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As a naturally-based solution (NBS), green infrastructural network constructing
can improve urban ecological resilience and support sustainable urban
development. However, as the Frontier of urban expansion, the boundary of
built-up areas has little research on the boundary green infrastructure (BGI)
connecting natural and artificial spaces. In order to make up for the
shortcomings of relevant research, we propose a method for identifying BGI
and analyze its landscape pattern characteristics. We selected 15 European cities
as cases to extract the boundaries of built-up areas. Moreover, we used
morphological pattern analysis (MSPA) to identify the ecological source and
select the best distance threshold for the landscape connectivity model to
identify the BGI range. Through the gradient area method and MSPA, the BGI
landscape pattern characteristics of the case cities were analyzed quantitatively.
The BGI scale was affected by the area of the built-up area and the threshold of GI
landscape connectivity distance. Additionally, the BGI space contained a small
number of large ecological sources and many scattered and small fragmented
patches. The best landscape model of BGI was the surrounding pattern, followed
by the aggregation pattern, which had good landscape connectivity; however, the
fragmentation of the scattered pattern was high. Lastly, the ecological core area in
BGI was the main landscape type; it has a high landscape connection function for
the GI network inside and outside the built-up area and promotes biological
exchange inside and outside the built-up area. This study proves that BGI has an
important ecological significance, can guarantee the scientific nature of the NBS
method, and ensures the ecological security pattern of cities.
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1 Introduction

The rapid development of urbanization has caused many ecological problems, severely
degrading the city’s and surrounding areas’ environment (Peng et al., 2018a). The ecosystem
has been unable to bear the ecological pressure brought by urban development, leading to the
decline of the ecological resilience of the city (Jie Yi et al., 2022). Balancing ecological protection
and urban construction and realizing sustainable urban development has become a pressing
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problem worldwide (Kabisch et al., 2017; Su and Haonan, 2022).
Naturally-based solutions (NBS) emerged as a new approach to social
challenges in this context (Mackinnon, 2008; Eggermont et al., 2015).
The green infrastructure (GI) network, as an NBS method (Nadja
et al., 2016; Mabon, 2019), is an important strategy to enhance
ecological resilience and achieve sustainable development
(Panagopoulos et al., 2016; Song et al., 2018). As the Frontier of
urban expansion, the contradiction between human activities and
environmental protection is prominent (Manachini et al., 2013).
Therefore, it is essential to study the GI located at the boundary of
an urban built-up area for the research and practice of NBS.

GI is an ecological network formed by the interconnection of multi-
functional natural areas and open green spaces (Tzoulas et al., 2007;
Bartesaghi Koc et al., 2017). Landscape connectivity is the basis of species
communication among ecological patches, and maintaining such
connectivity is vital to ensure sustainable development (J. Peng et al.,
2018b; Wimberly et al., 2018). Therefore, GI located at the boundary of
urban built-up areas (BGI) must ensure the GI network structure’s
connectivity and functional transition inside and outside built-up areas.
Chen et al. built GI networks in urban fringe areas to improve landscape
patterns and enhance landscape connectivity (Cui et al., 2020; Zhong
et al., 2020; Liang et al., 2022); however, few studies considered themulti-
level landscape connectivity characteristics of GI in urban fringe areas.
There are two main reasons for the fragmentation of GI networks inside
and outside urban built-up areas. First, urban built-up areas are used as
resistance surfaces for biological migration (Dong et al., 2020; Xindi
Zhang, 2022). Second, the GI area in urban built-up areas is small; hence,
they are not usually selected as ecological sources (Liuyang et al., 2018).
Therefore, ignoring GI at the boundary of built-up urban areas
negatively affects ecological processes, causing the separation of GI
networks inside and outside built-up areas, and it is difficult to
maintain the security and stability of the ecosystem. Therefore, a BGI
range identification method can be established from the perspective of
landscape connectivity characteristics to determine the GI space near the
built-up area boundary that can generate effective landscape connections
for internal and external GI networks.

BGI—an important connecting space of the GI network inside and
outside built-up areas—comprises patches and corridors (Forman,
1995). Studies on GI patterns mostly focus on urban central areas
and regional scales (Xiao Ran et al., 2015; Gu et al., 2017; Jiaxing et al.,
2019; Jeong et al., 2020; Kan et al., 2021; Jiang et al., 2022). Additionally,
analysis models, such as landscape pattern (Wang et al., 2019), landscape
connectivity index, and landscape pattern index of GI (Huang et al.,
2021; Modica et al., 2021), are usually applied to analyze and evaluate GI
patterns based on specific scope and elements. However, studies on the
spatial structure and landscape pattern characteristics of BGI are
relatively weak. Studying the structural composition and landscape
pattern characteristics of BGI helps reveal the GI network’s structural
characteristics and ecological processes, strengthen the connection
degree of natural and artificial GI space, and improve the structural
integrity.

