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Understanding the characteristics of habitat quality and its influence under land
use change is crucial for rapid urbanization, regional ecological protection, and
national restoration and optimization of the ecological layout. This paper
examined Anhui Province, China, through topo-graphic data, climate data,
human activity data, and land use data from 2000, 2010, and 2020. To reveal
the habitat quality impact mechanisms, the paper assessed the province’s
spatiotemporal evolution characteristics of habitat quality by the Patch-
generating Land Use Simulation (PLUS) model, Integrated Valuation of
Ecosystem Services and Trade-offs (INVEST) model, and geo-graphic probe
model. The results showed that: 1) From 2000 to 2020, Paddy field, Dryland,
and Wooded land covered 70% of the study area. From 2000 to 2020, the
integrated land use dynamic attitude was 0.51%, with active changes in the
Paddy field, Dryland, and open Wooded land and a continuous increase in
dynamic attitude. Compared to 2020, the spatial distribution characteristics of
land use types in 2030 remain largely unchanged. However, Paddy fields and
Drylands still show an increasing trend, while Wooded land, Reservoir ponds, and
Urban land demonstrate a small decreasing trend. All other land types remain
unchanged; 2) Secondly, between 2000 and 2020, habitat quality gradually
decreased, while the percentage of poor habitat quality increased by 1.47% and
the percentage of worse habitat quality decreased by −1.41%. All other classes
exhibited a small decreasing trend; the mean habitat quality decreased by
0.01 compared to 2020 in 2030, and was mainly distributed in the
southwestern and eastern edges of the province; and 3) DEM, aspect,
precipitation, and evapotranspiration have a high explanatory power for habitat
quality, while the variable Places has significantly increased its explanatory power
for habitat quality between 2010 and 2020. Natural factors laid down the graded
distribution pattern of habitat quality, and the location and intensity of human
activities drove the evolution of habitat quality. Analyzing the mechanism behind
habitat quality in Anhui Province provides a theoretical basis for ecological
restoration and ecological planning.
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1 Introduction

The Intergovernmental Platform on Biodiversity and Ecosystem
Services for Science (IPBES) reports that natural resources are being
destroyed at an unprecedented rate, and millions of species are on
the edge of extinction (Dai et al., 2020). Large-scale net losses of
biodiversity are occurring around the world (Newbold et al., 2015).
Habitat quality refers to the ability of the natural environment to
provide suitable conditions for individuals or populations to survive,
depending on the accessibility of the habitat to human land use and
land use intensity (Hall et al., 1997). The quality of habitat has
become a key factor in measuring the ecological health and
sustainability of a region. In recent years, the rapid development
of urbanization and industrialization has intensified the active
spatial expansion of urban land, and large areas of cultivated
land and ecological land have been invaded and converted to
construction land, which directly leads to the fragmentation and
reduction of habitat patches. As a result, habitat quality degradation
has become an important global issue (Vitousek et al., 1997; Wilcove
et al., 1998). In the coming decades, climate change will intensify the
above situation (O’Connor et al., 2020), especially in terms of the
conflict between human activities and resources. Changes in land
use dynamic attitude are the most intuitive and realistic response
(Jiren et al., 2018) and are a key factor driving biodiversity decline
(Watson et al., 2019). Land use type change directly affects habitat
spatial changes ecological processes, such as the energy flow cycle,
which in turn weakens the regional ecological supply capacity and
service function. It is urgent to reveal the spatiotemporal evolution
patterns of habitat quality changes caused by land use changes,
predict future habitat change trends, and clarify the driving
mechanisms affecting habitat quality as a basis for ecological
civilization construction. Aiming to provide a basis for decision
making on regional ecological security and land use planning.

The assessment of habitat quality gives an effective interface
for exploring the mechanisms linking land use change and
species’ breeding habitats. At present, research methods for
habitat quality range from early static evaluation of single
indicators (Thiel, 1985; Engel et al., 1999) to comprehensive
measurement of habitat quality with multiple evaluation
indicators (Simeone et al., 2021; Zhang et al., 2021) and
distributed models measuring the development process of
spatiotemporal heterogeneity of regional habitat quality (Fan
et al., 2021; Liu et al., 2022). Spatial modeling using habitat
biodiversity information requires comprehensive consideration
of the complexity of regional ecosystems, and traditional ground-
based species surveys have limited applicability for studies in
areas of species scarcity and large and medium scales based on
sample data limitations. Even though habitat indicator modeling
is highly accurate and purposeful, it is not suitable for large-scale
habitat quality evaluation due to the limitation of sample data.
Integrated remote sensing and GIS technologies can reveal
habitat quality evolution characteristics at a larger scale. The
main models in use are Solves model, HSI model, Maxent model,
Invest model, etc. The Habitat Quality (HQ) model within the
INVEST model connects the suitability of organisms and
different land covers with threat sources, assesses the
distribution and degradation of habitat quality in different
landscape patterns according to the sensitivity of habitats to

