATLABwere

FIGURE 2
Correlation coefficient between Rexp by AlCl3 and the molecular parameters of the dyes. (A) pH = 4, (B) pH = 7, and (C) pH = 10.

TABLE 2 QSAR models.

pH Model no. Model

10 1 Rpre = −0.642 + 0.001 SAA + 0.675 q(C−)x

2 Rpre = −0.553 + 0.001 SAA + 0.610 q(C−)x − 0.003 ESPMAX

3 Rpre = −0.503 + 0.001 SAA + 0.700 q(C−)x − 0.003 ESPMAX - 3.932E-5 E(B3LPY)

4 Rpre = −0.543 + 0.001 SAA + 0.767 q(C−)x − 0.003 ESPMAX - 4.155E-5 E(B3LPY) − 0.004 ω
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both >0.5, the developed model indicated robust and predictive
(Gramatica, 2007). Finally, Y-randomization and applicability
domain tests were performed for the optimal model to verify its
stability and credibility (Melagraki & Afantitis, 2014; Gupta &
Basant, 2017; Ortiz et al., 2017).

3 Results and discussion

3.1 Experimental results

Figure 1 shows the color removal rates (Rexp) of 38 dyes by the
AlCl3 coagulant at pH values of 4, 7, and 10. The average Rexp values
were 0.1756 ± 0.0165, 0.2403 ± 0.0218, and 0.4311 ± 0.0230,
respectively. Overall, the Rexp values under alkaline conditions
were higher than those under neutral and acidic conditions. A
pH = 4, Eriochrome Black T (EBT), Direct Red 28 (DR28), and
Disperse Red 16 (DR16) had Rexp values of almost 100%, while most
of the other dyes had Rexp values <30%. The results under neutral
conditions were nearly the same. Only the Rexp value of Acid Orange
7 (AO7) exceeded 90%. At pH = 10, the Rexp values of most dyes are

high overall. Therefore, AlCl3 coagulation is suitable for the removal
of dyes under alkaline conditions.

AlCl3 generally hydrolyzes to form an aluminum hydroxide
colloid in an aqueous solution. However, under acidic conditions,
many H+ easily react with this colloid, destabilizing the colloid and
weakening dye coagulation and adsorption, leading to low color
removal rates. The zeta potential of the AlCl3 in Table 1 shows that
the zeta potential is the largest under alkaline conditions. Therefore,
the colloid stability is highest under alkaline conditions. In acidic
conditions, the zeta potential of AlCl3 is close to zero, indicating that
the colloid is unstable and the coagulation effect is poor.

3.2 Correlation analysis

Under acidic conditions, only the oil–water partition coefficient
(Log P) was significantly correlated with Rexp (Figure 2A). The
experimental results of Rexp values of dye by AlCl3 showed that the
removal effect of AlCl3 was unsatisfactory and some dyes were not
removed at all. This led to a weak regularity of correlation analysis
under acidic conditions.

TABLE 3 Statistical indexes of the QSAR models.

pH Model no. R2 SD P F RMSE Q2
INT Q2

EXT

10 1 0.6414 0.1943 0.0000 24.1505 0.0378 0.5162 0.5833

2 0.7156 0.1763 0.0000 21.8092 0.0311 0.5754 0.7169

3 0.7962 0.1522 0.0000 24.4182 0.0232 0.6664 0.7230

4 0.8128 0.1489 0.0000 20.8393 0.0222 0.6573 0.2864

TABLE 4 Statistical data of the QSAR models at pH = 10.

Model no. Variable Regression coefficient | t | Sig VIF

1 SAA 0.001 5.849 0.000 1.000

q(C-)x 0.675 3.762 0.001 1.000

2 SAA 0.001 6.945 0.000 1.205

q(C-)x 0.610 3.702 0.001 1.024

ESPMAX −0.003 2.604 0.015 1.229

3 SAA 0.001 5.835 0.000 1.496

q(C−)x 0.700 4.829 0.000 1.066

ESPMAX −0.003 3.332 0.003 1.243

EB3LPY −3.932E-5 3.144 0.004 1.406

4 SAA 0.001 6.131 0.000 1.548

q(C-)x 0.767 5.146 0.000 1.175

ESPMAX −0.003 3.624 0.001 1.292

EB3LPY −4.155E-5 3.370 0.003 1.427

Ω −0.004 1.458 0.158 1.206

Criterion - - >2.045 <0.05 <5
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Under neutral conditions, no strong correlation between AlCl3 and
molecular parameters was found due to its low removal effects on most
kinds of dye. Only the parameters BOn, Log P, and EHOMO showed
significant negative correlations with Rexp (p < 0.01). Additionally, the
correlation coefficient was −0.413, indicating that it has a great effect on
the Rexp of dye (Figure 2B). Moreover, parameter I was significantly
positively correlated with Rexp; because I = -EHOMO, it showed the
opposite correlation to EHOMO.

