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In water resources management on a global scale, it is important to reconcile the
conflicting interests of different regions and actors regarding water use. To solve
this issue more effectively, an optimal allocation model of water resources that
coordinates the interests of regional multi-level water resource managers and
balances the benefits acquired by regional multi-level water resource managers
was proposed. The model consisted of three components, including option
generation, option selection, and fallback bargaining. The Hybrid Strategy
Whale Optimization Algorithm (HSWOA) was created to generate the initial
alternative set throughout the alternative generation process. In the alternative
screening process, quick non-dominated sorting was used to choose Pareto
alternatives from the initial alternative set. Through many rounds of negotiations,
water resource managers at all levels reached a consensual water resource
allocation plan during fallback bargaining. This model was used to reconcile
the conflicting water interests of municipal and county water managers in
Handan, China, in terms of economic, social, and ecological benefits. It was
also compared with the Pareto solution set obtained from NSGA-III. In terms of
convergence speed and accuracy, the results demonstrated that HSWOA
outperformed the Whale Optimization Algorithm (WOA). The results show that
several rounds of discussions between municipal and county water management
eventually resulted in Nash equilibrium. In normal flow year, the recommended
scheme could yield economic benefit of 315.08×108 Yuan, social benefit of
0.1700, and ecological benefit of 5.70 × 106 m3, whereas in low flow year, the
recommended scheme could yield economic benefit of 354.85×108 Yuan, social
benefit of 0.2103, and ecological benefit of 57.82 × 106 m3. Compared to existing
studies, the recommended scheme has clear advantages in terms of social and
ecological benefits. The proposed optimal water resource allocation was Pareto
optimal. This paper presented a new way of thinking about reconciling the
conflicting interests of different levels of water resource managers in the
process of water allocation.
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1 Introduction

Water is a valuable fundamental resource, a vital economic
resource, and a public social resource (Wang et al., 2022). Currently,
only 0.007% of the world’s water resources are available for direct
human use (Loucks and Van Beek, 2017). With rapid socio-
economic development and continued population growth, global
water demand is anticipated to increase for some time (Sone et al.,
2022). When there are insufficient water resources to meet demand,
rivalry and conflict will arise between different areas and water users,
posing a major challenge to water resource managers (Sohrabi et al.,
2022). As an important method of dealing with water shortage and
coordinating water competition, the optimal allocation of water
resources has become a major issue in water resources management
(Li et al., 2020; 2022; Yuan et al., 2022).

The optimal allocation of water resources must not only
optimize water use efficiency and consider the equity of water
supply between upstream and downstream areas and various
water users, but also preserve the ecological environment’s
health. As a result, this is a high-dimensional, non-linear,
constrained optimization problem (Deng et al., 2022). In recent
years, multi-objective decision-making methods have been widely
used to solve water resources optimization problems, such as multi-
objective linear programming (Zhuang et al., 2015; Avarideh et al.,
2017; Zeng et al., 2018; Yue et al., 2022), non-linear programming
(Zeng et al., 2015a; Zeng et al., 2015b.; Grové, 2019; Yan et al., 2021),
multi-objective evolutionary algorithms (Fang et al., 2018;
Hatamkhani et al., 2022; Yan et al., 2022; Yousefi and Moridi,
2022), etc., Zeng et al. (2015a) developed a two-stage interval-
stochastic water trading (TIWT) model by combining interval
parametric planning techniques with two-stage stochastic
planning techniques to consider the water allocation of the
Kaidu-Kongchu River under a water rights trading scenario.
However, the study did not consider in-channel and off-channel
ecological water needs in the water allocation process, nor did the
objectives of the allocation take the ecological environment into
account. Avarideh et al. (2017) developed a system of indicators to
determine the water allocation of the transboundary river Sirwan-
Diyala between Iran and Iraq, based on the UN Watercourses
Convention. They also carried out water supply simulations using
the Water Evaluation and Planning (WEAP) model to assess the
impact of the water allocation results on both countries under
different scenarios. However, the method only considered
scenarios for the selection of the three indicator weights and did
not perform an optimization search for the weights, so the proposed
weights may not be the optimal solution. Hatamkhani et al. (2022)
coupledmulti-objective particle swarm optimization (MOPSO) with
WEAP, aiming at the largest cultivated area in the agricultural sector
and the highest water supply reliability for environmental flow
requirements. Moreover, they allocated water resources for the
Karkheh River Basin in Iran. However, this study did not
consider the water demands of other water users besides
agriculture and wetland ecology. Besides, the above research
assumes that there is only one authoritative water resource
manager who proposes a non-inferior solution or set of Pareto
solutions that maximize the overall benefit to the region. He then
chooses the final water allocation solution based on his own
preferences. However, in practical water resource management,

there are frequently multiple levels of water resource managers,
with the higher-level water resource managers responsible for
safeguarding the water needs of the regional ecosystem and
coordinating water supply conflicts between sub-regions. On the
other hand, lower-level water resource managers are more
concerned with the economic benefits of water supply (Yao et al.,
2019). The multi-objective decision-making process is characterized
by a low level of participation by sub-water managers, whose
interests are not clearly articulated and who may be dissatisfied
with the water distribution options, thus affecting their
implementation. As a result, there is an urgent need to propose a
model for optimizing water resource allocation that takes into
account the interests of various levels of water resource managers
in order to better balance individual interests with the overall
interests.

Fallback bargaining is a non-cooperative game strategy
proposed by Brams and Kilgour (2001) that seeks to maximize
the self-interest of all game participants. The game players,
according to the principle, rank the alternatives based on their
own interest maximization from a set of alternatives. By gradually
lowering their own expectations of their own interests, they
consistently choose the lower-ranked alternatives until there is an
alternative that satisfies the interest objectives of all game players,
thus achieving Nash equilibrium (Facchinei and Kanzow, 2010). The
method is simple, with a high degree of participation from all game
participants. The chosen solution is accepted by all players and is
easily implementable. Lee (2012) developed a multi-objective
fallback bargaining model to balance land pollution loads with
the economic benefits of land use in the Zengwen Reservoir area
of Taiwan. Moradi and Limaei (2018) used a backward bargaining
approach in watershed land management to reunite
environmentalists (seeking to reduce soil erosion and
sedimentation) and land users (seeking economic benefits from
land use). He also compared it with traditional multi-objective
optimization methods, showing that the Nash equilibrium
solution is closer to the Pareto frontier. Yu et al. (2021)
developed a reservoir multi-objective game model to resolve the
conflicts between reservoir managers, local government officials,
and water users in the receiving area between annual power
generation, ecological flows, and socio-economic water demand,
using the Three Gorges Reservoir in China as their case study.
However, few studies have applied the principle of fallback
bargaining to the problem of optimal regional water allocation,
particularly the coordination of conflicts between different levels of
water managers in the optimal allocation of water resources. In
addition, existing studies have calculated the maximum and
minimum values of each party’s interest and divided n equally
between them as alternatives. This method has two shortcomings.
First, n lacks a reasonable and clear criterion for its value. Second,
the alternative proposed by n may not be a feasible solution to the
objective function. Therefore, a new alternative selection method
needs to be proposed to enhance the efficiency and feasibility of
fallback bargaining.