sources of threat (Terrado et al., 2016), and weighs the impact of
threats caused by human activities on overall ecological quality in
terms of spatial distance (Peng et al., 2018), such as the spatial
heterogeneity of habitat quality at different regional scales (e.g.,
nature reserves (Yang et al., 2021), cities (Song et al., 2020), and
watersheds (Gong et al., 2019)). Until now, researchers have con-
ducted habitat quality studies related to land use, human
activities, spatiotemporal changes, and impact factor detection.
Wu et al. (2021) estimated the spatiotemporal variation of HQ in
the Guangdong–Hong Kong–Macao Greater Bay Area based on
the Invest model, decline in HQ was found to be possibly related
to vegetation loss, land use change, and intensity of human
activities. Wang and Cheng. (2022) explored the response of
different land use types to regional HQ based on the Invest
model, HQ of different landscape types was found to show spatial
aggregation of the mineral contribution. Among these research
topics, ecological effects caused by land use changes have become
the center of ecological studies. At present, land use simulation
and land use prediction methods involving system dynamic
attitude model (Geng et al., 2017), Markov model (Huang
et al., 2020), STLU-MOO model (Cao et al., 2019), Clue-S
model (Ma et al., 2019; Chang et al., 2021), and SLEUTH
model (Wagner and de Vries, 2019) have been used often used
in research. In contrast, the Patch-generating Land Use
Simulation (PLUS) model (Liang et al., 2021) represents a new
type of land use simulation model that has greater simulation
accuracy and better supports the spatial prediction of regional
habitat quality (Xu et al., 2022). At present, topographic factors,
climatic factors, and anthropogenic activities play an important
role in changing habitat quality. Among these factors, the
disturbance of anthropogenic activities most notably shifts the
overall regional ecological pattern and degrades and destroys the
habitat quality (Gao et al., 2022). Therefore, this study INVEST
gates the mechanisms of different factors on habitat quality and
the interaction between its two factors by introducing a
geographic detector model (Zhu and Kasimu, 2020; Zhang
et al., 2022). With rapid socio-economic and population
growth leading to increased spatial and temporal variability in
habitat quality in the background of rapid urbanization. In
provinces with clear spatial territorial characteristics, the
factors influencing habitat quality and their mechanisms in
different regions are more complex, making it necessary to
explore their habitat quality driving mechanisms. It is
particularly important to clarify the spatiotemporal differences
in habitat quality in Anhui Province and to explore the
mechanisms influencing the spatiotemporal variability.
Therefore, this study combined land use types data from
multiple periods and coupled Invest and PLUS models to
explore the response of habitat quality to predictive
simulations of land use change. A Geodetector model was also
introduced to detect the driving factors affecting the spatial
differentiation and temporal evolution of habitat quality by
selecting indicators in terms of natural, climatic and
socioeconomic factors (Zhu and Kasimu, 2020; Zhang et al.,
2022).

In recent years, its urbanization process has experienced rapid
growth and sprawling spatial expansion, with urban land area
growth and infrastructure expansions undoubtedly putting
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enormous pressure on habitat quality (Hu et al., 2022). This paper
assessed the temporal variation patterns of habitat quality in Anhui
Province based on the Invest model to elucidate the differences in
spatial patterns of habitat quality. Predicting future land use
response to habitat quality based on the PLUS model. The
Geodetector model was introduced to combine natural
environmental and socio-economic factors to quantitatively
reveal the characteristics of the changing spatial pattern of
habitat quality and the influence mechanism. The results of the
study provide scientific reference for the sustainable development of
ecosystems and land use planning in Anhui Province.

2 Materials and methods

2.1 Overview of the study area

Anhui Province is situated in the Yangtze River Delta region
of East China (114°54′–119°37′E, 29°41′–34°38′N) (Figure 1). Its
total area covers 140,100 km2. China’s important Qinling-Huaihe
geographical divide crosses the province, and ecological elements
such as climate, biology and soil exhibit obvious longitudinal and
transitional characteristics. The province’s topography is high in
the southwest and low in the northeast. Its terrain differs between
the north and south, and is divided into five natural regions,
including the Huaibei Plain, the Jianghuai Hills, the Dabie
Mountains in western Anhui, the riverine plains, and the
mountains in southern Anhui Province. Anhui Province
belongs to the transitional climate, between the subtropical
and warm temperate zones. Its average annual temperature is
measured between 13°C and 22°C and its average precipitation is

between 773 mm and 1,670 mm. The resident population of
Anhui Province was 61.027 million at the end of 2020, and
the urbanization rate of the resident population was 58.33%.
The total economic value was 38,680.6 billion CNY, and the
structure of the three industries was 8.2: 40.5: 51.3. The province
is densely populated, with fertile land, rich resources, and
convenient transportation. It is an important grain production
base, energy and mineral base, and manufacturing base in China.
Because of its diverse landscape types, superior water and heat
conditions, high ecosystem productivity and rich species, Anhui
plays a top-down role in the ecological security of the Yangtze
River Economic Belt. In addition, the province’s ecological
location is extremely important. Furthermore, Anhui Province
is located at the strategic point of national economic
development and is the docking zone of several major eco-
nomic blocks in China.

2.2 Data sources and preprocessing

Land use data for 2000, 2010, and 2020 were used to describe the
land use conversion constraints (Table 1) in order to determine the
meta-cell conversion rules. The classification of land use types in the
study area is based on land resources and their utilization attributes.
The secondary classification includes 16 categories, including Paddy
field, Dryland, Wooded land, Shrubland, OpenWooded land, Other
forested land, High coverage grassland, Medium coverage grassland,
Low coverage grassland, Waterways, Lake, Reservoir pond,
Bottomland, Urban land, Rural settlement, Other construction
land. All driving factors and land use data in this paper have
inconsistent spatial resolutions. Using the resampling module in

FIGURE 1
Location map of the study area. (A) China, (B) Anhui province DEM.
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ArcGIS, all data were resampled to a spatial resolution of 100 m. All
images in this study were uniformly projected in UTM and
WGS84 coordinate system.

2.3 Research methodology

2.3.1 Research framework
This paper analyzed the spatiotemporal evolution of land use in

Anhui Province between 2000 and 2020. It also simulated the
2030 land use projections based on the PLUS model by
combining four dimensional drivers, including topographic
factors, climatic factors, human activities, and accessibility. The
habitat quality response of land use was based on Quality
Habitat in the INVEST model, while a geographic probe was
used to quantitative analyze the driving factors of habitat quality
(Figure 2).

2.3.2 Land use dynamic attitude
Land use dynamic attitude represent the quantitative changes of

land use types during a certain period. They reflect the degree of land
use change and the regional differences between the change rates. In
general, land use dynamic attitude may be di-vided into single land
use dynamic attitude and comprehensive land use dynamic attitude.
Eq. 1 for the single land use dynamic attitude is as follows:

K � Ub − Ua

Ua
×
1
T
× 100% (1)

where, K represents the dynamic attitude of a land use type during
the study period. Next, Ua denotes the area of a land use type at the
beginning of the research period, whileUb represents the area of that

land use type at the end of the research period. Lastly, T denotes the
length of the research period.