As a part of the GI network, BGI is the NBSmethod for improving
urban ecological resilience. Based on the landscape connectivity
characteristics of BGI, we established the spatial identification
method of BGI and analyzed its landscape pattern characteristics.
Distance threshold is the maximum diffusion distance of biological
flow used to determine the presence or strength of landscape
connectivity between patches in the study area (Meng et al., 2016;

Qinghe et al., 2017). As an important method to measure landscape
patterns and function, the landscape connectivity model based on
graph theory can obtain the optimal distance threshold (Almenar
et al., 2019). In this study, we used PC, IIC, and other connectivity
indexes to analyze and determine the optimal diffusion distance
threshold. Based on this, the spatial range of BGI with landscape
connectivity function for GI networks inside and outside the built-up
area was defined. Moreover, we selected the gradient area and
morphological spatial pattern analysis (MSPA) methods to evaluate
the overall landscape pattern and structure of BGI. In this study,
15 United Kingdom, France, and German cities were selected as
research objects. Based on ArcGIS, GuidosToolbox, and other
software, MSPA and landscape connectivity model based on graph
theory were adopted to identify the spatial scope of case BGI and
analyze the landscape pattern. The results can provide a reference and
basis for urban BGI spatial identification and pattern optimization.

2 Material and methods

The city is a complex system (Bonnes et al., 1990). Due to the high
degree of human intervention inside the built-up area, urban green
infrastructure (UGI) is mainly artificial green space integrating various
ecosystem service functions (Chengcheng et al., 2021). The primary
function of regional green infrastructure (RGI) outside built-up areas is
to maintain ecosystem stability and protect biodiversity, including
natural ecological spaces, such as woodland and grassland (Tang
Xiaolan, 2011).

In this study, BGI is the GI located at the boundary of the urban
built-up area, including a certain range of UGI and RGI on both
sides of the boundary, which plays a role of landscape connection for
the GI network between the built-up area and the region (Figure 1).
In the BGI space, BGI connects the GI network inside and outside
the built-up area, ensures multi-level landscape connectivity, and
maintains the stability and biodiversity of the urban ecosystem. The
primary functions of GI inside and outside the built-up area
transition are to ensure that the biological flow in the regional GI
network can move to the built-up area and extend the composite
functionality of GI in the built-up area outward.

The study of BGI space in the cases is divided into two parts
(Figure 2). First, delineating the BGI space scope, which involves two
steps. a) Identifying the built-up area boundary of the case city. b)
Determining the most suitable landscape connection distance
threshold between the built-up area and the regional GI network
of the case according to BGI’s landscape connection characteristics.
Second, analyzing the case cities’ BGI spatial landscape pattern and
structure.

The data in this study is mainly the land cover data of case cities
in Germany, the United Kingdom, and France in 2020 (spatial
resolution 30 m, data source: http://www.globallandcover.com/).

2.1 BGI spatial identification

2.1.1 Built-up area boundary extraction
The entropy analysis of land use types is an information model

that expresses the richness and orderliness of land use types through
the number of land use types and the proportion of the unit area
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occupied by the types (Figure 3). Its principle is similar to that of
thermodynamics, in which entropy represents the degree of
molecular disorder in a thermodynamic system (Prunkl, 2018).
We selected the standard deviation (S) of a simple statistical
variable to represent the richness of land use type information.
The formula is as follows:

S �
��������������
1
N

∑N

i�1 xi − u( )2
√

(3–1)

Where S is the standard deviation;N is the number of land use types;
xi is the area percentage of a certain land type; u is the average area of
land use type in the unit. The land cover raster data is reclassified
into Built-up and Non-built-up lands. Notably, on both sides of the
built-up area boundary, the land use type is single, and the
information entropy is very low. However, the boundary of the
built-up area, land use type changes, and information entropy
increase. In this study, the standard deviation threshold of land
use was set between 0.3 and 0.4, and the boundary of land use type

FIGURE 1
BGI location diagram.

FIGURE 2
The methodological framework used in this study.
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with sudden change was selected and identified as the boundary of
urban built-up area (Liuyang et al., 2018). However, this method
gives the “salt and pepper particles” phenomenon and cannot extract
a stable and clear built-up area boundary line; therefore, it requires
correction.

Through kernel density analysis of the binary raster data of land
type, the raster data is converted into vector point elements, and the
result of boundary extraction of the built-up area is optimized.
When the land type changes, the point density of a single attribute
decreases rapidly, and the kernel density value drops sharply.
Therefore, kernel density analysis can reflect the spatial boundary
of a sudden change in land use type, and it is calculated as follows
(Zhang and Lu, 2009):

f x( ) � ∑n

i�1
1
πr2

φ
ⅆ ix

r
( ) (3–2)

Where f(x) is the comprehensive index value of core density per
unit area; r is the search radius in km; n is the number of samples; ⅆ ix

is the distance between elements i and x in km; φ is the distance
weight.

2.1.2 Ecological source selection
MSPA can identify ecological patches that significantly impact

the ecological connectivity of the study area (Soille and Vogt, 2009).
Notably, the MSPA method can only identify patches and corridors
with ecological protection significance using land use raster data
(Julien Carlier, 2019). According to morphology, spatial pattern,
impact on the overall landscape connectivity, and other factors, the
ecological land raster data is divided into seven non-overlapping
landscape types (Nan-nan et al., 2021). The ecological core and
bridging areas have high ecological connectivity and can protect
regional biological diversity. This method has important significance
in improving the scientific nature of ecological source selection.