Efficient optimization algorithms are a crucial tool for selecting
water allocation options. WOA is a meta-heuristic optimization
algorithm proposed by Mirjalili and Lewis (2016) in 2016 that
features a unique search mechanism with few parameters and
easy understanding. A number of scholars have applied WOA to
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water demand forecasting, water resource optimization, and water-
wind-light complementary energy scheduling, and the results
demonstrated WOA’s efficiency in dealing with the above
research problems (Yan et al., 2018; Yin et al., 2019; Guo et al.,
2020). However, similar to other intelligent optimization algorithms,
WOA suffers from slow convergence and a tendency to fall into local
optima (Yang et al., 2022).

In summary, based on the contradictory distribution of interests
between different levels of regional water resource managers in the
optimal allocation of water resources, this paper proposes a new
model for the optimal allocation of water resources that allocates all
available water resources in the region to all types of water users. It
takes into account the different needs of various levels of water

managers in terms of ecological, social, and economic benefits. It
also generates initial water allocation options by constructing an
HSWOA. Lastly, it selects the options using a fast non-dominated
ranking method (Deb et al., 2002), and introduces a fallback
bargaining method to simulate the process of multiple rounds of
negotiation between different levels of water managers. The model
was applied to the city of Handan, China, to optimize water
allocation under normal and drought conditions in 2025 and
compared with the Pareto solution set proposed by NSGA-III to
verify the soundness of the model. This study provides a new
perspective on how to improve the interactivity of different levels
of water resource managers in the water allocation process, resulting
in water allocation options that are acceptable to different levels of

FIGURE 1
Flowchart of a water resource optimization model at the city and county levels.
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water resource managers. This helps reduce conflicts between
different levels of water resource managers.

The rest of this paper is organized as follows: The second section
details the process and details of the water resource optimization
model proposed in this paper to coordinate the interests of different
levels of water resource managers. The third section presents an
overview of the study area and data sources. The fourth section
shows the results of the distribution of benefits to different levels of
water resource managers. The fifth section contains the conclusions
and limitations.

2 Methodology

2.1 Optimal water allocation model at city
and county levels

This study suggests a comprehensive alternative generation-
alternative screening-fallback bargaining model for optimal
allocation of water resources at the city and county levels, as
shown in Figure 1. Construct HSWOA to solve for ecological
and environmental benefits, social benefits, and economic
benefits, respectively. Generate an initial set of options for
optimal water resource allocation. Calculate the remaining benefit
values for each option. Combine the options and introduce a fast,
non-dominated ranking method to select the representative options
to generate the final set of options. The municipal and county water
managers rank the options according to their own best interests and
initiate a fallback bargaining session until the compromise set is not
empty for the first time. If there is more than one choice in the
compromise set, the option with the smallest water deficit is selected.
If there is only one option in the compromise set, then that option is
the last one.

2.2 Goals and limits for an optimal water
resource allocation model at the city and
county levels

The objectives of optimal allocation of water resources
usually include ecological benefit, social benefit, and economic
benefit. Moreover, the constraints mainly include water supply
capacity constraints, water demand constraints, water balance
constraints, etc., (Jin-Yan et al., 2021). These three objectives are
contradictory. For example, the pursuit of maximizing the
economic benefits of water allocation may lead to difficulties
in securing ecological water that does not directly generate
economic benefit. Also, areas with low water efficiency may be
allocated less water and have a less equitable water supply. The
ideal water allocation solution for municipal water managers is
one that reduces the ecological deficit of water in the region and
ensures equitable water supply for all sub-regions. On the other
hand, county water managers seek to maximize their own net
return on water supply. As a result, there is a conflict between
municipal and county water managers in the development of
water allocation schemes, and a suitable model needs to be
proposed to reconcile this conflict. This paper defines the
ecological deficit as an ecological benefit, the gap in water

supply satisfaction between regions within the sub-basin as a
social benefit, and the net benefit of water supply as an economic
benefit, with each benefit explained in more detail below.

2.2.1 Ecological benefit
The regional ecological environment water demand includes the

ecological environment water demand in the river and the ecological
environment water demand outside the river. The objective of
ecological benefit is to minimize the ecological environment’s
water shortage in the river and outside the river.

minE x( ) � ∑L
l�1
∑K
k�1

∑2
j�1

Dk
j −∑I

i�1
xk
ij

⎡⎣ ⎤⎦ (1)

2.2.2 Social benefit
Often, a municipality has many sub-basins. Moreover,

calculation units situated in the same sub-basin are closely linked
hydraulically, with water abstraction from upstream calculation
units significantly affecting the amount of available water for
downstream calculation units. Therefore, the social benefit
objective is to achieve the smallest water supply gap for the
calculation units inside the sub-catchment. The Gini coefficient is
one of the most prominent measures used to assess regional income
differences and is widely employed in economics (Gini, 1921). The
Gini coefficient is defined as the ratio of the area between the
diagonal and the Lorentz curve to the area between the entire
triangle below the diagonal (Figure 2). It also takes on a value
ranging from 0 to 1, with larger values indicating a more unequal
distribution of resources. This paper calculates the Gini coefficient of
satisfaction with water supply using the trapezoidal approach (Dai
et al., 2018), after defining water supply satisfaction as:

Sl,k � ∑K
k�1

∑J
j�1

∑I
i�1
xk
ij

Wk
j

(2)

FIGURE 2
Principles of the trapezoidal method of calculating the Gini
coefficient.
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Arrange Sl,k from smallest to largest to generate a set of sequences Sl,k′

. Calculate the cumulative frequency of the sequence Ps,n:

Ps,n �
∑n
k�1

Sl,k′

∑K
k�1

Sl,k′
n ∈ 1, K[ ] (3)

Based on the definition of the Gini coefficient, the calculation of
the Gini coefficient is derived as follows:

GS,l � A

A + B
� 1 − 2B � 1 − 1

K
∑K
n�1

Ps,n−1 + Ps,n( )
� 1 − 1

K
2 ∑K−1

n�1
Ps,n + 1⎛⎝ ⎞⎠ (4)

The social benefit objective for water allocation can be expressed as:

minG x( ) �
∑L
l�1
GS,l

L
(5)

2.2.3 Economic benefit
The economic benefit is mainly expressed through the net

economic benefit generated by the water supply. The objective
function is as follows:

minF x( ) � ∑K
k�1

∑J
j�1

∑I
i�1

bij − cij( )xk
ijαij⎡⎣ ⎤⎦βj⎧⎨⎩ ⎫⎬⎭ (6)

αij and βj are calculated as follows:

αij � 1 + nijmax − nij

∑I
i�1

1 + nijmax − nij( ) (7)

βj �
1 +mjmax −mj

∑J
j�1

1 +mjmax −mj( ) (8)

2.2.4 Constraints
The above objective functions for optimal allocation of water

resources are subject to the following constraints:

(1) Water allocation rule constraints

According to the water supply topology between water sources
and water users, xk

ij exists only if there is a water supply relationship
between water source i and water user j. Otherwise, water resources
are not allocated.

(2) Water supply balance constraint

∑J
j�1
∑I
i�1
xk
ij � Wk

i (9)

(3) Water supply capacity constraints

∑J
j�1
∑I
i�1
xk
ij ≤Qk

i (10)

(4) Water demand constraint

∑J
j�1
∑I
i�1
xk
ij ≤Dk

j (11)

(5) Non-negative constraints

xk
ij ≥ 0 (12)

2.3 The procedure for determining the
optimal allocation of water at the municipal
and county levels

2.3.1 Initial option set generation
The quantity and quality of the initial set of options have a

direct impact on the effectiveness of the final water allocation
solution. Commonly used water resource configuration tools
include MIKE BASIN (Liu et al., 2019), WEAP (Khalil et al.,
2018), GWAS (Yan et al., 2020), and others. However, these
models are suitable for modeling regional water resource
conditions given different water supply and demand scenarios
and can only produce one outcome per simulation. This does not
allow for a large number of water allocation options to be
negotiated at different levels of water managers. Therefore,
they are not suitable for solving the problems presented in
this study. It is essential to propose an efficient optimization
algorithm to acquire a high-quality initial set of options. A Sobol
sequence is used to initialize the population, and the convergence
factor is non-linearized in an effort to address the drawbacks of
WOA, such as its slow convergence speed and tendency to fall
into a local optimum. Based on Particle Swarm Optimization
(PSO) (Kennedy and Eberhart, 1995), a “global-local” guided
adaptive weight is designed, and the scout bee mechanism in the
Artificial Bee Colony Algorithm (ABC) (Karaboga, 2005) is
introduced to enhance the convergence speed of WOA and
the ability to jump out of a local optimal solution.

2.3.1.1 Standard WOA
(1) Search for prey

The population size is first determined by the number of whales
participating in the hunting behavior, with eachwhale representing a set
of solution vectors �X. In the prey search phase, the coefficient variable
|A|> 1 is set, and each whale performs a random swim to search for
prey, thus giving the algorithm a global search capability. The whale
updated its information for t+1 prey search behavior as follows:

�X t + 1( ) � �Xrand t( ) − A �D (13)
�D � B �Xrand t( ) − �X t( )∣∣∣∣ ∣∣∣∣ (14)

Where �Xrand(t) is the solution vector of individual whales
randomly selected from the current population of whales in t
search. �D is the distance that other whales swim randomly in
search of prey. A and B are coefficients and are calculated as follows:

A � 2ar − a (15)
B � 2r (16)
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Where r is a random number with values in the range [0, 1], a is
the convergence factor. It decreases linearly from 2 to 0 during the
stepwise iteration of the algorithm. The convergence factor a is
calculated as follows:

a � 2 − 2
t

t max
(17)

(2) Surrounding the prey

As the number of iterations t increases, |A| gradually decreases
to 1 and theWOA enters the encircling prey phase. At this point, the
position of the best-adapted whale in the group is the prey position,
or the position closest to the prey. Therefore, the rest of the whales
converge on the position of the best-adapted individual whale. The
locations of specific whales are updated as follows:

�X t + 1( ) � �Xfit t( ) − A �Dfit (18)
�Dfit � B �Xfit t( ) − �X t( )∣∣∣∣ ∣∣∣∣ (19)

Where �Xfit(t) is the individual solution vector of whales with
the highest fitness after the t iteration. �Dfit is the distance of the
remaining whales from the optimal whale individual.

(3) Spiral bubble net hunting

Whales have a unique way of hunting that involves finding their
prey, swimming in a spiral upward, spitting out vast quantities of air
bubbles to limit their prey’s range of movement, and then feeding
upward from the bottom of the spiral. This process of predation can
be expressed by the following mathematical model:

�X t + 1( ) � �Dfnle
ck cos 2πk( ) + �Xfit t( ) (20)

�Dfit � �Xfit t( ) − �X t( )∣∣∣∣ ∣∣∣∣ (21)

Where c is the coefficient controlling the shape of the helix, in
this paper we take c = 1. Dfit is the distance between the individual
whale and the current optimal solution. k is a random number
of [−1,1].

Noting that whale schools have both surrounding prey and
spiral bubble net hunting behavior while attacking prey, random
probabilities are used to update the optimal locations of whale
individuals. When the probability is p ≥ 0.5, the group of whales
performs a spiral bubble net hunt, and when the probability is p <
0.5, the group encircles the prey based on the location of the optimal
individual whale. As the number of iterations increases, |A|
gradually decreases, and when |A| = 0, WOA finds the optimal
solution. The whale hunting mechanism is as follows:

�X t + 1( ) � �Xfit t( ) − A �Dfit, p< 0.5
�Dfite

ck cos 2πk( ) + �X t( ), p≥ 0.5
{ (22)

2.3.1.2 WOA enhancement Strategies
(1) Sobol sequence to initialize populations

In intelligent algorithms, the distribution of the initial population
has a direct impact on convergence speed and the search accuracy of the
algorithm (Dokeroglu et al., 2019). It should also be as uniform as
possible to ensure high traversal and diversity, hence enhancing the
search efficiency (Mirjalili and Gandomi, 2017). The typical WOA
initializes the population with a method of generating random
numbers, which is less traversable and has an uneven distribution of
individuals. A Sobol sequence is a random sequence made up of radical
inversions with base 2 in each dimension of the population. Each
dimension has its own unique matrix of Radical Inversions, resulting in
non-repetitive and homogeneous points (Joe and Kuo, 2003). Figure 3
shows the two-dimensional distribution of 300 random numbers in the
interval [0, 1] created by the Sobol sequence. The Sobol sequence
generates random numbers that are more uniformly dispersed in space
and have a greater degree of domain coverage.