Equation 2 for the comprehensive land use dynamic attitude is
as follows:

Lc � ∑n
i�1ΔLUi−j
2∑n

i�1LUi
[ ] ×

1
T
× 100% (2)

where, Lc represents the comprehensive dynamic attitude of land use
in the re-search area. LUi denotes the area of land use type i at the
starting point of the research, while ΔLUi−j represents the absolute
value of the area of land converted from type i to type j during the
research period. Finally, T denotes the research time.

2.3.3 Habitat quality model
The INVEST habitat quality model measures the regional

habitat quality based on a range of habitat or vegetation types in
an area and their degree of degradation. The model assumes that
areas with good habitat quality also have high biodiversity (Liu and
Wang, 2018). The specific calculations are as follows:

DXJ � ∑R

r�1∑Yr

r�1
Wr

∑R
r�1Wr

× ryirxyβxSjr (3)

where Dxj represents the degree of habitat degradation of raster x in
habitat type j. Next, R denotes the number of threat factors, whileWr

is the weight of the threat source r. Yr represents the raster number of
the threat source, while ry denotes the stress value of raster y, and
irxy represents the accessibility of the threat source to raster x.
Lastly, βx denotes the sensitivity of habitat type j to threat source r,
while dxy represents the stress level of raster y to raster x, divided into
two effects (linear and exponential).

TABLE 1 Description of the driving factor data.

Data type Data name Spatial resolution Data source

Land use data Land use in 2000 30 m https://www.resdc.cn/

Land use in 2010 30 m

Land use in 2020 30 m

Land use conversion limiting factors Open water 30 m https://www.resdc.cn/

Driving factors DEM 250 m https://www.resdc.cn/

Slope 250 m by DEM data

Aspect 250 m by DEM data

Precipitation 1 km https://www.resdc.cn/

Temperature 1 km https://www.resdc.cn/

Evaporation 1 km https://www.resdc.cn/

GDP 1 km https://www.resdc.cn/

Railways 100 m https://master.apis.dev.openstreetmap.org/#map=4/36.96/104.17

Roads 100 m https://master.apis.dev.openstreetmap.org/#map=4/36.96/104.17

Waterways 100 m https://master.apis.dev.openstreetmap.org/#map=4/36.96/104.17

Places 100 m https://master.apis.dev.openstreetmap.org/#map=4/36.96/104.17

NDVI 1 km https://www.resdc.cn/
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Linear: irxy � 1 − dxy

drmax
( ) (4)

Exponential: irxy � exp
−2.99dxy

drmax
( ) (5)

Where, dxy represents the linear distance between raster x and
raster y, while drmax represents the maximum stress distance of
threat source r. Habitat quality is then calculated by Eq. 6 as follows:

Qxj � Hj 1 − D2
xj

D2
xj + k2

[ ] (6)

where, Qxj represents the habitat quality index of the x raster in
habitat type j, whileHj denotes the habitat suitability of habitat type j

with a value range of [0, 1]. Moreover, k represents the half-
saturation constant, which is measured as half of the maximum
habitat degradation and adjusted to 0.2 by the reference study (Hu
et al., 2020). On the other hand, z is the normalization constant set to
2.5. Cultivated land, Industrial and mining land, rural settlements,
and urban land were extracted as threat sources. The sensitivity of
different habitats and the maximum stress distance, weight, Table 2,
attenuation type of each source was set as shown in the following
Table 3.

2.3.4 PLUS model
The PLUS model is based on raster data and proposes a patch-

generated land use change simulation model coupled with a new
land expansion analysis strategy (LEAS) and a CA model based on
multiple types of random patch seeds (CARS), with better
understanding of the influencing factors across categories and a
higher accuracy of the simulation results. The model uses a random
forest algorithm to calculate the development probability of each
class by extracting the expansion part of each class in 2010 and 2020.
It then predicts future land use based on a CA model with multi-
class random patch seeds.

The formula for the random forest algorithm in LEAS is.

Pd
i,k x( ) � ∑M

n�1I hn X( ) � d( )
M

(7)

FIGURE 2
Research framework.

TABLE 2 Threat data.

Threat Max-distance Weight Decay

Industrial land 3 0.5 Exponential

Crop 1 0.15 Linear

Construction 5 1 Exponential

Rural settlement 3 1 Exponential

Frontiers in Environmental Science frontiersin.org05

Zhang et al. 10.3389/fenvs.2023.1145626

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1145626


where d takes the value of 0 or 1, 1 indicates that there is a
conversion of other land classes to land class k, and 0 indicates
any other land use conversion that does not include land class k. I
is the indicator function of the decision tree; hn(X) is the
prediction type of the nth decision tree, and Pd

i,k(x) is the
probability of growth of k land use types at spatial unit i. The
CA model based on multi-class random patch seeds in CARS
simulates the generation of patches under the constraints of
development probability of various types of sites, combined
with random seed generation and threshold decreasing
mechanism. CARS is calculated as follows.

OPd�1,t
i,k � Pd�1

i,k × r × μk( ) × Dt
k ifΩt

i,k � 0 and r<Pd�1
i,k

Pd
i,k × ψt

i,k × Dt
k all others

{ } (8)

where Pd�1
i,k is the growth probability surface of the land use type, r is

a random value between 0 and 1, μk is the threshold for generating
new land use patches by the user-determined land use type r.

2.3.5 Land use simulation driving factors
With reference to previous studies, this paper selected a total of

12 drivers in the PLUS model to simulate land use type changes with
four dimensional drivers of topo-graphic factors, climatic factors,
human factors, and accessibility factors (Figure 3).

2.3.6 Geodetector model
Geodetector is a new statistical method for detecting spatial

differentiation and revealing its driving mechanism. It consists of
4 modules: risk detection, factor detection, ecological detection,
and interaction detection. This paper uses ecological detection to
determine whether there is a significant influence of the driving

factors on the formation of habitat quality differences. It then
quantitatively analyzes the effects of these factors on habitat
quality and their mutual interaction through factor and
interaction detection. The aim is to clarify the driving
mechanism behind habitat quality under regional land use
change.