Within the boundaries of built-up areas, the GI primarily
enhances the function of recreation service, biodiversity
protection is relatively weak, and the ecological land area is
small. In this study, ecological patches with an area of ≥0.5 km2

were selected as the ecological source area at the built-up area scale
(He et al., 2019). At the regional scale, the ecological land within
50 km outside the built-up area boundary was selected for MSPA
analysis based on the reachable range of species diffusion (Meng
et al., 2016). As an important ecology for regional biodiversity

conservation, the biological habitat must have sufficient scale.
Therefore, the core area of ≥5 km2 was selected as the ecological
source area at the regional scale (MT et al., 2017).

2.1.3 Distance threshold selection
The gradient distance threshold analysis can identify the study

area’s most suitable landscape connection distance threshold
(Baranyi et al., 2011; DU et al., 2019). We selected the threshold
range of landscape diffusion distance in the built-up area and
regional scale based on the study area and biological migration
characteristics.

There are few tracks of large wildlife activities in urban built-up
areas, and the study scale is relatively small (Wei al. 2009).
Therefore, 15 distance threshholds at 200 m interval from 200 to
3,000, plus 4,000, 5,000 and 10000 selected to analyze of the built-up
area scale. Outside the built-up area, combined with the
characteristics of biological migration (Meng et al., 2016), we
selected 1,000, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, 5,000,
5,500, 6,000, 6,500, 7,000, 7500, 8000, 8500, 9,000, 9500, 10000,
15000, 20000 m; therefore, 20 distance thresholds were used for
regional scale analysis.

The stable range of landscape connectivity can be preliminarily
determined using the number of links between patches (NL) and
landscape component score (NC) as the indicators of landscape
connectivity (Montis et al., 2019). Furthermore, the importance
index of each BGI patch is calculated within the stable distance
threshold range of landscape connection (Table 1). Moreover, by
comparing the importance index of each patch, the most suitable
threshold of landscape connection distance is determined. The
higher the consistency of the index change trend of each patch,
the more effective the selection of distance threshold (DU Zhibo al.
2019).

2.1.4 BGI spatial scoping
Using the boundary of the urban built-up area as the baseline,

the best distance threshold for buffering UGI inward and outward of
the boundary was determined. Additionally, the combination of the
inner and outer buffer zones constitutes the BGI spatial range of the
case city. This scope can ensure that BGI space has an effective
landscape connection between the area and the GI of the built-up
area and can identify the GI connection and transition space
between the built-up area and the area.

FIGURE 3
Urban built-up boundary extraction process.

Frontiers in Environmental Science frontiersin.org04

Yuan et al. 10.3389/fenvs.2023.1155036

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1155036


2.2 BGI spatial feature quantification

2.2.1 BGI landscape composition analysis
To ensure the stable development of ecological functions,

ecological patches should have a specific scale (Urban, 2001;
Baguette et al., 2013). The purpose of the gradient area method
is to retain the habitat patches of great significance for biodiversity
conservation and remove a large number of fragmented, isolated
patches. Setting the area threshold by comprehensively considering
the number of patches, patch area, and the proportion of screened
patches to the total area of the ecological space can ensure that the
basic ecological functions and processes are unaffected (Xiaolin
et al., 2021). We extracted the continuously distributed forest
land, grassland, and other vegetation cover land included in the
BGI space as the BGI patch and calculated the patch area.
Additionally, we selected 16 area thresholds between 0 and 3 km2

in steps of 0.2 km2 (Mao Quan et al., 2019). Next, we analyzed the
changing trend of patch number, area, and proportion of total
ecological land area with the area threshold to determine the
patch size and composition in the landscape.

2.2.2 BGI landscape pattern quantification
The MSPA method can divide the grid data of patches into core,

island, perforation, edge, loop, bridge, and branch (Table 2). The

core area and bridge are the landscape types with the connectivity of
the landscape structure (Yong Zheng et al., 2022).

3 Results

3.1 BGI space identification

3.1.1 Extraction results of the built-up area
boundary

The extraction results are presented in Figure 4 and Table 3. The
built-up areas of the case cities were >100 km 2. London and Paris
had the highest built-up area, 1174.16 km2 and 1521.5629 km 2,
respectively. However, Nuremberg and Toulouse had the smallest
built-up area, 100.1155 km 2 and 100.0332 km2, respectively The size
of the built-up area reflects the construction scale of the city.
Moreover, the differences in the built-up areas of the case cities
were large. It can analyze cities with different built-up areas scales
and better study the BGI characteristics of cities with different sizes.

3.1.2 Ecological source identification
Figure 4 shows the case cities’ UGI and RGI ecological sources,

and each city’s ecological source area and quantity are listed in
Table 3. London had the highest number of UGI ecological sources,

TABLE 1 The interpretation of landscape connectivity indices.