However, more molecular parameters were significantly
correlated with Rexp under alkaline conditions than under acidic
and neutral conditions. The parameters with significant negative
correlations were Log P, ∑q(O + N), ∑q(O), ∑q(−), EB3LYP, CP,
ESUM, ELUMO, ∑q(−)/NC, f(0)n, and f(−)n. The parameters with
significant positive correlations were SAA,MW, ESPMEAN,V, q(C

−)x,
∑q(H)/NH, R, χ, q(CH

+)x, ESP0.25, A, and P. Surface area (approx.)
(SAA) and molecular weight (MW) showed the largest correlation
coefficients (0.665 and 0.625, respectively) and had the greatest
impact on the removal effect of dyes by AlCl3 at pH = 10 (Figure 2C).

Generally speaking, the larger theMW, the larger the molecular
surface area and the easier it is for the molecule to be removed by
coagulant through electrostatic adsorption or catching–sweeping in

an aqueous solution. The absolute values of the significant
correlation parameters were ordered as follows: SAA > MW >
Log P > ∑q(O + N) > ∑q(O)> ∑q(−) > V > q(C-)x = EB3LYP >
∑q(H)/NH > R > χ = ESUM = CP > q(CH+)x > ESP0.25 > A = ELUMO >
Po > ∑q(−)/NC > f(0)n > f(−)n. The geometric and physicochemical
parameters SAA and MW mainly affected Rexp under alkaline
conditions, followed by the electrical parameters.

3.3 Model analysis

QSAR models are constructed by using multiple linear
regression (MLR). All models must satisfy the conditions of R2 >
0.6,Q2

INT >0.5,Q2
EXT >0.5, and p < 0.01 (Cheng et al., 2018a; Cheng

et al., 2018b; Liu et al., 2020). No QSAR models meeting all
validation were constructed under acidic or neutral conditions in
this study. These findings are consistent with the experimental
results that the positively charged colloid generated by AlCl3 is
easily destabilized under acidic and neutral conditions, resulting in
low adsorption capacity and poor removal effect. In alkaline
conditions, the positively charged colloids generated by AlCl3 are

FIGURE 3
Experimental Rexp versus predicted Rpre derived from the QSAR model for AlCl3 under alkaline conditions.
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TABLE 5 Experimental and predicted values of the removal rates at pH = 10.

No. Dye Rexp Model 1 Model 2 Model 3 Model 4

Rpre Diff. Rpre Diff. Rpre Diff. Rpre Diff.