In general, ecological detection is used to reveal differences in
the importance of the independent variables, as measured by the
F-statistic and calculated as follows:

F � Nx1 Nx2 − 1( ) × ∑L1
h�1Nhσ2h

Nx2 Nx1 − 1( ) × ∑L2
h�1Nhσ2h

(9)

where, Nx1 and Nx2 denote the sample size of the two factors, while
L1 and L2 denote the number of stratifications of independent
variables X1 and X2.

The idea behind factor detection is that if there is an
independent variable x that influences a dependent variable y,
then the spatial distribution of the independent variable and the
dependent variable should converge. Eq. 10 is as follows:

q � 1 − 1
N2

σ

∑L

i�1Niσ2i (10)

where, q represents the power value of the detection factor on the
dependent variable, q ∈ 0, 1{ } a larger q value indicates the
stronger explanatory power of the independent variable x on
the dependent variable y, and vice versa; Next, N, σ2 denote the
total sample size and variance of the research area, respectively.
Lastly, L represents the number of detection partitions, while Ni
and σ2i denote the sample size and variance of different partitions,
respectively.

TABLE 3 Habitat sensitivity data.

Name Habitat Industrial land Crop Construction Rural settlement

Water field 0.3 0.6 0.2 0.8 0.8

Dryland 0.2 0.5 0.3 0.7 0.7

Wooded land 1 0.8 0.3 0.7 0.8

Shrubland 0.7 0.8 0.3 0.8 0.7

Open wooded land 0.4 0.5 0.2 0.7 0.6

Other woodland 0.6 0.5 0.2 0.7 0.6

High coverage grassland 0.7 0.6 0.3 0.7 0.7

Medium coverage grassland 0.5 0.6 0.4 0.7 0.7

Low coverage grassland 0.3 0.6 0.5 0.7 0.7

Waterways 0.8 0.8 0.3 0.8 0.6

Lake 0.8 0.8 0.3 0.8 0.6

Reservoir pond 0.7 0.7 0.5 0.8 0.5

Bottomland 0.6 0.7 0.6 0.8 0.7

Urban land 0 0 0 0 0

Rural settlement 0 0 0 0 0

Industrial land 0 0 0 0 0
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3 Results

This study explored the response of land use change to HQ by
analyzing the land time series change from 2000 to 2020 in combined

with the Invest model. The PLUS model was used to project land use
changes in 2030 and analyzed the evolutionary trends of HQ in 2030.
The extent to which different drivers contribute to HQ was explored
in combination with a Geodetector model.

FIGURE 3
Land use simulation drivers. (A) DEM, (B) Aspect, (C) Slope, (D) Temperature, (E) Precipitation, (F) Evaporation, (G) GDP, (H) NDVI, (I) Railways, (J)
Roads, (K) Waterways, (L) Places.
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3.1 Change in land use in the period
2000–2020

Between 2000 and 2020, the main land use types in Anhui
Province were Paddy field, Dryland, and Wooded land (Figure 4).
Together, the sum of the three types exceeds 70% of the total
research area. Paddy field and Dryland dominated the research
area. Dryland was most commonly found in the north, Paddy field in
the middle, and Wooded land in the south and southwest of Anhui
Province. Lakes were situated in the middle and southwest of the
province, while other Reservoir ponds were found in patches. High

coverage grassland is distributed in the southwest, while other
grassland areas are small and distributed in patches. Urban land
is concentrated in the central and northern areas, while some areas
in the south are concentrated in patches across the province.

As seen in Figure 5, there has been a large transition between land
types in the research area between 2000 and 2010 (Figure 5A), the
transferred area of Paddy field, Dryland, and Wooded land accounted
for 21.57%, 11.23%, and 11.26%, respectively, while the transferred area
of Urban land and Rural settlement accounted for 11.85% and 22.73%,
respectively. The transferred area of Paddy field and Dryland accounted
for a larger share, 36.21% and 19.35%, respectively, while the transferred

FIGURE 4
Land use in the period 2000–2020. (A) 2000 Land use, (B) 2010 Land use, (C) 2020 Land use.

FIGURE 5
Land use transfer chord map. (A) 2000–2010 Land use transfer, (B) 2010–2020 Land use transfer, (C) 2000–2020 Land use transfer.
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area of Wooded land and Rural settlement both accounted for more
than 10%, and small fluctuations among other land types There were
small fluctuations between land types. From 2010 to 2020 (Figure 5B)
during this period, the transferred areas of Paddy field, Dryland, and
Wooded land account for 22.85%, 13.93%, and 11.86%, respectively.
Moreover, transferred rural settlements account for 21.09%. The
transferred Paddy field and Dryland account for a larger proportion,
29.76% and 18.98%, respectively, and the transferred-out area of Rural
settlement accounted for 19.89%. Between 2000 and 2020 (Figure 5C),
the transferred area was 17,959.51 km2, accounting for 9.43% of the
total research area. The transferred areas of Paddy field, Dryland, and
Wooded land account for 19.46%, 11.77% and 10.21%, respectively. The
transferred areas of Urban land and Rural settlements accounted for
14.38% and 22.12%, respectively. The transfer out of paddy land and dry
land accounted for a relatively large area of 34.80% and 21.45%
respectively, while transferred rural settlement accounted for 16.35%.
In 2000–2020, 1898.86 km2 of Paddy field was transferred to Rural
settlement, 1941.01 km2 ofDry landwas transferred to Rural settlement,
959.03 km2 of Wooded land was transferred to Paddy field, and
1,186.64 km2 and 1,433.37 km2 of Rural settlement was transferred
to Paddy field and Dry land. 1) This transfer reflected the squeezing of
agricultural and ecological space by human development and
construction, and more significantly, the urbanization process
occurred mainly in the urban periphery. 2) The mutual
transformation of Paddy field and Waterways was a mutual game of
returning land to the lake and creating land around the lake. 3) The
conversion of Paddyfield toWooded land andHigh coverage grassland,
and the conversion of High coverage grassland to Wooded land was
also larger, reflecting the effectiveness of Wooded land growth and
ecological conservation and restoration projects. 4) The partial
conversion of construction land to Paddy field was the result of
intensive planning of village land and reclamation of Paddy field.