Type Index Interpretation

Overall indices

Number of Links (NL) Refers to the number of connections between habitat nodes in the landscape, i.e., between any two
patches. If the distance is less than the set distance threshold, the number of links between the two patches
is considered to exist

Number of Components (NC) It refers to a whole composed of patches connected functionally or structurally. An isolated node or
plaque will form a component, and there is no functional relationship between different components

Patches importance
indices

Patch comprehensive connectivity index
(dIIC)

Calculate the index change value after removing a single patch to determine the importance of the
integrated connectivity of the patch. The higher the integrated connectivity value, the higher the
importance of the patch in the landscape

Patch connectivity probability
index (dPC)

It describes the probability of species moving between any two patches. The higher the index value, the
higher the connectivity of patches in the landscape

Patch coincidence pobability Index
(dLCP)

The probability of patches being randomly connected as habitats represents the coherent role of patches
in the landscape

TABLE 2 Definition of landscape type based on MSPA.

Landscape type Ecological significance

Core
Larger habitat patches in foreground pixels, providing relatively larger habitats space for species; represents ecological sources of importance
for protecting biodiversity

Bridge
Narrow area connected the cores, representing a corridor that connects patches in an ecological network; essential for biological migration
and landscape connectivity

Edge Similar to the Bridge, but only represents the corridors that communicate within the same core for the migration of internal species

Loop
Transitional zone between the core zone and the external non-green space, its width varies according to the migration characteristics of
different species

Perforation
Transitional zone between the core zone and the internal non-green space, its width varies according to the migration characteristics of
different species

Branch Extending area of green space; only one end is connected to the green space

Islet Isolated, broken small patches that are not connected to each other, with low connectivity
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with 45 patches, mainly small parks and greenbelts. However, the
UGI ecological source area in the built-up area of Berlin was the
largest, with strong ecological functions. Notably, there were only
4 UGI ecological sources in the built-up area of Toulouse, with a
total area of only 3.328 km2; therefore, biodiversity protection was
relatively weak. Berlin had the highest number of regional ecological
sources outside the built-up area, with 66 patches. However, the total
area of regional ecological sources in Sheffield, Manchester, and
Berlin was >3,000 km2, which can maintain regional ecological
security (Ma et al., 2004) and biodiversity. The GI inside and
outside the built-up area of the case cities had certain ecological
and landscape connectivity functions, which can provide a good
basis for identifying and analyzing BGI.

3.1.3 Determination of optimumdistance threshold
Berlin—the city with the best UGI landscape connectivity in

German case cities—had many ecological patches, and a relatively
close distance between patches is superior to the other five case cities
(Figure 5). Additionally, the landscape connectivity of four
United Kingdom cities was good in the built-up area. At the
10,000 m distance threshold, all the landscape elements were
connected into a landscape component, and the NC value
reached 1. According to the NL value, the UGI landscape
connectivity in London’s built-up area was the strongest, and

that in Birmingham was relatively weak. Among the French
cities, Paris had many UGI patches, high NL value, and a small
and stable increase trend. However, the number of UGI patches in
other cities was <10, and the patch distribution was relatively
discrete. The overall NC and NL values changed step wisely with
the distance threshold in a stepwise manner.

In the RGI analysis result shown in Figure 6, London,
Manchester, and Sheffield in the United Kingdom had good
connectivity. With the change of distance threshold, there were
stages of a small change rate of NC and NL and stable value.
Furthermore, the number of RGI patches in Birmingham was
relatively small, and the distribution was relatively discrete;
therefore, the NC and NL values changed stepwise with the
increased distance threshold. Moreover, the number of RGI
patches in German case cities was large and closely distributed.
With the change in distance threshold, the change in NC and NL
values was relatively stable. Excluding Dresden, other cases could be
connected into a landscape component when the distance reached
20000 m, indicating that the regional ecological source can meet the
needs of biological migration and diffusion. Furthermore, the
number of RGI patches in Toulouse, France, was relatively small,
and the distribution was relatively sparse, resulting in the NC and
NL change curves showing a constant interval with the increase of
the distance threshold.

FIGURE 4
Distribution of UGI and RGI ecological sources.
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TABLE 3 Ecological source extraction results of UGI, RGI.

Case Country Case city Built-up area (km2) UGI RGI

Quantity Area (km2) Quantity Area (km2)

United Kingdom

London 1174.1600 45 64.9450 23 271.7972

Birmingham 651.6437 20 28.2266 8 113.2634

Sheffield 302.2855 29 543.8582 18 3,359.5077

Manchester 459.4656 25 581.6185 19 3,535.1707

Germany

Hanover 187.3413 5 25.5083 46 2420.0632

Hamburg 418.4669 10 48.2607 43 1256.6128

Berlin 593.4302 22 2196.1155 66 3,394.8261

Dresden 200.2891 11 101.1098 51 1227.2470

Munich 225.4226 9 208.4119 47 2338.0627

Nuremberg 100.1155 3 367.8156 63 1672.9128

France

Paris 1521.5629 34 329.2047 57 1308.1500

Bordeaux 262.8390 9 76.6908 21 1807.7616

Lyons 252.6015 7 15.1362 38 1055.3337

Toulouse 241.4913 4 3.3282 16 1001.3949

Tours 100.0332 6 8.1909 40 869.9130

FIGURE 5
Changes in the distance threshold of UGI NL and NC.
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The trend of curve change in Figure 5, Figure 6 can be divided
into several stages.

