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Landslide susceptibility mapping (LSM) is a crucial step during landslide
assessment and environmental management. Clustering algorithms can
construct effective models for LSM. However, a random selection of important
parameters, inconsideration of uncertain data, noise data, and large datasets can
limit the implementation of clustering in LSM, resulting in low and unreliable
performance results. Thus, to address these problems, this study proposed an
optimized clustering algorithm named O-CURE, which combines: the traditional
Clustering Using REpresentatives algorithm (CURE), that is, efficient for large
datasets and noise data, the partition influence weight (PIW)-based method to
enhance the selection of sample sets and the city block distance (CIBD) for
processing of the uncertain data in CURE clustering during LSM modeling. A
database containing 293 landslide location samples, 213 non-landslide samples,
and 7 landslide conditioning factors was prepared for the implementation and
evaluation of themethod. Also, aMulticollinearity analysis was conducted to select
the most appropriate factors, and all the factors were acceptable for modeling.
Based on O-CURE, landslide density, and the partitioning around medoids (PAM)
algorithm a susceptibility map was constructed and classified into very high (33%),
high (18%), moderate (24%), low (13%), and very low (12%) landslide susceptible
levels. To evaluate the performance of the O-CURE model, five statistic metrics
including accuracy, sensitivity, specificity, kappa, and AUC were applied. The
analysis shows that O-CURE obtained accuracy = .9368, sensitivity = .9215,
specificity = .9577, kappa = .8496, and AUC = .896 is an indication of high-
performance capability. Also, the proposedmethod was compared with the CURE
algorithm, three existing clustering methods, and popular supervised learning
methods. From this assessment, O-CURE outperformed the other clustering
methods while showing significant and more consistent performance than the
supervised learning methods. Therefore, we recommend that the O-CUREmodel
and the constructed map can be useful in assessing landslides and contribute to
sustainable land-use planning and environmental management in light of future
disasters.
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1 Introduction

A landslide is a geo-environmental disaster initiated by rainfall,
volcanoes, human activities, earthquakes, or other factors that causes
slope instability (Chowdhuri et al., 2021b; Zhao and Zhao, 2021;
Wang et al., 2022). Recently, because of the increased urbanization
pressure, the magnitude and frequency of landslide disasters have
increased greatly causing changes in the landscape leading to huge
damages, and putting lives and resources in great danger (Wang
et al., 2019; Wang et al., 2020; Azarafza et al., 2021). Thus, assessing
and managing this disaster is vital to ensure safety, proper land use/
planning, and environmental management. Consequently, to
understand the nature and mechanism of landslides, and to
reduce their impact in different parts of the world, researchers
have developed various approaches for pre-disaster and post-
disaster assessments (Pal and Chowdhuri, 2019; Solanki et al.,
2022). Landslide susceptibility mapping (LSM) is a pre-disaster
assessment that locates areas susceptible to landslides. It also
portrays the degree of susceptibility, which provides information
essential for land-use planning and environmental management
(Chowdhuri et al., 2021b; Bourenane et al., 2021). LSM considers
previous landslide data, and geological, topographic,
geomorphological, and hydrological factors that contributed to
landslide occurrence, and the modeling methods (Pourghasemi
et al., 2018; Ling et al., 2022). In the past, most of the
susceptibility maps were produced based on an expert’s judgment
which consumes a lot of time and energy, and it is difficult to
quantify its accuracy due to its subjective effects. Fortunately, with
the development of computer technologies such as Geographic
Information Systems, Remote Sensing, and advanced data
collection methods, machine learning algorithms are widely used
in this field (Chowdhuri et al., 2021a; Ganga et al., 2022; Zhang et al.,
2022). These developments have significantly improved LSM
accuracy and efficiency. In previous research studies several
machine learning-based methods such as supervised learning (SL)
and unsupervised learning (USL) algorithms have been applied and
compared in LSM in different regions (Chowdhuri et al., 2021a;
Mehrabi and Moayedi, 2021; Saha et al., 2021; Solanki et al., 2022).
Nevertheless, none of them can be applicable and effective in all
cases.