It can be seen from the dynamic attitude of land use under
different time series (Figure 6; Table 4). Between 2000 and 2010, the
composite land use dynamic attitude of the research area was 0.14%.
During this period, Paddy field and Dryland were significantly
reduced with a dynamic attitude of −0.26% and −0.17%,
respectively, while Urban land and other urban land changed
dramatically with 8.59% and 38.40%, respectively. The dynamic
attitude of other land types was less than 0.1% and tended to be
stable. Between 2010 and 2020, the dynamic attitude of integrated
land use was 0.12%, while the dynamic attitude of medium coverage
grassland, low coverage grassland, urban land, and other urban land
were 6.76%, 3.43%, 4.94%, and 11.70%, respectively. Furthermore,
from 2000 to 2020, the dynamic attitude of integrated land use was
0.51%. Areas covered with Paddy field, Dryland, and open Wooded
land actively changed, with dynamic attitude of −0.93%, −0.68%,
and −0.41%, respectively. Lastly, the area of medium coverage
grassland, low coverage grassland, urban land, and other urban
land showed an abrupt increase with a dynamic attitude of 13.38%,
6.76%, 35.52%, and 190.05%, respectively.

3.2 Habitat quality changes from 2000 to
2020

The paper divided the habitat quality results into five classes
according to the equidistant interval method, namely, poor habitat
quality (0 ~ 0.2), worse habitat quality (0.2 ~ 0.4), middle habitat
quality (0.4 ~ 0.6), good habitat quality (0.6 ~ 0.8), and excellent
habitat quality (0.8 ~ 1.0). The spatial distribution indicates
(Figure 7) that the poor and worse habitat quality dominates.
The poor habitat quality is distributed in the northern part of the
province, while the worse habitat quality is found in the central part.
The good and excellent habitat quality are both distributed in the
southwestern and southern regions of the province, while the middle
habitat quality is clustered in patches in the southwestern region.
Statistics from 2000, 2010, and 2020 indicate that the mean value of
habitat quality in Anhui Province was 0.43, 0.42, and 0.42,
respectively. Thus, the habitat quality gradually decreases, while
the standard deviation of habitat quality increases from 0.32 in
2000 to 0.33 in 2020. Other than the poor and worse habitat quality
classes, the zoning statistics suggest that there is little change in the
percentage of classes. Namely, the percentage of poor habitat quality
increased by 1.47% and the percentage of worse habitat quality
decreased by −1.41%. All other classes showed an insignificant
changing trend from 2000 to 2020. The habitat quality transfer
provided in Figure 8 shows that the habitat quality level transfer
change is not significant from 2000 to 2010. Conversely, the quality
change is active between 2010 and 2020, mainly for poor and good
habitat quality whose transfer characteristics are significant. Habitat
quality remains stable in the northern part of the research area, with
no transfer.

3.3 Simulation of land use in 2030

3.3.1 Validation of the 2020 land use simulation
To clarify the spatiotemporal evolution trend of Anhui

Province in 2030, the paper based the simulation on the

FIGURE 6
Single action land use attitude.
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predicted land use change in 2000 and 2010. The kappa and FOM
values of the 2020 land use prediction were calculated as 0.87 and
0.06, respectively (Figure 9). These values are highly consistent
with the real land use layer in 2020 and the simulation accuracy is
high, meeting the requirements of the prediction simulation. The

distribution characteristics of the predicted land use types and
the real land use types in 2020 are consistent. However, the
predicted urban land area is slightly less compared to the real one,
while the distribution of other land types remains highly
consistent.

TABLE 4 Comprehensive land use dynamic attitude.

Types 2000–2010 (%) 2010–2020 (%) 2000–2020 (%)

Comprehensive dynamic attitude 0.14 0.12 0.51

FIGURE 7
Habitat quality in the period 2000–2020. (A) 2000 Habitat quality, (B) 2010 Habitat quality, (C) 2020 Habitat quality.

FIGURE 8
Habitat quality transfer in the period 2000–2020. (A) 2000Habitat quality transfer, (B) 2010 Habitat quality transfer, (C) 2020 Habitat quality transfer.
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3.3.2 Analysis of potential drivers of land use
expansion

Research on the probability of development of different land use
types (Figure 10) and the weight of driving factors on the
development potential of various land use types through the
LEAS module in PLUS (Figure 11). Among them, the
development probability of medium coverage grassland and low
coverage grassland is the smallest, basically in a stable state. The
reason for this is that the area of moderately and low coverage
grasslands is too small. That Paddy field and waterways are most
influenced by NDVI with 14.77% and 19.87%, respectively. Dryland
and low coverage grassland are most influenced by precipitation,
namely, 17.02% and 23.94%. Moreover, wooded land, shrubland,
lake and reservoir ponds are most affected by DEM, with an
influence of 18.30%, 21.23%, 51.87%, and 23.81%, respectively.
Open woodland is mainly distributed in the area with 18.81% of
evapotranspiration; Other woodland is distributed in the area with
28.56% of temperature. High coverage grassland is distributed in the
area with 17.88% of slope. Lastly, medium coverage grassland,
bottomland, urban land, rural settlement, and other urban land
are most affected by the GDP, with the degree of influence of 52.11%,
24.33%, 25.08%, 13.30%, and 16.08%, respectively.

3.3.3 Land use simulation in 2030
Based on the verification by accuracy, it is assumed that the land

use change in Anhui Province only follows the historical
development trend, i.e., the natural and socio-economic factors

basically develop along the present rate, which is defined as the
natural development scenario in this paper. Using the PLUS model
to simulate the land use in Anhui Province in 2030 was shown
(Figure 12A). The spatial distribution of land use in 2030 basically
maintained a high degree of similarity with that in 2020. Among
them, dry land was mainly distributed in the northern part of the
study area and on both sides of the Yangtze River basin, while paddy
field was mainly distributed in the central region of the study area
and dominated the land use types. The urban land was mainly
clustered and concentrated in the central built-up area of the study
area; the woodland and grassland types were mainly distributed in
the southwest and south and part of the eastern area of the study
area. However, the areas of Paddy field and Dryland have an
increasing trend, with an increase of 0.71% and 0.11%,
respectively. On the other hand, wooded land, reservoir ponds,
urban land, and other urban land experience a small decrease, with a
decrease of −0.16%, −0.11%, −0.56%, and −0.37%, respectively. The
change trends of other land use types remain unchanged, with a
change rate of less than 0.1%.