(a) The NC value decreased rapidly, and the NL value increased
rapidly. The increase in landscape connectivity indicates that it
promotes ecosystem stability. When the change of distance
threshold causes a drastic change in landscape connectivity,
it indicates that the landscape connectivity is unstable, and this
interval distance threshold is unsuitable for the correlation
analysis of landscape connectivity in the study area.

(b) The NC value gradually decreased or remained unchanged, and
the NL value slowly increased or remained stable. In this
interval, the landscape component fraction changes slightly,
and the number of connections increases steadily, indicating
that the landscape connection stability is less affected by the
change in distance threshold. Therefore, the landscape
connection in this section is in a relatively stable state, which
is suitable for studying landscape connectivity.

(c) The NC curve changes slightly; however, the NL curve significantly
increases. The landscape connection between patches becomes
increasingly strong with the increased diffusion distance.
However, the NL value changes significantly, which cannot reflect
the study area’s landscape pattern and ecological process, and it is
unsuitable to be selected as the stable distance threshold range.

(d) The NC value is = 1. This means that all ecological sources are
connected and can be considered biological habitats. However,
this situation does not conform to the actual landscape pattern
in the study area and cannot be used as the stable distance
threshold range for the landscape connectivity study.

The selected stable distance threshold ranges are listed in
Table 4. The NL curve of RGI in Bordeaux showed a staged
growth, and the NC curve showed a fluctuating stable state;
therefore, two stable distance threshold intervals were selected.
Since the number of UGI patches in Nuremberg, Toulouse, and
Toure was very small, when the diffusion distance reached a fixed
value, the NC and NL values did not change; therefore, there was no
threshold range to maintain the stable connection of the landscape.

For example, in Berlin, 20 RGI patches were screened, and the
distance thresholds of 7,000, 7,500, and 8000 m were set.
Additionally, the changes in plaque importance index dLCP,
dIIC, and dPC were analyzed, and the results are shown in
Figure 7. Moreover, when the distance threshold is set to
8,000 m, the difference in plaque importance index is the
smallest, and the index trend of each patch is the most
consistent, so it is selected as the optimal distance threshold.
Notably, when the distance threshold was 8,000 m, the difference
in plaque importance index was the smallest, making it the best
distance threshold. The appropriate distance threshold between each
case city’s RGI and UGI ecological source was determined similarly,
and the results are presented in Table 4.

The appropriate distance threshold between patches is affected
by the distance between patches. The closer the patch distribution,
the more stable the landscape pattern, and the lower the appropriate
distance threshold. Sheffield’s UGI pattern was good, with many
patches, a large total area, and a relatively close distribution.
Moreover, Munich’s RGI pattern was good, and the area and
quantity of ecological sources were large and close, which is
conducive to biological diffusion.

FIGURE 6
Changes in the distance threshold of RGI NL and NC.
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3.1.4 BGI width determination
The width and area of BGI in each case city are shown in

Figure 8, and the spatial distribution of BGI is shown in Figure 10.
BGI scope is affected by the appropriate distance threshold of GI and
the scale of the built-up area. The closer the distribution of ecological
patches inside and outside the built-up area, the stronger the
landscape connection and the smaller the coverage width of BGI.

3.2 BGI spatial evaluation

3.2.1 Differences in the characteristics of BGI
pattern

The total ecological land area of case BGI was >100 km2, and
the number of BGI patches was >100 (Table 5). In the BGI space,

the ecological land has a certain scale. The larger the ecological
source area, the better the ecological function. At the urban
boundary, the intensity of human activities was gradually
weakened. Additionally, the total ecological area and the
number of patches increased, higher than those in the urban
built-up areas. Within the scope of BGI, the increase in the
number of patches indicates that the number of nodes in the GI
network has increased, and the landscape connection has
improved.

Among the numerous patches, a large area of ecological core could
provide habitats for organisms, and small and scattered serve patches as
stepping stone patches. Using the gradient area threshold analysis of the
BGI patches in the case cities, the composition of the BGI patches in each
case was analyzed according to the inflection point of the curve in
Figure 9. The results are presented in Table 5.

TABLE 4 The result of the optimal distance threshold selection.