Although most SL methods [examples: (Benchelha et al., 2020;
Nhu et al., 2020; Arabameri et al., 2021; Berhane et al., 2021;
Mehrabi and Moayedi, 2021; Ruidas et al., 2022b; Ganga et al.,
2022; Korma, 2022; Sheng et al., 2022)] are popular and may achieve
high prediction accuracy, they require data with predefined labels
(landslide or non-landslide labels). Moreover, to obtain high
performance these methods require a large number of labeled
samples during the training process. Because of these limitations,
SL methods may not be applicable where there are a limited number
of labeled samples as they are not always easy to obtain and may be
expensive to acquire in abundance through image interpretation and
site surveying, especially in a large study area. USL-based
approaches are applied and have contributed to improving the
implementation and the accuracy of LSM in such situations (Lei
et al., 2018; Hu et al., 2021; Yimin et al., 2021; Mao et al., 2022; Su
et al., 2022; Liu et al., 2023). USL-based methods such as clustering
can be used to map the susceptibility areas, as they can identify the
underlying structures in unlabeled datasets, hence, do not require

data with predefined labels, and do not involve a training process
during their implementation. With these advantages, they can
widely be used in areas of various sizes (small to large sizes)
(Yong et al., 2022).

Clustering is a common USL method that assigns a set of
samples (mapping units) into some subclasses or clusters based
on certain similarities so that samples in a certain subclass have a
maximum similarity degree to those in other subclasses (Wang et al.,
2017). Over decades, these methods have been widely used in other
fields such as marketing research, pattern recognition, and image
processing, but very rarely explored in LSM studies (Huang et al.,
2020; Su et al., 2022). In recent years, making use of the advantages
of these methods, some landslide researchers have also shown
interest and conducted LSM studies using these methods (Wan
et al., 2015; Wang et al., 2017; Hu et al., 2019; Mao et al., 2021a; Mao
et al., 2021b; Hu et al., 2021; Pokharel et al., 2021; Yimin et al., 2021;
Mao et al., 2022). From the analysis of these studies and other
traditional clustering algorithms, some limitations were observed:
the inability to detect subclasses with arbitrary shapes, sensitivity to
noise, inability to perform well in large study areas with large
datasets, and principally a standard method to process the
uncertain data (rainfall) has not being obtained yet. These key
disadvantages limit their performance in LSM modeling and give
directions for further investigations and new approaches that will
provide better performance results.

The clustering using representative (CURE) algorithm is an
efficient algorithm for large datasets, that can detect arbitrarily
shaped subclasses, and is insensitive to noise; a combination that
can rarely be found in other clustering algorithms (Guha et al.,
1998). However, the CURE algorithm uses a random approach to
select sample sets (representative points), which may not always be
correct and may result in incorrect clustering results (Xiufeng and
Wei, 2011). Additionally, like other traditional clustering
algorithms, the CURE algorithm works well with continuous and
discrete data but not uncertain data which may also result in
misleading clustering results (Ren et al., 2009). These two
limitations can also hinder the application of the CURE
algorithm in LSM modeling.

In this study, an optimized CURE (O-CURE) algorithm is
proposed for LSM modeling. O-CURE targets to improve the
performance of the CURE algorithm by addressing the above
limitations, through integrating a partition influence weight
(PIW) based method to enhance the selection of sample sets, and
the city block distance (CIBD) to facilitate proper processing of the
uncertain data in the CURE clustering. With these enhancements,
O-CURE is implemented in LSMmodeling for Baota District, one of
the landslide-susceptible areas in Shaanxi Province, China.
Moreover, to evaluate the performance of the O-CURE method,
five statistic metrics are applied, i.e., accuracy, sensitivity, specificity,
kappa, and AUC. Also, the traditional CURE, existing LSM
clustering methods: Chameleon algorithm and an adaptive
quadratic distance-CA-AQD (Yimin et al., 2021), Agglomerative
Hierarchical Clustering algorithm based on Overlapped Interval
Divergence distance-AHC-OLID (Mao et al., 2021a), and OPTICS
algorithm using the Hausdorff distance-OA-HD (Hu et al., 2021) as
well as Decision Tree-DT (Nikoobakht et al., 2022), Support Vector
Machine-SVM (Nikoobakht et al., 2022), and Uncertain Decision
Tree-DTU (Mao et al., 2017) supervised learning models were
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applied for comparison as benchmark methods using data from the
same study area. Furthermore, the key objectives of this study are to
develop an improved clustering method-the O-CURE algorithm for
LSM modeling in Baota District and apply landslide density,
attribute values, and the partitioning around medoids (PAM)
algorithm to indicate the landslide susceptibility levels in the
study area. The final susceptibility map will help to identify
potential susceptible areas and will also be a helpful tool in
assessing and managing landslide disasters to ensure safety,
proper land-use planning, and environmental management.