As shown by the land use transfer chord diagram for 2020–2030
(Figure 12B), the overall land use change area was 17,789.03 km2,
accounting for 9.4% of the total area of the study area. The
transferred areas of paddy field, dry land and rural settlement
were relatively large, 5,484.16 km2, 3,243.27 km2, and
3,684.68 km2 respectively, with transfer ratios of 30.83%, 18.23%
and 20.71% respectively, and paddy field and dry land were mainly
transferred to rural settlement. Medium coverage grassland and low

FIGURE 9
Land use simulation in 2020. (A) 2020 Actual Land use, (B) 2020 Projection Land use.
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coverage grassland were transferred to the least area, 1.08 km2 and
1.15 km2 respectively. The largest area was transferred from paddy
field and rural settlement, with 3,936.27 km2 and 3,558.61 km2,

respectively, and the transfer ratio was 22.13% and 20.00%,
respectively. The other land types were dominated by small
transfers among them.

FIGURE 10
Probability of land use development. (A) Land use Band 1, (B) Land use Band 2, (C) Land use Band 3, (D) Land use Band 4, (E) Land use Band 5, (F) Land
use Band 6, (G) Land use Band 7, (H) Land use Band 8, (I) Land use Band 9, (J) Land use Band 10, (K) Land use Band 11, (L) Land use Band 12, (M) Land use
Band 13, (N) Land use Band 14, (O) Land use Band 15, (P) Land use Band 16.
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3.3.4 Habitat quality changes in 2030
Based on the coupling of PLUS and INVEST, the paper

obtained the distribution of habitat quality classes in Anhui
Province for 2030 (Figure 13A). The mean value of habitat
quality in 2030 is 0.41, exactly 0.01 lower than that in 2020.
Even though the habitat quality continues to decrease, this
decrease is small, and the standard deviation remains
unchanged between 2030 and 2020, indicating a relatively
stable habitat quality in 2030. Between 2020 and 2030
(Figure 13B), there is a large shift in the area of poor habitat
quality. Namely, it increases by 1.06%, mainly in the
southwestern and eastern edges of the province. Moreover,
worse habitat quality was found primarily in the central part
of the research area, with an increase of 0.15%. The areas of
middle habitat quality, good habitat quality, and excellent habitat
quality exhibit a decreasing trend, with a decrease
of −0.10%, −0.55%, and −0.55%, respectively. The areas of

good habitat quality and excellent habitat quality remain
consistent, they were mainly distributed in the southwest and
south of the research area, with a small area shift in the east.

3.4 Quantitative analysis of habitat quality
drivers

3.4.1 Structure and analysis of variance and factor
detectors

Based on previous research, this paper selected 12 driving factors
to calculate the amount of change of each influencing factor. The
data were then discretized into 5 layers by the natural breakpoint
method, and their effects on habitat quality were studied by using
the geographic detector’s variance and factor detector (Table 3). The
main influencing factors were DEM, Aspect, Precipitation, and
Evaporation, with the explanation rates of 45.4%, 41.7%, 44.6%,

FIGURE 11
Weighting of the importance of different drivers affecting land use change. (A) Land use Band 1 Contribution, (B) Land use Band 2 Contribution, (C)
Land use Band 3 Contribution, (D) Land use Band 4 Contribution, (E) Land use Band 5 Contribution, (F) Land use Band 6 Contribution, (G) Land use Band 7
Contribution, (H) Land use Band 8 Contribution, (I) Land use Band 9 Contribution, (J) Land use Band 10 Contribution, (K) Land use Band 11 Contribution,
(L) Land use Band 12 Contribution, (M) Land use Band 13 Contribution, (N) Land use Band 14 Contribution, (O) Land use Band 15 Contribution, (P)
Land use Band 16 Contribution.
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FIGURE 12
(A) Land use simulation in 2030, (B) Land use transfer in the period 2020–2030.

FIGURE 13
(A) Habitat quality in 2030, (B) Habitat quality transfer in the period 2020–2030.
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and 35.0%, respectively, in 2010, and 45.9%, 42.1%, 47.0%, and
44.3%, respectively, in 2020. These results suggest that habitat
quality has a high correlation with topographic and climatic
factors. Furthermore, the explanation rate of the influencing
factors of habitat quality in 2020 is higher than the overall
explanation rate in 2010. Even though the level of habitat quality
was most influenced by DEM and Precipitation, the explanatory
power of Places increased in 2020. This increase may be related to
the rapid rate of urbanization expansion, i.e., when urbanization
expansion accelerates, habitat quality perturbation becomes active.
Table 5.

3.4.2 Interaction detector structure and analysis
Based on the interaction detector, the type and magnitude of

factor two-by-two interactions on habitat quality were INVEST
gated. Results from 2010 demonstrate that DEM and
Temperature, DEM and GDP, DEM and Railways, DEM and
Roads, DEM and Waterways, DEM and NDVI, DEM and Places
Precipitation and Waterways, Precipitation and NDVI,
Precipitation and Places, Temperature and Railways,
Temperature and Waterways, Temperature and NDVI,
Temperature and Places, Evaporation and Places, GDP and
Waterways, Railways and Waterways, Railways and Places, Roads
and Waterways, Waterways and NDVI, Waterways and Places,
NDVI and Places, DEM and Population density, DEM and Night
lighting, Slope and Population density, Slope and Night lighting,
Precipitation and Population density, Precipitation and Night
lighting, Places and Population density, Temperature and Night
lighting interaction types are non-linearly enhanced. The remaining
factor interactions are bifactor enhanced. Secondly, results in
2020 indicate that DEM and Temperature, DEM and GDP, DEM
and Railways, DEM and Roads, DEM and Waterways, DEM and
NDVI, Precipitation and Waterways, Precipitation and NDVI,

Temperature and Railways, Temperature and Waterways,
Temperature and NDVI, Evaporation and NDVI, Railways and
Waterways, Railways and NDVI, and Waterways and NDVI,
Waterways and Places, DEM and Population density, DEM and
Night lighting, Temperature and Night lighting, the type of
interaction between the previously mentioned impact factors is a
non-linear enhancement. The interaction between the remaining
factors was bivariate enhanced. The result demonstrated that most
factors have a stronger effect on habitat quality when they interact
dual-dual. Moreover, the results showed that the q-value of the
interaction of other factors is greater than the sum of the q-values of
the two factors. In other words, none of the factors are independent
in their effect on habitat quality and there is an enhanced dual-dual
interaction.