Case Country Case city UGI RGI

Range (m) Distance threshold (m) Range (m) Distance threshold (m)

United Kingdom

London 2200–2600 2600 6000–7000 7000

Birmingham 1800–2200 2200 6500–7500 8000

Sheffield 800–1600 1200 6000–7000 7000

Manchester 1600–2200 2200 8000–10000 6500

Germany

Hanover 2200–5,000 2800 4,500–6000 6000

Hamburg 2000–2200 2800 7000–8000 6000

Berlin 2200–3,000 2200 6000–7000 8000

Dresden 1800–3,000 3,000 5,000–5,500 9500

Munich 2200–3,000 2000 8500–9500 5,500

Nuremberg 800 800 7500–8500 8500

France

Paris 2200–2400 2200 6500–7000 6500

Bordeaux 1200–2800 3,200 5,500–6500, 8500–9500 8500

Lyons 800–3,000 2800 7500–8500 8500

Toulouse 1800 1800 4,000–10000 10000

Tours 1600 1600 5,500–7000 6500

FIGURE 7
Changes in the distance threshold of Berlin patch importance indices.
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The number of scattered small patches in Birmingham’s BGI
was large, accounting for about 25% of the total area. Moreover, the
BGI was relatively broken, and the proportion of large patches was
relatively low. Furthermore, the BGI in Toulouse contains many
small ecological patches, and the landscape pattern was severely
fragmented. Hanover’s BGI had a high proportion of medium and
large patch areas, a complete overall ecological pattern, and stable
function. In all cases, the BGI space contained a large area of
ecological sources to ensure biodiversity and ecological security,

and many small patches were stepping stones in the biological
migration and diffusion path.

According to the distribution location and spatial pattern of BGI
in Figure 10, the BGI model of the case cities can be divided into
three types.

1) Surrounding pattern: The patches can be closely surrounded by
the urban built-up area, forming a circular or semi-circular
structure conducive to biological flow between GI networks

FIGURE 8
Case city BGI width and area.

FIGURE 9
Changes in the minimum area threshold of the patch.
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and the biological migration and diffusion in BGI space. There
are two types of surrounding patterns. First, a large ecological
source outside the built-up area with a very high landscape
structure and functional connection seen in Berlin and Paris.
Second, many small artificial green spaces clustered to form a
green ring structure surrounding the built-up area seen in
London. This type of BGI has a high overall structural
connectivity; however, the functional connectivity of the patch
is weaker than that of the large regional ecological source.

2) Aggregation pattern. Local patches are clustered and distributed
around the built-up area, and multiple clustered and distributed
GI network nodes connect the GI landscape. For example, in
Hamburg, Bordeaux, and Sheffield, the ecological patches were
clustered and distributed and had a certain scale without forming
a semi-ring or ring structure. The more the number and area of
patches, the stronger the landscape connection function between
the two ecological networks and the better the landscape stability.

3) Scattered pattern. The patches are scattered in the BGI space, and
the patch area is generally small. The landscape connection
function of BGI was relatively weak in Birmingham and
Toulouse. Small-area ecological patches are suitable stepping
stones in the biological migration path and play a relatively weak
role in biodiversity protection. The scattered distribution pattern
can easily cause landscape fragmentation.

3.2.2 BGI landscape pattern analysis
Figure 11 and Table 6 present the analysis results of MSPA. The

proportion of core in BGI was the highest (>30%) in all case cities.
Munich had the highest proportion of BGI core area, and Berlin had
the largest BGI core area. As a landscape type with high structure
connectivity function and less disturbance, the core mainly serves as

the habitat of organisms and protects diversity. Therefore, the case
cities’ BGI can protect biodiversity, of which Berlin and Munich had
the strongest biodiversity protection function, and Toulouse had a
relatively weak ecological function.

The edge area comes after the core area. In all cases, the proportion
of marginal areas in BGI was >10%. Moreover, the area of BGI edge in
Berlin andMunichwas large; however, the proportionwas small, 13.22%
and 12.73%, respectively. This situation is because the edge area usually
surrounds the ecological core area, and the patch’s size, quantity, and
geometric shape can significantly affect the area and proportion of the
edge area.

The third area is the branch, which can promote the material
and energy exchange between the core area and the outside world.
The area of branch lines in Berlin BGI was the largest; however, the
proportion was the lowest due to the huge total area of Berlin BGI.
Additionally, the branch has certain landscape connectivity, which
enhances landscape connectivity and biodiversity protection by
establishing ecological corridors.

As a narrow and long area connecting the ecological core areas,
the bridge can serve as a corridor for biological migration and
diffusion, which is essential for biodiversity protection. In the MSPA
analysis of the case cities, Toulouse and Lyon BGI had the highest
proportion of bridging areas. Notably, insufficient bridging area
leads to a lack of connectivity between BGI patches and limited
species migration and gene exchange, which is unconducive for
maintaining biodiversity.

Furthermore, the loop is a shortcut for species migration within
the patch, which is conducive to species migration within the same
patch. In these cases, the area of the BGI loop in Lyon accounted for
1.739%; however, that of other cities was <1%, indicating that there
are few patches in the BGI core area.

TABLE 5 Analysis results of gradient area threshold.