2 The study area

The study area is Baota district (Figure 1), a 3,556 km2

mountainous area and part of the Loess Plateau, found in Yan’an
city, Shaanxi Province, China. Its geographic coverage is
approximately 109°14′E-110°07′E longitudes and 36°11′N-37°02′N
latitudes, with elevation ranging between 800 m and 1400 m.
Furthermore, topographically, there are two main rivers in this
area: the Yanhe and Fenchuan rivers. The vegetation covers about
60% of the Fenchuan River basin and less than 30% of the northern
Yanhe River basin. The geomorphology of the area is featured gorges
and curved slopes. Geologically, there are sedimentary rocks and
extensive quaternary loess deposits that dominate the area. The
average annual temperature and rainfalls are 10°C and 550 mm
respectively, and the heavy rainfall varies between 58 and 117 mm
extending between June and October (Zhang and Liu, 2010). It has
also been observed that rainfall triggers most landslides in the area
(Mao et al., 2017; Hu et al., 2019; Mao et al., 2021a).

In general, because of the complex nature of this area and as part
of the Loess Plateau (also referred to as the Huangtu Plateau) that
covers the upper and middle ranges of the Yellow River, the area has
been exposed to extreme soil erosion, that is, highly associated with
frequent landslides. Figure 2 shows pictures of some landslide events
in the Baota District. Upon dealing with this issue, various
authorities apply various measures such as LSM to manage and
mitigate landslides and their consequences.We believe that this LSM
study will be helpful in different ways toward achieving that goal.

3 Research materials and methods

To achieve the aimof this study, the following processes were carried
out: 1) Preparation of research materials: a total of 506 samples
(293 landslide samples and 213 non-landslide samples) were used to
prepare a database; 2) A total of 7 landslide conditioning factors were
prepared based on previous studies; 3) A Multicollinearity analysis was
applied on the conditioning factors by using variance inflation factor
(VIF) and tolerance (TOL); 4) Development of O-CURE method; 5)
Landslide susceptibility mapping based on O-CURE; and 6) Evaluation
of themodel’s performance and comparisonwith othermodels based on
standard evaluation metrics. The flow of the study is shown in Figure 3,
and the detailed descriptions are given in the following sections.

3.1 Landslide database

The database containing information regarding the prevailing
landslide distribution as well as the database containing geospatial

FIGURE 1
The study area: Baota District, Shaanxi Province, China.
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distribution information of various factors such as locations, nature,
size, and varieties of landslides is essential for the determination of the
likelihood of landslides occurrence in addition to conducting LSM.
The database demonstrating the Baota district landslide survey
information was obtained from the Xi’an Center of Geological
Survey (CGS). It was prepared based on analysis of 1081 locations
from RS of SPOT-5 satellite images for the whole study area and

Quick-Bird satellite images of 225 km2 of the urban area; field surveys,
and from analysis of the historic data, whereby, 293 landslides were
observed in the study area (indicated by black spots in the study area
map (Figure 1) and details of some landslides are presented in
Table 1). The landslides are of rotational and translational types
with most of them being rotational landslides (Mao et al., 2017).
Moreover, in terms of size, the landslides are reported to be large

FIGURE 2
Landslides in Baota District, Yan’an City, China (In the year 2021).

FIGURE 3
Flow diagram of the study.
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(ranging between 102× 104 and 103 × 104 m3), medium (between 101×
104 and 102 × 104 m3), and small sizes (less than 101 × 104 m3);
medium-sized landslides are more (about 52.6%) (Mao et al., 2021b).

Also, the database showed that 84.6% of the landslide events in this
area happen between June and October (the rainy season). The
recorded landslides were used for LSM modeling in this study.