The results of interaction detection of factors influencing habitat
quality were plotted according to the q-value of the interaction
(Figure 14). The results of interaction detection further
complemented the results of divergence and factor detection.
Results from 2010 found that DEM, Aspect, and Precipitation
interacted strongly with each of the other factors, indicating that
DEM and Aspect changes had significant effects on habitat quality,
while the Precipitation exacerbated the habitat quality response.
Furthermore, results from 2020 found that DEM, Aspect,
Precipitation, and Evaporation had strong interactions with each
of the other factors. This is especially true with Evaporation, which
had a significantly stronger degree of influence. The remaining
factors with weaker single factor explanatory power interacted
with other factors to produce a more significant barrel effect.

4 Discussion

This study explored the response of 16 land use types to HQ
from 2000 to 2020, and explored the extent of land use change using
land use dynamics. Based on the PLUS model to simulate the land
use prediction in 2030, combined with the Invest model to explore
the evolution of HQ in Anhui Province in 2030. Quantitative
contributions of different drivers to HQ were clarified using the
Geodetector model. The results of the study will provide a scientific
reference for the sustainable development of ecosystems and land
use planning in Anhui Province.

4.1 Response of habitat quality to land use
change

Anhui Province is an important grain and energy base in
China. With urbanization and human activities, the conflict
between the ecological environment and economic development
is steadily increasing. Based on land use data from three periods
between 2000 and 2020, this paper simulates the land use
projections for 2030. To provide a basis for future ecological
planning, spatial protection and restoration, the paper further
evaluated the response between land use change and habitat
quality by coupling the PLUS-INVEST model. Based on the
spatial distribution of land use, the study observed that large
areas of grassland and woodland were distributed in the
southern and southwestern regions of Anhui Province. Large

TABLE 5 Results of the variance and factor detector of habitat quality in Anhui
Province.

Number Factor name 2010 q-value 2020 q-value

X1 DEM 0.498 0.505

X2 Slope 0.006 0.006

X3 Aspect 0.455 0.461

X4 Precipitation 0.463 0.492

X5 Temperature 0.114 0.214

X6 Evaporation 0.347 0.441

X7 GDP 0.043 0.125

X8 Railways 0.049 0.051

X9 Roads 0.074 0.075

X10 Waterways 0.005 0.006

X11 NDVI 0.041 0.004

X12 Places 0.003 0.369

X13 Population density 0.081 0.064

X14 Night lighting 0.110 0.059
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areas of Dryland were found in the north, and large areas of Paddy
field and urban land in the central part of the research area. Mining
mineral and coal resources in the study area caused land use
structures to be disturbed, resulting in a large reduction of
cultivated land and a large increase of urban land, and
vegetation to be destroyed, this result was consistent with the
findings of (Qian et al., 2021). Between 2000 and 2020, the area of
Dryland and Paddy field decreased by 5,407.02 km2, while the
fragmentation of farmland increased. The latter was mainly
influenced by the urbanization and policies of returning
farmland to forests and fields to lake. Urban land, rural
settlements, and other urban land increased by 4,594.37 km2,
thus becoming the most dominant landscape in Anhui
Province. Furthermore, the development of anthropogenic
activities has led to a continuous aggregation of urban land
patches, concentrated in the provincial capital Hefei and along
the riverine urban agglomerations in a patchwork distribution (Hu
et al., 2020). In 2010, when the construction of the demonstration
zone of the Anhui Wanjiang City belt was incorporated into the
national development strategy, the provincial industrial structure
began to develop and attracted many people to the province. This
led to the continuous expansion of urbanization, which in turn
encroached on productive land such as Paddy field and Dryland.
Urban land is highly concentrated and poses a threat to the habitat
quality of other regions. With the construction of ecological
civilization projects, the quality of habitats surrounding nature
reserves such as woodlands, grasslands, and wetlands has been
improved. However, the overall improvement is still not
significant. With the progress of the 14th Five-Year Plan, the
state has strengthened the construction of an ecological
civilization. This is especially true of the current proposal which
advocates for returning forests to cultivation, and lakes to fields,
aiming at sustainable human development and long-term effective
use of resources. This paper found that the area of Dryland and
Paddy field increased by 1,561.35 km2 from 2020 to 2030, while the
area of urban land and other urban land decreased by 1765.27 km2,

which is in line with ecosystem protection. While strictly adhering
to the ecological protection red line, An hui Province promotes the
implementation of ecological protection and restoration projects
to reduce the damage to ecological source sites caused by the
expansion of urban land and farmland reclamation. Furthermore,
these ecological policies aim to improve the patch area of habitats
and the connectivity between patches, thus improving the overall
habitat quality of Anhui Province.

4.2 Impact of drivers on habitat quality

The spatial differences in habitat quality in Anhui Province
are the result of a combination of the natural environment and
socio-economic development. Namely, the spatial heterogeneity
of natural resource environments among cities formed the
initial spatial pattern of habitat quality. With the increase in
population and rapid socio-economic development, the relative
aggregation and continuous expansion of construction land, the
increasing demand for land resources, and the disturbance of
other factors have led to increasing spatial variability in habitat
quality.