Case Country Case city BGI-ecological
land area (km2)

Number of
all patches

Number of
selected
patches

Area of
remaining

patches (km2)

Proportion of
area (%)

Proportion of
quantity (%)

United Kingdom

London 374.4174 432 54 1.6 74.395 12.500

Birmingham 235.84 295 61 0.8 75.527 20.678

Sheffield 775.9932 220 35 1.4 90.887 15.909

Manchester 885.9585 198 12 2.8 88.478 6.061

Germany

Hanover 132.8091 147 10 1.4 99.313 6.803

Hamburg 263.3512 159 19 1.8 83.226 11.950

Berlin 6938.5779 397 35 2.2 87.719 8.816

Dresden 1309.85 580 23 2.4 95.916 3.966

Munich 2851.5055 363 13 2.2 94.613 3.581

Nuremberg 678.5427 183 13 1.2 95.705 7.104

France

Paris 1671.192 829 64 2.2 89.144 7.720

Bordeaux 190.2681 1259 30 1.2 81.263 2.383

Lyons 216.8123 282 40 1 81.011 14.184

Toulouse 131.3162 303 15 1.4 47.805 4.950

Tours 704.8087 456 20 1.6 93.993 4.386
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The perforation and the edge are the transition areas between
the core and other land types; however, the perforation is located in
the core of the patch, which easily affects the ecological process in
the core. The low proportion of perforation area in BGI indicates
that the impact on the interior of the BGI patch is small, and the
ecological process in the core area can be well protected.

The landscape connectivity of islands is relatively low, and the
possibility of internal material and energy exchange and
transmission is relatively small. The BGI of the case cities
contained a small number of islands, and the proportion of
isolated patches in the BGI was small. This indicates that BGI
had a relatively low landscape fragmentation degree, good
landscape connectivity, and small stepping-stone ecological
patches to ensure the activity and diffusion of organisms.

According to the MSPA analysis results, the core in BGI space was
the most important landscape type, with the highest proportion and the
largest area. This suggests that BGI’ primarily protects the normal
migration and organism diffusion, maintains of ecosystem’s stability,
and ensures the GI network’s landscape connectivity. Furthermore, the
high proportion of edge was due to the weakening of the development
intensity at the boundary of urban built-up areas compared with that in
the built-up areas; however, there were still human activities around the

edge of BGI patches. Moreover, the extremely low proportion of
perforation indicates that human development and construction of
GI patches are usually not in the core areas to prevent interference
with ecological processes in the core areas. Additionally, the branch,
bridge, and loop area all had certain proportions, indicating that BGI can
provide corridors for the migration and diffusion of species, which is
conducive to GI network connectivity and biodiversity protection.

4 Discussion

In the BGI space of the case, cities such as Berlin, Paris, and
Bordeaux have large ecological sources, while cities such as
Birmingham, Toulouse, and London only have small-area ecological
patches (Figure 10). Among them, the BGI space in Berlin contains
many large ecological sources with the highest total ecological area, and
ecological patches are interconnected to form a surrounding pattern.
The BGI space in Bordeaux also contains large ecological sources, but
the patches are only locally clustered and cannot form a circular
structure. The BGI of Birmingham is composed of many small
patches, and the patches are scattered, with poor landscape
connectivity and serious fragmentation. Similarly, there is no large

FIGURE 10
Spatial distribution of BGI in case cities.
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ecological source in BGI space in London, but the patches are closely
distributed and the landscape connectivity is high, forming a circular
structure composed of many small-area patches. Therefore, in the BGI
space, the larger the area of the ecological source and the stronger the
connection function, the better the ecological function can be played.
Moreover, the landscape pattern of BGI also plays a crucial role, the
closer the distribution between the patches, the stronger the landscape
connectivity, and the more conducive to the connection between the
urban and the regional GI network.

In this study, BGI can play an important role in ensuring the
integrity and connectivity of urban and regional GI network

structures, which is consistent with other studies on the
strengthening of urban-rural ecological connections between
urban and rural GI at urban and rural margins (Zhong et al.,
2020). The connectivity of urban and rural ecological networks is
limited by the lack of ecological areas and the lack of stepping
stone patches in some urban marginal areas (Cui et al., 2020;
Zhong et al., 2020; Liang et al., 2022). In contrast, the border
green infrastructure of European case cities can better maintain
the biological flow between GI networks. By summarizing the
pattern of case BGI and identifying different spatial pattern
characteristics, the BGI of European case cities can support the

FIGURE 11
Case City MSPA landscape type scale.

TABLE 6 The area of MSPA landscape type in the case city.

Case Country Case city Area
(km2)

Core
(km2)

Islet
(km2)

Perforation
(km2)

Loop
(km2)

Bridge
(km2)

Edge
(km2)

Branch
(km2)