FIGURE 4
(Continued).
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3.2 Landslide conditioning factors

Landslide occurrences are associated with various
conditioning factors, and the process of selecting those factors
is very essential during landslide susceptibility mapping. There is
no standard for the selection of these factors, and different
studies select their factors based on various criteria. Based on
previous research studies in Baota District (Hu et al., 2019; Mao
et al., 2021a; Mao et al., 2021b), we selected 7 landslide-
conditioning factors for modeling: elevation, slope angle, slope
aspect, profile curvature, lithology, vegetation coverage index
(NDVI), and rainfall. The elevation factor is associated with
landslide occurrences, especially in plateau areas (Lee et al.,
2018). Slope angle has significant effects on material sliding
and the flow of water under the influence of gravity thus

affecting the slope stability (Tran et al., 2021). In this area,
slope stability is between 25° and 55°, and elevation ranges
from 20m to 120 m. The profile curvature affects the water
movement on the surface of the Earth resulting in landslide
occurrence (Nohani et al., 2019). Lithology is the material basis of
landslides and an essential factor in determining the type of
rocks/soil exposed to landslides (Zhao and Zhao, 2021). NDVI is
an essential ecological factor linked with the soil structure
(Youssef and Pourghasemi, 2021; Ling et al., 2022), and its
values were obtained using a commonly applied method
described in (Ling et al., 2022). Rainfall factor was also
selected because frequent rain waters can easily penetrate the
soils due to sinkholes, loess structural joints, and weathering
fractures, forming saturated areas on impermeable layers, which
leads to a reduction in soil strength and gravity, creating pore
water pressure and increase in the weight of the rocks and soil
mass. The selection of this factor is also supported by the historic
reports that recorded the frequency of landslide events during the
rainy season (Zhang and Liu, 2010; Hu et al., 2019). Figure 4A–G
represents the thematic maps for the factors whereby: maps for
elevation, slope angle, slope aspect, and profile curvature were
generated from DEM at a 25 m resolution and a scale of 1:10,000,
NDVI and lithology maps were developed from ETM+ remote
sensing images, and geology map at a scale of 1:
50,000 respectively, and the rainfall map was created based on
meteorological data at a scale of 1:50,000. The process of creating
the thematic maps for the factors was aided by GIS—the ArcGIS
10.2 platform. For LSM modeling, these landslide conditioning
factors will be here referred to as attributes. The attributes are
further described in Table 2.

Generally, the applied dataset contained 5,672,922 mapping
units (with an area of 25 × 25 m per mapping unit) of both
landslide location data and non-landslide location data acquired
from the study area raster map and the attribute values for each
mapping unit. After the compilation of all these data, the data was
systematically processed and analyzed first in ArcGIS
10.2 software, and Microsoft Excel.

TABLE 1 Details of some landslides.

No. Location Length m) Width m) Thickness(m) Volume (×104m3)

Name Coordinates

Longitude Latitude

1 Fengzhuang Nangou Tower 109°25′35″ 36°47′46″ 200 500 20 200

2 Urban Medical College 109°27′20″ 36°33′56″ 150 200 3 9

3 Yaoshop ZhaoJiagou 109°41′17″ 36°35′54″ 220 280 10 17

4 Yuyuan Houjiagou 109°25′03″ 36°37′13″ 150 35 8 42

5 Dragon Wohu Bay 109°38′34″ 36°56′12″ 150 200 10 30

6 Baijiaping 109°29′20″ 36°34′24″ 130 250 7 22.8

7 Liangcun Guojiashi 109°32′12″ 36°52′04″ 150 200 15 45

8 Wanhua Gaojiagou 109°25′07″ 36°32′39″ 250 200 14 266.4

. . . . . . . . . . . . . . . . . . . . . .