(2) Non-linear convergence factors and adaptive weights

As seen from Eq. 18, the convergence factors a decrease linearly
with the number of iterations. This results in the standard WOA
having an incomplete global search at the beginning of the iteration

FIGURE 3
Spatial distribution of random numbers with Sobol sequences generating random numbers.
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and a weaker ability to jump out of the local optimal solution in the
later local search. To address this problem, a new non-linear
convergence factor update formulation is proposed in this paper:

a � 2e−(
1.82t
T )4 (23)

Figure 4 shows how the convergence factor a is spread out
before and after the improvement, as well as how the improved
coefficient A is spread out as the number of iterations goes
up. The improved convergence factors a take larger values and
decay more slowly at the beginning of the iteration, so that the
coefficient A has a larger range of values and the algorithm has a
stronger global search capability. In the late iteration, the
convergence factors a drop quickly to a smaller value. This
helps the algorithm improve its ability to search locally and
speeds up the process of the population coming together.

Inspired by PSO, an adaptive weight is added to the process of
individual whale position update in order to reduce the impact of the
most adapted whale on the current whale population position
update at the beginning of the iteration, thereby enhancing the
algorithm’s early global search capability. Therefore, improving the
global search capability of the algorithm in its early stages. When the
number of iterations is high, the degree of influence of the most
adapted individual whale on the position of the whale population is
gradually increased, improving the speed of convergence of the
algorithm. The adaptive weights are calculated as follows:

ω � 0.2 cos
π

2
1 − t

t max
( )[ ] (24)

Equations 13, 18, 20 then become:

�X t + 1( ) � �Xrand t( )ω − A �D, p< 0.5, A| |> 1 (25)
�X t + 1( ) � �Xfit t( )ω − A �Dfit, p< 0.5, A| |≤ 1 (26)

�X t + 1( ) � �Dfnle
ck cos 2πk( ) + �Xfit t( ) 1 − ω( ), p≥ 0.5 (27)

(3) Mechanisms for detecting whales

Inspired by ABC, the scout whale mechanism is introduced in
WOA, where the scout whale search is triggered when the
individual whale with the highest fitness level remains
constant for a certain number of iterations, attempting to
jump out of the local optimal solution by generating a larger
location update. In this paper, the location of the scout whales is
changed using a Cauchy-Gaussian variation strategy, which is
calculated as follows:

�X t + 1( ) � �Xfit t( )(1 + cos( πt

2t max
)Cauchy 0, 1( )

+ sin( πt

2t max
)Gauss 0, 1( )) (28)

2.3.1.3 HSWOA main Steps

Step 1: Initialize the algorithm-related parameters, including the
population size N, the objective function F, the variable dimension
dim, the search space [ub, lb] of the population, the threshold limit
for the number of iterations for detecting whale generation, and the
maximum number of iterations tmax.

Step 2: Generate the initial populations using Sobol sequences

Step 3: Substitute the population position into the objective
function for calculation to obtain the position of the individual
whale with the highest current fitness.

Step 4: If the optimal whale position remains constant for the limit
of iterations, then the detection whale is triggered. Moreover, apply a
Cauchy-Gaussian variation to the detection whale according to
Eq. 29.

FIGURE 4
Distribution of the non-linear convergence factor a with
coefficient A.

FIGURE 5
Distribution of bi-objective Pareto solution sets.
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Step 5: Update the non-linear convergence factor according to Eq.
23, and update the coefficient A according to Eq. 15. Moreover,
update the adaptive weights according to Eq. 24 along with the
coefficient B and the probability p.

Step 6: Search for prey using Eq. 25 if p < 0.5 and |A| > 1, or
surround prey using Eq. 26 if |A| ≤ 1.

Step 7: Hunt for spiral bubble nets using Eq. 27 if p ≥ 0.5.

Step 8: Determine whether the iteration termination condition is
satisfied. If so, the global optimal solution is output, and the solution
vector is output. Otherwise, continue to calculate the whale’s
individual fitness and record the optimal individual position.

The HSWOA flowchart with pseudo-code can be found in
Supplementary Appendix SA.

2.3.2 Initial option set selection method
Deb et al. proposed the quick non-dominated sorting method

for screening non-dominated populations in NSGA-II. The basic
principle of the method is to compare the fitness of each individual
to that of the others in order to identify a subset of Pareto solution
sets that are superior to the others in terms of fitness and in which
the people do not dominate one another. Figure 5 depicts the
distribution of the bi-objective Pareto solution set. There is
always at least one solution in the Pareto solution set whose
fitness is vastly superior to that of the dominant solution.
Moreover, solutions within the Pareto solution set are not
dominated by one another due to the large number of options in
the initial set of alternatives and the existence of a set of options that
can fully dominate the others. As a result, a fast, non-dominated
ranking method is introduced to filter the initial set of alternatives
and retain the Pareto option as the final set of alternatives in order to

enhance the efficiency of the water resource optimal allocation
method. In the work of Deb et al., the precise steps of the rapid,
non-dominated sorting approach are described in depth.

2.3.3 Fallback bargaining
Fallback bargaining is a non-cooperative game approach to

resolving the conflicting interests of multiple stakeholders, as
proposed by Brams et al. An example of a typical fallback
bargaining method is as follows:

A � a b c | d
c d a | b( ), CS A( ) � a, c{ } (29)

From Eq. 29, we can see that example has two game subjects, and
each game subject ranks all options based on their own preferences
to generate the alternative matrix A. Next, each game subject
proposes their own interests in the option to negotiate. In the
first round of negotiations, game subject 1 proposes option a,
while game subject 2 proposes option c. Obviously, the two
parties did not agree in the first round of negotiations. Therefore,
they enter the second round of negotiation. In the second round of
negotiations, subject 1 proposes option b, and subject 2 proposes
option d. Still, no agreement can be reached, so it goes to the next
round of negotiations. In the third round of negotiation, game
subject 1 proposes option c, and game subject 2 proposes option a.
At this point, both options a and c are acceptable to both game
subjects and form a compromise set CS(A) � a, c{ }, both of which
can reach Nash equilibrium.