United Kingdom

London 374.42 204.10 2.53 1.42 1.69 5.89 130.60 33.69

Birmingham 235.84 116.90 6.10 0.46 1.05 3.70 79.35 24.78

Sheffield 775.99 614.30 2.19 10.14 1.39 4.69 115.10 32.01

Manchester 885.96 709.90 2.37 11.84 2.34 5.039 126.80 32.15

Germany

Hanover 132.80 78.26 3.69 1.21 0.74 1.06 37.83 12.38

Hamburg 263.35 172.40 3.39 0.14 0.47 2.60 67.44 20.33

Berlin 6938.58 5,554.00 6.87 231.1 22.1 43.03 917.60 189.5

Dresden 1309.85 944.20 8.94 20.54 5.16 16.11 249.90 72.97

Munich 2851.50 2319.00 3.10 56.57 8.42 22.26 363.00 87.66

Nuremberg 678.54 485.40 4.18 9.27 2.10 8.39 136.00 36.51

France

Paris 1671.19 1153.0 5.93 14.11 7.45 27.24 367.2 107.00

Bordeaux 190.27 91.46 6.93 0.50 0.67 7.10 56.20 31.20

Lyons 216.81 79.28 7.73 0 3.77 13.38 65.08 50.45

Toulouse 131.32 40.14 13.3 0.08 1.28 6.85 36.68 34.82

Tours 704.80 529.20 2.31 14.88 1.47 5.32 134.18 25.14
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connection between cities and regional GI networks. In addition,
the results of the MSPA analysis showed that the BGI plaque of
the case could provide services for human activities and also had
a high biodiversity conservation function. In summary, BGI
contains the composite functions of urban green
infrastructure and regional green infrastructure and is an
important part of the GI network.

When extracting ecological sources, MSPA considers the
area factor and the structural characteristics and connectivity
functions of landscape elements, preventing the subjectivity of
source extraction and improving accuracy. However, MSPA
analysis has a strong scale and edge effects, and the analysis
results at different research scales are quite different (Ya-Ping
et al., 2016). Therefore, it is important to select the appropriate
analysis scale when using MSPA to analyze the characteristics of
landscape patterns. To retain the small but important landscape
elements in the built-up area and ensure the accuracy of the
results, the grid size of the built-up area scale was set to 30 m,
and the grid size outside the built-up area was set to 90 m
(Tanner and Fuhlendorf, 2018). However, the reasonable
selection of grid data granularity and edge width for different
research areas still needs further research.

When extracting the boundaries of urban built-up areas, the
edges of built-up areas extracted using the land-use entropy
method were severely fragmented and showed an obvious
sawtooth shape. Moreover, many holes were observed in the
built-up area extracted by the POI kernel density analysis
method, and the POI category was inconsistent with the land
type (Jinhua et al., 2021). Notably, the boundary of the built-up
area extracted in this study was accurate and can overcome the
information-missing phenomenon of the extracted results. The
comparison between the extraction results of the built-up area in

Paris obtained by this method and the remote sensing satellite
images is shown in Figure 12. The built-up area was close to the
actual boundary, improving the “salt and pepper particles”
phenomenon of the boundary of the built-up area determined
using the land-use entropy method to extract the built-up area.
Therefore, this method reflects the boundary details of urban
built-up areas and has good applicability. Moreover, the
extraction effect of built-up area boundaries in cities of
different sizes had good accuracy.

The distance threshold needs to be determined when
analyzing the landscape connectivity between the built-up
area and the regional GI using Conefor software. However,
the selection of distance threshold requires careful
consideration of many factors, among which the diffusion
range of species is the key factor, which varies widely for
different species. Furthermore, when the landscape
connectivity index is used to screen the landscape distance
threshold, the appropriate distance threshold is closely related
to the current distribution of BGI landscape patches. In this
study, IIC, PC, and other landscape connectivity indexes were
used to screen the appropriate distance threshold of the study
area, and the selection index was small. Lastly, when selecting
the distance threshold, the rationality of landscape connectivity
and the ecological process of different scales should be
considered to determine the most suitable distance threshold
for the case city.

5 Conclusion

In conclusion, high-intensity urban development has led to
the isolation of built-up areas and natural ecological space. GI
network planning–has been ignored at the boundary of built-up
areas, and its scientific and rational nature has been questioned.
The innovation of this study lies in identifying the scope of BGI
and analyzing its landscape pattern characteristics using the GI
network’s continuity, transition, and systematic characteristics
at the boundary of urban built-up areas. Based on the landscape
connectivity model, MSPA, and other methods, this method can
effectively analyze the best landscape distance threshold of UGI
and RGI and delimit the scope of BGI. Additionally, we analyzed
and summarized the landscape pattern and structural
characteristics of BGI space, providing reference and
guidance for planners and decision-makers. By studying the
European case cities, we proved that BGI is a vital in the GI
network under the context of rapid urbanization.

Overall, a BGI with a landscape connection between UGI and
RGI at the boundary of the urban built-up area was observed,
and its scope was affected by the scale of the built-up area and the
optimum distance threshold of UGI and RGI. Moreover, the BGI
contained many small ecological patches and a small number of
large ecological patches. Moreover, the proportion of large
patches in the BGI area was high, and the total area of
broken small patches was small. Additionally, large-scale
ecological patches in BGI spaces performed major ecological
functions. Patch distribution in BGI space can be divided into
the surrounding, aggregation, and scattered patterns. The BGI of
the surrounding pattern can improve the landscape connection

FIGURE 12
Results of boundary extraction of Paris urban built-up area.
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between UGI and RGI and enable the migration and diffusion of
organisms inside and outside the built-up area. The best
landscape model of BGI was the surrounding pattern,
followed by the aggregation pattern; however, the
fragmentation of the scattered pattern was high. Lastly, The
ecological core area in BGI is the main landscape type, followed
by the marginal area. Therefore, BGI can promote the habitat
and migration of organisms, maintain biodiversity and ensure
ecological security, and is an important part of the NBS method
in the context of rapid urbanization.
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