Between 2000 and 2020, land use types in Anhui Province
experienced continuous dynamic changes, while the regional
habitat quality exhibited a declining trend. Furthermore, from
2010 to 2020, habitat quality transfer was characterized
significantly, especially in the southern part of the study area,
dominated by the transfer of good and excellent habitat quality.
From 2020 to 2030, dominated by poor habitat quality transfer,
especially in the central and western fringes of the research area.
Between 2020 and 2030, poor habitat quality will be dominant,
specifically in the central and western edges of Anhui Province. The
spatial differentiation of habitat quality in the study area was the
result of multiple factors. The synergistic enhancement among these
driving factors intensified the spatial differentiation of habitat
quality (Dong et al., 2022). The impact of each factor on the

FIGURE 14
Results of interaction detection of factors influencing habitat quality in Anhui Province in 2010 (A) and 2020 (B).
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spatial distribution of habitat quality is different, and the difference
between most factors has always been significant. The superimposed
impact of two factors on the spatial distribution of habitat quality is
greater than the impact of the single factor (Hu et al., 2022). The
Geodetector results indicate that DEM, Slope, Precipitation, and
Railways have high explanatory power for good habitat quality, the
results of the study were consistent with the findings of different
grid-scale habitat quality driving mechanisms in megacities (Hu
et al., 2022). In other words, these factors largely influence the status
of biological habitat quality. Furthermore, Temperature,
Evapotranspiration, GDP, Roads, and NDVI indices also
influenced habitat quality, showing that they are also important
factors affecting biological habitat quality conditions. The
explanatory power of habitat quality did not change for Slope
and River, suggesting that the spatial distribution of habitat
quality was not influenced by these two factors, which is
consistent with the findings (Chen et al., 2021). Lastly, with
urbanization development, the explanatory power of settlements
rapidly increased, which is again consistent with habitat quality
reduction due to the expansion of urban land in Changchun City
(Bai et al., 2019). The results of this study showed that topographic
and climatic factors were the main drivers affecting the spatial
pattern of habitat quality, and the intensity of human activities
drove the spatiotemporal evolution of habitat quality. The future
regional development of Anhui Province should focus on the areas
with the most prominent HQ degradation and rapid urbanization
development, and strive to deal with the relationship between
human and nature to provide a reference for promoting high-
quality development in Anhui Province.

4.3 Limitations and uncertainties

This study examined the response and drivers of habitat quality
to land use change by studying long time series. Longitudinal studies
weaken the abrupt variability of short-term data and thus reduce
uncertainty. Future trends in habitat quality are also identified from
future land use data. However, this paper choosed a land use interval
of 10 years per phase, which was not specific enough for the response
of economic development to land use. Therefore, we will conduct
land use research with a time interval of 5 years in the future stage.
Furthermore, by examining the driving mechanisms of habitat
quality through Geodetector models, the quantitative effect of
various factors is clarified. However, there are data limitations in
the driver analysis. In addition, multi-scenario predictions under
future development are not considered in the PLUS prediction
model, which is a limitation that will be further INVEST gated in
future work. The results of the urban land use simulations differed
significantly from the actual model, due to the fact that the simulated
results remained largely consistent for most of the simulated land
use types. This situation caused by the resolution of the driving and
limiting factors, led to the simulation of urban land classes differing
from the real simulation results. The underestimation of urban land
area by LULC products can be described by a logarithmic law, and

the potential threshold of this law is about 30 m resolution. When
using LULC products with coarse resolution, the urban features are
severely distorted. Therefore, in subsequent studies, more high-
precision data are needed for predictive simulations.

Based on the land use-driven change assessment of HQ, the
ecological impacts of different land use types were identified. These
provide support to decision makers to optimize land use structure
and achieve the sustainable development goals. The rapid
urbanization in the southern region of the study area accelerated
the transfer of forest to other land types, leading to a continuous
decline in forest HQ. Because the southern region is an ecologically
protected area, it is necessary to reasonably delineate the urban
development boundary (Cao et al., 2021), limit the disorderly
expansion of urban open space, actively build ecological
corridors, stabilize the ecosystem structure (Andersson et al.,
2019), and strictly observe the ecological protection red line.
Although the HQ for large open water and collapsed water areas
formed by coal mining subsidence were the highest in the region,
further water expansion prevention and control measures are still
needed because natural land use transfer is irreversible. In addition,
farmland ecosystems represented the largest area encroached upon
during urbanization; therefore, the red line of 1.8 billion acres of
cultivated land protection needs to be strictly observed (Zhou et al.,
2021). Development should accommodate increasing HQ under
urbanization and socioeconomic development goals. By setting up
four scenarios for land use simulation and analysis, we optimized
land use structure, improved land utilization, and provided
important references for future ecological construction and land
use expansion in the basin.

5 Conclusion

Combining ArcGIS 10.6 software with the habitat quality
module of the PLUS model and the INVEST model, this paper
investigated the spatiotemporal evolution characteristics of land use
change projections and habitat quality in Anhui Province between
2000 and 2030. The Geodetector model then further explored the
driving mechanisms of habitat quality changes. The main
conclusions are as follows.

(1) Between 2000 and 2020, Anhui Province was dominated by
Paddy field, Dryland, and wooded land, which together covered
more than 70% of the total area. Paddy field, Dryland, wooded
land, urban land, and rural settlements were interconverted,
with the spatial distribution of each patch showing significant
heterogeneity. In 2030, Paddy field and Dryland areas
experienced an increase, while wooded land, reservoir ponds,
urban land, and other urban land demonstrated a small
decrease. Other remaining land uses remained unchanged.

(2) During the 20-year research period, the overall habitat quality in
Anhui Province exhibited a small unilateral decline, with poor
and worse habitat quality dominating. Due to the rapid
expansion of urban land, the habitat quality around the
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regional centre decreases significantly. Compared to the habitat
quality in 2020, the habitat quality in 2030 exhibited a small
decrease, while the poor habitat quality increased, mainly in
marginal areas.

(3) Natural environment and socio-economic development are
important for the development of spatial variability in habitat
quality in Anhui Province. Among these factors, DEM, Aspect,
Precipitation, and Evapotranspiration have high explanatory
power for habitat quality. Furthermore, the explanatory power
of influencing factors in 2020 was higher than in 2010, with a
notable increase in the explanatory power of Places, showing
that socio-economic factors have a decisive influence on
changes in habitat quality.
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