This paper introduces a fallback bargaining strategy, setting up
municipal and county water resource managers as game subjects,
with municipal water resource managers seeking to maximize social
and ecological benefits and county water resource managers seeking
to maximize economic benefits. Each game player ranks the options
based on their own interests, and through multiple rounds of

FIGURE 6
Overview of the study area.
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negotiation, they eventually come up with a water allocation
solution, that is, acceptable to all game players.

3 Model application

3.1 Study area

Handan is situated in the southernmost part of Hebei
Province, China, at latitudes 36° 04′–37° 01′N and longitudes
113° 28′–115° 28′E. It has a land area of 12,047 km2. It has a
warm, temperate, semi-humid, semi-arid continental monsoon
climate with an annual precipitation average of 537.6 mm
(1956–2016). In 2021, Handan will have a resident population
of 9,367,000, a gross regional product (GDP) of 411.48 billion
RMB, and a per capita GDP of 43,929 RMB. Its water resources
per capita are 133.31 m3, which is only 6.4% of the Chinese
average, making it a resource-based water-scarce region. Due to
the scarcity of local surface water resources, groundwater
overexploitation is a serious problem, triggering a series of
problems such as falling groundwater levels and ground
subsidence. The geographical location of Handan is shown in
Figure 6.

3.2 Data collection and processing

3.2.1 Water allocation network map
The water allocation network map shows the relationship

between regional water resources supply, usage, consumption,
and outflow and serves as the foundation for the development of
an optimal water resources allocation model. Due to the
complexity of water resource distribution concerns, it is
difficult to accurately simulate regional water supply
patterns. In this study, the major traits and patterns are
depicted realistically in the water resource allocation network
diagram. On the other hand, other minor aspects are adequately
generalized based on the goal of water resource allocation and
the actual regional water supply situation. Wei and Wang
(2007) outline the basics of water distribution network
mapping.

According to the Handan Water Conservancy Bureau’s map
of water conservancy projects layout in Handan, the Third
Handan Water Resources Survey and Evaluation Report, and
the Handan water resources zoning set of administrative zoning,
forty water resources optimization calculation units were
identified. The water resource allocation network of Handan is
designed in accordance with the transmission relationship and
hydraulic connection between each calculating unit and the
water conservation project, as seen in Figure 7. Figure 7A
depicts the relationship between water supply and water
consumption in Handan in 2021 and water supply and
demands data from the 2021 Water Resources Bulletin
provided by the Handan Municipal Water Resources Bureau.
The relationships between water demand, supply, utilization,
and discharge in Handan are shown in Figure 7B, which is
used as the basis for the design of an optimal water allocation
model.

3.2.2 Planned annual water supply capacity and
water demand

Based on the Handan Water Resources Development and
Utilization Plan approved by the Handan Water Resources
Bureau, the available water supply from various water sources in
Handan in 2025 is 2,450.6 million m3 in normal flow year and
2,128.19 million m3 in low flow year. However, the total water
demand from various industries is 2,947.86 million m3 and
3,396.47 million m3 in normal and low flow year, respectively.
Supplementary Appendix SA details the amount of water available
and required in each county for normal and low flow year.

3.2.3 Water supply rules andmodel key parameters
3.2.3.1 Water supply rules

The guidelines for water source allocation are based on the
requirements of various water users for the quality of each water
source, the water supply routes of water conservation projects, and
the cost of water supply.

(1) The use of water for urban domestic use (Urb), rural domestic
use (Rur), and urban public use (Pub) is prioritized above the
use of water transferred from the south to the north (Nor), with
groundwater serving as a secondary supplement (Grd).

(2) Industrial water use (Ind) prioritizes the Nor, followed by
renovated water (Ren), then reservoir water (Res), and finally
the Grd for replenishment.

(3) The ecological environment water in the river channel (Inn) is
given priority over the use of lift water (Lif), followed by the Res,
and finally supplemented by the Ren.

(4) The ecological environment water outside the river (Out) is
given priority over the use of Ren, followed by the Lif, and finally
the use of Yellow River water (Yel) to supplement.

(5) Priority is given to Lif for agricultural water (Agr), then Res, Yel,
and finally Grd. Water users are prioritized as follows: Urb, Rur,
Ind, Pub, Inn, Out, and Arg. Based on Eqs 7, 8, the water supply
priority factor and the receiving water priority factor are
computed. The results are displayed in Supplementary
Appendix SA.

3.2.3.2 Main parameters of the model
(1) Water supply advantage factor bij

Referring to the method proposed by Yan et al. (2018) for
calculating bij, according to the Hebei Province Water Use Quota
DB13/T 1161-2016, the benefit factor for water supply is 600/m³
RMB for Urb and Rur, 15/m³ RMB, 450/m³ RMB, and 400/m³ RMB
for Agr, Ind, and Pub, respectively. Furthermore, there is no direct
economic benefit from Inn and Out, so the benefit factor for water
supply is 0.

(2) Water supply cost factor cij

According to the water tariff standards for various sectors in
Handan, the cost factor for water supply for the Urb and Rur is 4.22/
m³ RMB. Moreover, the cost factor for water supply for the Ind is
9.2/m³ RMB, the cost factor for water supply for the Pub is 5.8/m³
RMB, the cost factor for water supply for the Inn and Out is 1.8/m³
RMB, and the cost factor for water supply for Agr is 0.38/m³ RMB.
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4 Results and discussion

4.1 Comparison of HSWOA to Different
benchmarking function algorithms

To simulate and test the algorithm, this paper was built on the
Intel(R) Core(TM) i9-9980HK CPU, 2.40 GHz main frequency,
32 GB of RAM, and Windows 10 (64-bit) system environment,
with MATLAB 2021b serving as the programming tools.
Referencing the set of benchmark test functions proposed by Yao

et al. (1999), the mean and standard deviation of eight benchmark
test functions were selected for comparison in two aspects: F1–F4 are
single-peaked benchmark test functions for testing the convergence
speed of the algorithm, and F5–F8 are multi-peaked benchmark test
functions for testing the algorithm’s ability to jump out of the local
optimal solution. The benchmark test function information is
displayed in Supplementary Appendix SA. The population size
for HSWOA, normal WOA, Butterfly Optimization Algorithm
(BOA), Grey Wolf Optimization Algorithm (GWO), PSO, and
ABC was set to 30 with a maximum of 500 iterations and

FIGURE 7
Water allocation network map. (A) The relationship between water supply and water consumption in Handan in 2021 (B)Water allocation network
map in Handan.
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20 runs. Table 1 displays the results of algorithmic performance
testing. HSWOAwas able to locate the global optimal solution for all
single-peaked benchmark test functions, and the output optimal
solution was unaffected by the number of algorithm runs,
demonstrating robustness, whereas the remaining five
comparison algorithms were unable to locate the global optimal
solution. Figure 8A depicts the convergence performance of each
algorithm for the single-peak benchmark test function F3. At the
initial population fitness calculation stage, HSWOA found the global

optimal solution thanks to the Sabol sequence, whereas the standard
WOA converged more slowly than the other algorithms, indicating
that the Sabol sequence for population initialization facilitates the
rapid convergence of WOA to the global optimal solution.
HSWOA’s overall optimization accuracy in the multi-peak
benchmark test function was lower than that of the single-peak
benchmark test function, and it only found the global optimal
solution in F6. However, the convergence accuracy in all multi-
peak benchmark test functions was higher than that of the other

TABLE 1 Algorithm performance test results.