1 Isatin 0.0000 0.1524 0.1524 −0.0715 −0.0715 −0.0672 −0.0672 −0.0866 −0.0866

2 T4-AM 0.0050 0.1296 0.1246 0.0112 0.0062 −0.0385 −0.0435 0.0110 0.0060

3 AB 0.0219 0.1307 0.1088 0.1403 0.1184 0.1346 0.1127 0.0909 0.0690

4 BF 0.0587 0.1543 0.0956 0.1328 0.0741 0.1005 0.0418 0.2362 0.1775

5 CP 0.0705 0.2368 0.1663 0.1742 0.1037 0.1468 0.0763 0.1339 0.0634

6 MBT 0.0792 0.0957 0.0165 0.1395 0.0603 0.1345 0.0553 0.1194 0.0402

7 CR 0.0831 0.1931 0.1100 0.1803 0.0972 0.1665 0.0834 0.1573 0.0742

8 CV 0.0914 0.1099 0.0185 0.1991 0.1077 0.1771 0.0857 0.1690 0.0776

9 Curcumin 0.1134 0.3685 0.2551 0.3429 0.2295 0.3084 0.1950 0.3100 0.1966

10 AO7 0.1249 0.2344 0.1095 0.1600 0.0351 0.1402 0.0153 0.1234 −0.0015

11 RB 0.1348 0.3553 0.2205 0.1479 0.0131 0.1084 −0.0264 0.0898 −0.0450

12 BB1 0.1798 0.2696 0.0898 0.3768 0.1970 0.3124 0.1326 0.3011 0.1213

13 AO10 0.1839 0.2930 0.1091 0.3067 0.1228 0.3178 0.1339 0.3078 0.1239

14 ASBA 0.2637 0.3450 0.0813 0.4118 0.1481 0.3728 0.1091 0.3705 0.1068

15 MO 0.2766 0.0689 −0.2077 0.0831 −0.1935 0.0637 −0.2129 0.0441 −0.2325

16 MY 0.3243 0.1599 −0.1644 0.1946 −0.1297 0.1582 −0.1661 0.1430 −0.1813

17 AB93 0.3255 0.8119 0.4864 0.5500 0.2245 0.4147 0.0892 0.3955 0.0700

18 BB26 0.3517 0.2510 −0.1007 0.1770 −0.1747 0.1157 −0.2360 0.0953 −0.2564

19 MY1 0.3894 0.5332 0.1438 0.5765 0.1871 0.5879 0.1985 0.5890 0.1996

20 MB17 0.4417 0.2993 −0.1424 0.4053 −0.0364 0.3967 −0.0450 0.4005 −0.0412

21 EBT 0.4935 0.4470 −0.0465 0.4506 −0.0429 0.4197 −0.0738 0.4237 −0.0698

22 FA 0.4977 0.3257 −0.1720 0.3973 −0.1004 0.3884 −0.1093 0.7007 0.2030

23 AS 0.5075 0.3340 −0.1735 0.2840 −0.2235 0.2673 −0.2402 0.2613 −0.2462

24 ACBK 0.5329 0.5089 −0.0240 0.5054 −0.0275 0.4977 −0.0352 0.4220 −0.1109

25 BRX-3B 0.5416 0.7520 0.2104 0.7115 0.1699 0.7183 0.1767 0.6470 0.1054

26 BB 0.5560 0.4663 −0.0897 0.4259 −0.1301 0.7252 0.1692 0.7399 0.1839

27 AO74 0.6105 0.4521 −0.1584 0.5098 −0.1007 0.5097 −0.1008 0.5041 −0.1064

28 AB1 0.6120 0.5898 −0.0222 0.6326 0.0206 0.6196 0.0076 0.6105 −0.0015

29 Indigo 0.6973 0.2594 −0.4379 0.2226 −0.4747 0.2048 −0.4925 0.2013 −0.4960

30 Carmine 0.7227 0.7871 0.0644 0.8568 0.1341 0.8388 0.1161 0.8518 0.1291

31 MR 0.7381 0.4472 −0.2909 0.4469 −0.2912 0.4698 −0.2683 0.4908 −0.2473

32 PS 0.8619 0.7374 −0.1245 0.6448 −0.2171 0.6179 −0.2440 0.6673 −0.1946

33 AG1 0.8677 0.8327 −0.0350 0.8699 0.0022 0.8740 0.0063 0.9007 0.0330

34 RB5 0.8730 0.6340 −0.2390 0.5899 −0.2831 0.5648 −0.3082 0.6602 −0.2128

35 DR28 0.8918 0.6515 −0.2403 0.7558 −0.1360 0.6799 −0.2119 0.6916 −0.2002

36 BG 0.9108 0.4575 −0.4533 0.4335 −0.4773 0.7410 −0.1698 0.7579 −0.1529

37 RY3 0.9563 0.8107 −0.1456 0.7917 −0.1646 0.7703 −0.1860 −0.0746 −1.0309

38 DR16 0.9903 0.9221 −0.0682 0.9737 −0.0166 0.9430 −0.0473 0.9613 −0.0290
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relatively stable and can easily combine with the negatively charged
anionic dyes in the solution through electrostatic forces. Four QSAR
models at pH = 10 are shown in Table 2. In general, QSAR models
with high R2 and Q2

INT met the other validation conditions and were
selected as the optimal model (Dearden et al., 2009).