Serial Index HSWOA WOA BOA GWO PSO ABC

F1 mean 0.00E+00 1.25E-75 1.31E-11 2.15E-27 9.43E+00 3.11E+00

std.dev 0.00E+00 4.85E-75 8.21E-13 3.77E-27 4.17E+00 8.74E-01

F2 mean 0.00E+00 4.06E-50 4.52E-09 8.65E-17 1.13E+01 1.72E-01

std.dev 0.00E+00 1.62E-49 1.40E-09 8.94E-17 2.72E+00 5.99E-02

F3 mean 0.00E+00 3.87E+04 1.29E-11 8.87E-06 4.75E+02 3.46E+04

std.dev 0.00E+00 1.27E+04 9.78E-13 2.84E-05 2.26E+02 4.36E+03

F4 mean 0.00E+00 4.77E+01 6.15E-09 9.17E-07 6.45E+00 5.22E+01

std.dev 0.00E+00 3.07E+01 3.68E-10 1.09E-06 1.26E+00 5.20E+00

F5 mean 8.88E-16 4.44E-15 6.09E-09 9.29E-14 5.25E+00 1.92E+00

std.dev 1.97E-31 2.25E-15 5.27E-10 1.32E-14 8.93E-01 5.09E-01

F6 mean 0.00E+00 2.70E+03 2.70E+03 2.70E+03 3.51E+01 2.70E+03

std.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.56E+00 0.00E+00

F7 mean 9.98E-01 1.54E+00 1.33E+00 4.58E+00 2.23E+00 9.98E-01

std.dev 2.20E-05 7.98E-01 6.88E-01 3.92E+00 1.81E+00 0.00E+00

F8 mean 3.57E-04 6.13E-04 4.26E-04 6.14E-03 5.05E-04 7.41E-04

std.dev 4.92E-05 3.54E-04 8.80E-05 1.36E-02 4.96E-04 4.12E-05

FIGURE 8
Algorithm convergence graph.
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algorithms, with the smallest standard deviation in F5 and F6 and
only slightly higher than that of ABC in F7 and F8. Figure 8B depicts
the convergence performance of each algorithm for the multi-
peaked benchmark test function F6. Except for HSWOA and
PSO, all algorithms converged to local optimal solutions. Both
HSWOA and PSO converged faster, but HSWOA’s convergence
accuracy was greater than that of PSO, demonstrating that HSWOA
has clear advantages over normal WOA in avoiding the global
optimal solution.

4.2 Processes and results for optimizing
water allocation at city and county levels

4.2.1 Generate a set of options
Using HSWOA, the ecological, social, and economic advantages

were solved independently, with the number of populations set to
200, the number of iterations set to 350, and the trigger threshold for
detecting whales set to 10. The optimal HSWOA outcome varies
with the number of iterations. To ensure the efficiency of the optimal
solution, the number of HSWOA calculations was set to twenty, and
the optimal solution among them was chosen as the final solution.
Additionally, the optimal solution of each generation in the optimal
solution iteration process was included in the initial set of
alternatives, and the remaining two benefits were calculated. A
rapid non-dominated sorting approach was developed to filter
non-dominated alternatives into the final set of options. Figure 9
depicts benefit values for different level-year option sets in 2025. In
terms of economic benefit, the median and average economic benefit
were greater in normal flow year than in low flow year. This is
mainly because the amount of water available from reservoirs and
diversions decreased in low flow years while the Agr increased,
resulting in a lower economic benefit overall than in nomal flow
year. In terms of social benefit, the median and average social benefit
were greater in low flow year than in normal flow year. This is
mainly because of the decrease in water availability and increase in
water demand in low flow year. This exacerbated the contradiction

in water withdrawal for each calculation unit in the sub-basin,
resulting in a Gini coefficient of water supply satisfaction that
was significantly greater in low flow year than in normal flow
year. In terms of ecological benefit, the mean and median
ecological benefits were greater in low flow year compared to
normal flow year. This is mainly as a result of the reduction in
water availability in low flow year, which increased the Inn and Out,
and the increase in the Agr, which displaced some of the water that
should have been used to meet ecological needs.

4.2.2 The process of optimizing water allocation at
city and county levels

The set of options for optimizing water allocation at the city and
county levels served as the basis for a fallback bargaining process,
with water managers at the city and county levels ranking the
options according to their own best interests if the initial options
proposed by both parties did not agree. In fallback bargaining,
municipal and county water managers made concessions to their
respective interests in each round of negotiations, i.e., they selected
options that were marginally suboptimal, there was a solution that
met both their benefit objectives. Tables 2, 3 illustrate the process of
optimizing the allocation of water resources at the municipal and
county levels in normal and low flow year. Table 2 illustrates the
process of optimizing the allocation of water resources at the
municipal and county levels in normal flow year, with both levels
proposing ideal solutions and expected targets based on maximizing
their respective benefits, i.e., an ideal social benefit value of 0.1484,
an ideal ecological benefit value of 5.66 × 106 m3, and an ideal
economic benefit value of 353.69×108 yuan. It is evident that the
ideal solution numbers proposed by both levels have not been
harmonized. Therefore, the fallback bargaining procedure was
initiated. During the initial round of fallback bargaining, the
parties compromised on their respective benefit objectives, which
were still closer to ideal at this stage. Comparisons revealed that no
option satisfied both benefit objectives; hence, the following round
of fallback bargaining was conducted. Up until Round 10, county
water managers presented Option 11, which satisfied both benefit

FIGURE 9
Benefit values for different level-year option sets in 2025.
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objectives and reached Nash equilibrium, and was therefore the last
option recommended for water allocation in normal flow year. In
Table 3, city and county water managers were unable to reach an
agreement, so they initiated the fallback bargaining procedure.
Alternative 10, which satisfied the benefit objectives of both
municipal and county water managers, was the final scheme
recommended for water allocation in low flow year as the
fallback bargaining reached its 28th round.