Model 1 has two positive variables (SAA and q(C−)x) and one
constant, while model 2 has two positive variables (SAA and q(C−)x),
one negative variable (ESPMAX), and one constant. For models 1 and
2, the internal validation (Q2

INT) values are only 0.5162 and 0.5754,
which meet the criterion. Model 3 is the optimal one model, with
Rpre = −0.503 + 0.001 SAA + 0.700 q(C−)x - 0.003 ESPMAX - 3.932E -
5 EB3LYP. Although the R2 of model 4 is 0.8128, higher than that of
model 3 (0.7962), its external validation (Q2

EXT) is 0.2864 (<0.5),
indicating that it is not an acceptable model.

As shown in Table 4, the independent variable ω in model 4 does
not meet the t-test and significance test. The statistical indexes, internal/
external validation, and statistical tests of the optimal model are shown
inTables 3, 4. TheR2,Q2

INT, andQ
2
EXT of the optimalmodel are 0.7962,

0.6664, and 0.7230, respectively, which were far greater than the criteria
of the acceptable models. This model also has larger F and small SD and
RMSE values, indicating that model 3 is reliable, predictive, and
acceptable.

According to the aforementioned models, four groups of Rpre values
are predicted, as shown in Figure 3. The green and red triangles represent
the training and test sets, respectively. The blue solid line represents the 1:
1 regression line. The closer the data samples are to the regression line, the

more accurate the predicted Rpre of the model. The blue dotted line
represents an error range of ±0.2 to the predicted value. The scattered
points in model 1 were slightly scattered, with three points far from the
regression line (Figure 3). The scatter-point distributions in models 2 and
4 are close to the regression line; while the scatter degree decreases, two
points are still far from the regression line. Inmodel 3, the scattered-point
distribution is concentrated along the regression line except for indigo in
the test set, indicating that its prediction ability is relatively accurate.

Table 5 shows that 31 dyes had absolute values of Diff. that
are <0.2 in model 3, compared to 28, 30, and 29 dyes, respectively, in
models 1, 2, and 4. Meanwhile, 16 absolute values of Diff. are <0.1 in
model 3, compared to 12, 13, and 15 in models 1, 2, and 4,
respectively (Table 5). Therefore, model 3 should be the most
satisfactory and acceptable QSAR model of dye removal by
coagulation of aluminum chloride under alkaline conditions.

3.4 Y-randomization test and applicability
domain

The Y-randomization and applicability domain tests were
performed for the optimal QSAR model under pH = 10. First, the
Rexp values were randomly rearranged, while the 46 molecular
parameters are kept in the same order to obtain a new matrix.
Then, a new QSAR was established. According to the test criteria,
the R2 and Q2

INT of the new model were smaller than those of the
original model. In this study, the aforementioned steps were repeated
20 times to obtain the R2 and Q2

INT values of the new models. The
Y-randomization test results are shown in Figure 4A. The R2 andQ2

INT

values of the 20 new models were far lower than those of the original
model. Therefore, the stability of the original model was not due to a
chance correlation or structural dependency of the training set.

Except for indigo, the sample data of all dyes fall within the
applicability domain (Figure 4B). This is due to the large
differentials between its predicted Rpre and experimental Rexp, but
the standardized residual (σ) is 3.5, not exceeding the critical value

FIGURE 4
Y-randomization (A) and APD test (B) of the optimal QSAR model for Rpre by AlCl3 under alkaline conditions.

TABLE 6 Comparisons of experimental data and the predicted values of the
optimal QSAR model.

pH Dye Rexp Rpre Diff.

10 Disperse Red 60 0.4717 0.2407 −0.2310

Vat Blue 4 0.3865 0.4810 0.0945

Vat Violet 1 0.2879 0.3359 0.0480
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by too much (Figure 4B). Therefore, when the optimal model is used to
predict the Rpre of AlCl3 coagulant for other organic dyes under alkaline
conditions, the four parameters of the dye molecule, SAA, q(C−)x,
ESPMAX, and EB3LYP, should be calculated before determining the
leverage value and standardized residual of the dyes. If they fall
within the applicability domain of Figure 4B, the predicted Rpre of
dye is accurate. Otherwise, the predicted Rpre is uncertain.

3.5 Model prediction

To further verify the predictive ability of the optimal QSAR model,
Disperse Red 60, Vat Blue 4, and Vat Violet 1 were selected for
coagulation experiments on dye color removal by AlCl3 under the
same experimental conditions. The experimental data (Rexp) were
compared with the predicted value (Rpre) of the optimal QSAR
model, which are listed in Table 6. As shown in Table 6, except for
the absolute value of theDiff. of Disperse Red 60, which is slightly more
than 0.2, the Rexp and the Rpre of the other two vat dyes show a good fit.
In general, the optimal QSARmodel of dye color removal rate by AlCl3
coagulant under alkaline conditions has good predictive ability.