Handan in 2021 is high flow year. Compared with 2021, the
economic benefit of the recommended scheme in a normal flow year
increases by 28.98 × 108 Yuan, the social benefit decreases by 0.0013,
and the ecological benefit decreases by 5.70 × 106 m3. In a low flow
year, the economic benefit of the recommended option increases by
67.59 × 108 Yuan, the social benefit increases by 0.039, and the
ecological benefit decreases by 57.82 × 106 m3. To further verify the
efficiency of this model, the results of water allocation in Handan in
2025, as proposed by Ma et al. (2022) were used to calculate the
ecological, social, and economic benefit according to the objective
function of this study. The results show that the ecological benefit

proposed in this study is reduced by 38.65 × 106 m3, social benefit by
0.3261, and the economic benefit by 38.5 × 108 Yuan in a normal
flow year. In a low-flow year, the ecological benefit is reduced by
2.9 × 106 m3, the social benefit by 0.1297, and the economic benefit
by 11.09 × 108 Yuan compared to Ma et al. (2022). Therefore, the
water resource optimization model proposed in this study
significantly improves the equity of inter-regional water supply
and significantly reduces the ecological water shortage compared
to existing studies. An important factor that makes the economic
benefit smaller than existing studies is that the existing studies do
not consider the rule that different water sources supply water to
different water users, and the amount of available water is larger
compared to this study, thus making the economic benefits higher
than this study.

4.2.3 Results of optimal water allocation at city and
county levels

According to the recommended scheme, the results of water
allocation in Handan in normal and low flow year were shown in

TABLE 2 The process of optimizing water resource allocation at city and county levels in normal flow year.

Round Ideal program number Expected objectives Social benefit Ecological benefit (106m3) Economic benefit (108Yuan)

#0-1 15 0.1484 0.1484 9.90 309.50

#0-2 6 5.66 0.1718 5.66 326.00

#0-3 1 353.69 0.1697 18.65 353.69

#1-1 14 0.1485 0.1485 9.91 309.51

#1-2 7 5.70 0.1717 5.70 317.37

#1-3 2 353.67 0.1700 18.65 353.67

. . . . . . . . . . . . . . . . . .

#10-1 5 0.1706 0.1706 18.53 353.58

#10-2 12 10.39 0.1487 10.39 311.45

#10–3 11 315.08 0.1700 5.70 315.08

TABLE 3 The process of optimizing water resource allocation at city and county levels in low flow year.

Round Ideal program number Expected objectives Social benefit Ecological benefit (106m3) Economic benefit (108Yuan)

#0-1 44 0.1888 0.1888 52.09 303.44

#0-2 43 7.31 0.2112 7.31 307.99

#0-3 1 355.44 0.2110 59.11 355.44

#1-1 45 0.1889 0.1889 52.02 303.44

#1-2 41 7.32 0.2124 7.32 309.94

#1-3 2 355.43 0.2110 59.10 355.43

. . . . . . . . . . . . . . . . . .

#28–1 10 0.2103 0.2103 57.82 354.85

#28-2 5 58.92 0.2109 58.92 354.96

#28-3 29 312.05 0.2123 7.33 312.05
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Figure 10. Figure 10A shows the results of water allocation in
Handan in normal flow year. In terms of water supply structure,
Grd and Res were the main sources of water supply in Handan,
accounting for 36.58% and 33.94% of the total water supply,
respectively. Moreover, 48.40% of the Grd and 89.08% of the Res
were supplied to Agr, who use the most water. In terms of water
supply ratios, the highest ratio of Yel was 100%, followed by Res at
92.82%. However, the ratios of Nor and Ren were significantly lower
than the remaining four types of water sources. This indicated that
there were certain shortcomings in the spatial layout of these two
water sources, with excess supply capacity of Nor and Ren in some
regions while the demand for these two water sources in some areas
had not been met. This could be addressed through cross-regional
trading of water rights through the establishment of a water market
to increase the ratio of Nor and Ren. In terms of water supply
satisfaction, due to the better ecological benefit of the 2025 normal
flow year recommendation, the Inn and Out satisfaction rates were
significantly higher than the rest of the water users, at 100.00% and
96.38%, respectively. On the other hand, the Agr satisfaction rate
was the lowest at 60.72%. Agr should be reduced in the future by
promoting water-saving irrigation facilities and adjusting crop
cultivation structures.

Figure 10B shows the results of the optimal allocation of water
resources in Handan in low flow year. Compared to normal flow
year, the Res and Lif were significantly reduced due to a lack of
natural water supply, and the remaining sources increased their
water supply to mitigate losses from reduced supply. A 33.94%
reduction in Res resulted in an 18.74% reduction in Agr compared to
normal flow year. When compared to normal flow year, a 35.06%
reduction in the amount of water supplied by the lake resulted in a
33.27% reduction in the amount of Out. In terms of water supply
ratios, due to the decrease in natural water supply, the ratio of water
supply from all sources had increased compared to normal flow year,
with the ratio from Nor still being the smallest. In terms of water
supply satisfaction, due to the better economic benefit of the
recommended scheme in low flow year, water supply satisfaction
among water users with higher economic benefit (Urb, Pub, Rur,
and Ind) all increased significantly compared to normal flow year,
especially the Ind, which increased from 78.22% to 99.63% in
normal flow year. On the other hand, the Inn, Out, and Agr
decreased significantly compared to normal flow year, with the
largest decrease being in the amount of the Out, from 96.38% to
64.32% in normal flow year, reflecting the contradiction and conflict
between economic and ecological benefits.