3.6 Mechanism interpretation

In this study, the optimal model equation was as follows:
Rpre = −0.503 + 0.001 SAA + 0.700 q(C−)x - 0.003 ESPMAX - 3.932E
- 5 EB3LYP. It contains four variables, among which the coefficients of
SAA and q(C−)x are positive and those of ESPMAX and EB3LYP are
negative. Thus, the larger the SAA and q(C−)x or the smaller the ESPMAX

and EB3LYP, the higher the Rpre. SAA is the parameter with the greatest
effects. The larger the SAA of the molecule, the larger its contact surface
area in an aqueous solution and the greater the chance of contact with
the aluminum hydroxide colloid. This increases the possibility of
hydrogen-bonding adsorption between the adsorption site of dyes
and the surface of the coagulant. In addition to hydrogen-bonding
interactions, adsorption bridging between dyes and colloids also plays a
role in dye removal. The larger the SAA of dye molecules, the more

apparent the adsorption bridging effect. Similarly, dyes with the largest
Rexp under alkaline conditions have higher SAA values compared to
other dyes. For example, the SAA values of Acid Green 1, Direct Red 28,
Ponceau S, Reactive Yellow 3, and Disperse Red 16 were 1324.87,
1248.24, 1210.02, 1108.74, and 1105.93, respectively. The Rexp values of
isatin, methylene blue trihydrate, and azure B were low for their small
SAA values (Supplementary Table S4-4).

The q(C−)x values are the maximum of the negative partial charge of
carbon atoms of dye molecules. These may be the active sites of
electrostatic adsorption with the coagulant. Compared with the dipole
moment (μ), which reflects the overall polarity of the molecule, the
electrostatic potential can better reflect the partial polarity of the dye
molecule. ESPMAX represents the maximum electrostatic potential of the
molecular surface. The larger the ESPMAX, the weaker the hydrophobicity
and the stronger the ability of banding water. This weakens the ability to
combine with the aluminum hydroxide colloid and reduces the color
removal effect. The coefficient between Rexp values and EB3LYP is negative
and weakly significant, which has only mathematical fitting significance
but no physical significance in themodel. In summary, the internal factors
affecting the color removal of dyes by AlCl3 coagulant under alkaline
conditions include molecular size (SAA and EB3LYP) and charge
distribution (q(C−)x and ESPMAX). Therefore, the coagulation
mechanism of AlCl3 under alkaline conditions is through electrostatic
and hydrogen-bonding forces.

The removal mechanism of DR16 is shown in Figure 5, as an
example. In the ESP distribution map, the positions of the C=O,
N=O, and N=N double bonds are blue. The negative charge near
them makes it easy to generate electrostatic adsorption with the
colloid produced after the hydrolysis of AlCl3 under alkaline
conditions. The position of q(C−)x also proves this finding. In
addition, N=N, N=O, and C=O double bonds are also potential
active sites for hydrogen-bonding adsorption.

4 Conclusion

This study evaluated the removal effects of 41 kinds of dye with
various structures by the AlCl3 coagulation method. The optimal

FIGURE 5
Removal mechanism of DR16 by AlCl3 under alkaline conditions.
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color removal rate of dye by AlCl3 coagulant was observed for the
following order: alkaline conditions > neutral conditions > acidic
conditions. Under alkaline conditions, the colloid formed by the
hydrolysis of AlCl3 is positively charged and easily combined with
negatively charged anionic dye through electrostatic adsorption.
Under acidic situations, the colloid is easily destabilized, resulting in
weak adsorption. Then, we constructed a QSAR model with
46 molecular parameters, including geometric and
physicochemical, electrical, molecular frontier orbital energy, and
other quantum chemical parameters. The established QSAR models
were examined by statistical tests, internal and external validation,
Y-randomization test, and applicability domain test. The optimal
QSAR model under alkaline conditions showed Rpre = −0.503 +
0.001 SAA + 0.700 q(C−) - 0.003 ESPMAX - 3.932E - 5 EB3LYP. The
molecular parameters contained in the model revealed the
mechanism of dye removal by AlCl3 coagulant through
electrostatic and hydrogen-bonding forces.
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