FIGURE 10
The results of optimal allocation of water resources in Handan in normal and low flow year (106m3). (A) Normal year (B) Low flow year.
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4.3 Relationship between the nash
equilibrium solution and the pareto solution

Water resources have both public good and market
characteristics. In a certain region, especially in water-scarce
areas, limited freshwater resources are faced with the problems of
safeguarding ecological needs, maintaining stable social
development, and generating economic returns. Therefore, the
Pareto solution is an ideal state that balances the public good
and the market nature of water resources. To compare the
connection between the Pareto solution set generated by
conventional multi-objective optimization models and the Nash
equilibrium solution obtained in this research, NSGA-III was
implemented to solve the optimal water resource allocation
problem for Handan. NSGA-III is an enhancement on NSGA-II
by Deb et al. (Deb and Jain, 2013), which introduces a reference
point technique to individual selection and has good performance in
solving high-dimensional multi-objective optimization problems
(3–15 goals) (Lyu et al., 2022). The initial number of populations
was set to 200, the number of reference points was set to 20, and the
maximum number of iterations was set to 350 (consistent with
HSWOA). Moreover, the crossover probability was set to 0.90, and
the variance probability was set to 0.05. The set of Pareto solutions
and Nash equilibrium solutions for the optimal allocation of water
resources in Handan at different level years in 2025 are shown in
Figure 11. NSGA-III developed a Pareto solution set with strong
convergence and homogeneity. Although the Nash equilibrium
solution was at a certain distance from the Pareto solution set,
the ecological benefit of the Nash equilibrium solution in normal
flow year was greater than the full Pareto solution set. Furthermore,
the economic benefit of the Nash equilibrium solution in low flow
year was also greater than the full Pareto solution set. Consequently,
the Nash equilibrium solution obtained from the optimal allocation
of water resources at city and county levels proposes the optimal
allocation of water resources at city and county levels. This model
eliminates the requirement to construct a Pareto solution set and

then filter the optimal solution, unlike conventional multi-objective
optimization techniques. The proposed Nash equilibrium solution
satisfied the efficiency objectives of all the subjects involved in the
decision and was therefore easier to apply to practical water resource
planning and management.

5 Conclusion

The implementation of water allocation plans has been hindered
by the conflicting interests of several tiers of water resource
management within the region. This paper proposes a model for
optimizing the allocation of water resources by coordinating the
interests of different levels of water resource managers. The model
consists of three main components: 1) The generation of initial
alternatives. 2) The screening of initial alternatives. 3) The search for
recommended schemes through fallback bargaining. In presenting
the initial possibilities, the study presented the HSWOA in order to
optimize the early advantages for water resource managers at
various administrative levels. During the preliminary screening of
alternatives, a rapid non-dominated sorting approach was
implemented to pick non-dominated alternatives from the
preliminary alternatives. The model was used in Handan, China,
to propose an optimal allocation of water resources that fulfilled the
interests of municipal and county water managers in normal and
low flow year in 2025. It was also compared to the Pareto solution set
created by NSGA-III. The particular results were as follows:

(1) In the single-peak benchmark test function solution, HSWOA
was able to swiftly converge to the global optimal solution at the
start of the run. Moreover, the calculation results did not change
as the number of runs increased, indicating that the algorithm is
highly robust. HSWOA fared less well while solving the multi-
peak benchmark test function than when solving the single-peak
benchmark test function. However, its convergence accuracy
was still superior to the other comparative algorithms.

FIGURE 11
Spatial relationship between Pareto solution sets and Nash equilibrium solutions.
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(2) The values of the benefits of the alternative sets varied
significantly under various incoming water conditions. The
median and mean economic benefit values were somewhat
lower in low flow year compared to normal flow years. In
terms of societal and ecological benefit, the median and
mean values for low flow year were much greater than for
normal flow year.

(3) The fallback bargaining reflected the process and decision-
making behavior of municipal and county-level water
resource managers to reconcile competing interests. Besides,
the proposed recommendation reached a Nash equilibrium.
There was some difference in the scenarios advised for various
incoming water scenarios. In terms of water supply, the ratio of
water supply from each source was lower in years of normal
precipitation than in years of drought. On the water demand
side, water satisfaction for Agr, Inn, and Out was greater in years
with average precipitation than in low flow year. The social and
ecological benefits of normal flow year were greater than those
of low flow year, although the economic gain was smaller.

(4) Compared to the Pareto solution set found by NSGA-III, the
recommended schemes in normal and low flow years were on
the Pareto frontier. This means that the recommended schemes
met both Pareto optimality and Nash equilibrium, taking both
overall and individual interests into account. In a normal flow
year, the recommended scheme could yield an economic benefit
of 315.08×108 Yuan, a social benefit of 0.1700, and an ecological
benefit of 5.70 × 106 m3. However, in a low flow year, the
recommended scheme could yield an economic benefit of
354.85×108 Yuan, a social benefit of 0.2103, and an ecological
benefit of 57.82 × 106 m3. Compared to existing studies, the
recommended scheme proposed in this study has clear
advantages in terms of social and ecological benefits.

In order to apply the recommended water allocation schemes
proposed in this study to actual water resource management, it is
recommended that municipal water resource managers develop
regional water allocation schemes based on the recommended
schemes, specifying the water rights of different water sources
owned by each county water resource manager. Based on the
recommended schemes and the water rights obtained, the county
water managers will allocate the water rights within the region to
various water users through the issuance of abstraction permits. As a
result, ensuring that the recommended schemes can be applied to
the actual management of water resources in the region.

The limitations of this study warrant further research. First, this
study is based on the optimal allocation of water resources based on
defined incoming water conditions and water demand. However,
due to climate change and human activities, there is a certain degree
of uncertainty in the annual supply and demand of water at the
planning level. Moreover, the concept of intervals could be
considered in the future to characterize the uncertainty in water
supply and demand. Second, this study only discusses the conflict of
interest between different levels of water resource managers. In fact,
there is also a conflict of interest between water resource managers,
water conservancy project operators, and water users regarding the
optimal allocation of water resources. In the future, consideration

could be given to reconciling the interests of these three parties in
optimizing the allocation of water resources in order to arrive at a
more satisfactory solution.
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Nomenclature

l The number of sub-basins in the region

k The number of water allocation calculation units in the region (a
calculation unit is the smallest area involved in the optimal
allocation of water resources)

j The water users

Dk
j The ecological environment’s water demand within or outside
the river at the k calculation unit

i The water supply source

xkij The allocation of water from the i source to the j water user of
the k calculation unit

Sl,k Water supply satisfaction for the k calculation unit in the l sub-
catchment

Wk
j The k calculation unit’s total water demand

Sl,k9 Arrange Sl,k from smallest to largest to generate a set of
sequences

Ps,n The cumulative frequency of Sl,k′

GS,l The Gini coefficient of water supply satisfaction within the l sub-
catchment

bij The water supply efficiency factor for the supply of water from
I source to j water user

cij The cost factor for supplying water from i source to the j
water user

αij It is the priority factor for supplying water from i source to j
water user

βj The priority factor for j water user to receive water

nij The serial number of the water supply from i resource to j
water user

nijmaxThe maximum value of the water supply serial number from i
source to j water user

mj The serial number of j water users receiving water

mjmaxThe maximum number of j water users receiving water serial
numbers

Wk
i The supply of water from i water source in k calculation units

Qk
i The maximum water supply capacity of i water source in k

calculation units

Dk
j The water demand of j water users in k calculation units
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