FIGURE 4
(Continued). The thematic maps of the landslide conditioning
factors (A) Elevation (B) Slope angle (C) Slope aspect (D) Profile
curvature (E) NDVI (F) Rainfall (G) Lithology.
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3.3 Multicollinearity analysis of landslide
conditioning factors

This analysis is conducted for a better understanding of the
selected factors and to determine if there is Multicollinearity or
correlation among them. For this purpose, in this study,
variance inflation factor (VIF) and tolerance (TOL) were
applied (Ruidas et al., 2021; Pal et al., 2022). VIF computes

the extent of correlation between an independent factor and
other factors in a model, and it is interpreted as VIF = 1 means
factors are not correlated, VIF between 1 and 5 means factors are
moderately correlated, and VIF >5 indicates high correlation
among the factors. TOL is the reciprocal of VIF, and its values
are between 0 and 1 (Chen and Chen, 2021; Jaydhar et al., 2022;
Zhang et al., 2022). VIF and TOL are computed using the
following functions:

FIGURE 5
The basic steps of the CURE algorithm (A) A sample of data selected from a large dataset (B) Four clusters of current clustering (C) representative
points (red points) selected from each cluster (D) After shrinkage of the representative points the clusters with closest representative points are merged.

TABLE 2 Attributes description.

Category Attribute name Attribute type in O-CURE Classes of discrete attribute

Topography Elevation Continuous None

Slope Angle Continuous None

Slope Aspect Discrete Flat, N, NE, E, SE, S, SW, W, NW

Profile Curvature Discrete <−0.05, −0.05 to 0.05, >0.05

Geology Lithology 1: loess + nearly horizontal paleo-soil

Discrete 2: loess + inclined paleo-soil

3: loess + paleo-soil layers + bedrock

4: loess + paleo-soil layers + the Neogene clay

Underlying surface NDVI Continuous None

Triggering factor Rainfall Uncertain 0ཞ60, 60ཞ80, 80ཞ100, 100ཞ110, 110ཞ120, 120 mm above
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VIF � 1/ 1 − R2
i( )

TOL � 1/VIF

R2
i is the coefficient of determination for regressing the ith factor

on the other factors. Generally, a factor with VIF <5 and TOL >.1 is
considered for modeling (Chen and Chen, 2021; Ruidas et al., 2021;
Pal et al., 2022).

3.4 Background of O-CURE algorithm

3.4.1 CURE algorithm
CURE is an efficient clustering algorithm that performs

classification tasks in large datasets (Qian et al., 2002;
Nsengiyumva et al., 2018). It is more robust to noise compared
with other clustering methods and can identify arbitrarily shaped.
CURE uses a defined number of representative points to describe the
cluster and creates a hierarchy of clusters using a bottom-up
approach (Guha et al., 1998; Cai and Liang, 2018). This means
the algorithm begins by obtaining a small sample of data and treats
each point in the data as a single cluster. Then, it randomly selects a
small set of well-dispersed points from each cluster to be
representative points (RePts) of those clusters and calculates the
Euclidean distance between the RePt of one cluster and the RePt of
other clusters. The Euclidean distance between two n-dimensional
RePts (say pi; pj) is calculated using the following equation:

Ed pi, pj( ) � ������������������������������������
pj1 − pi1( )2 + pj2 − pi2( )2 + . . . + pjn − pin( )2√

The algorithm then shrinks the RePts and merges two clusters
with the closest RePts. The shrinking and merging process repeats
until the desired clusters are obtained. Figure 5 illustrates the basic
steps of the CURE algorithm.

In light of its advantages, the CURE algorithm is adopted in this
study as the basic algorithm for LSM modeling. However, the
algorithm has some fundamental problems including 1) the use
of a random approach to select representative points, which may
result in incorrect clustering results; 2) Like inmost of the traditional
clustering algorithms, the Euclidean distance used to calculate
distance between points cannot work well with uncertain data,
which can also affect the clustering results (de Souza and De
Carvalho, 2004; Ren et al., 2009).

3.4.2 The O-CURE algorithm
The O-CURE algorithm is proposed to improve the

performance of the CURE algorithm by overcoming the
fundamental problems of the CURE algorithm. It is developed by
introducing the PIW-based methods to enhance the selection of
RePts, and the CIBD-based method to process the uncertain data in
the CURE algorithm.

3.4.2.1 PIW-based method
This method selects the RePts by considering the influence of the

partition where the RePts are positioned in the cluster and facilitates the
effective elimination of noise points during clustering thus improving the
quality of the clusters. Also, this method ensures that the dataset can be
processedmore efficiently and the selected points can describe the dataset
more accurately (Cai and Liang, 2018).

Assuming C � p1, p2, . . . , pn{ } is a cluster in a dataset, the RePt
in the cluster is pi, (0< i<√|cp|), and cp is the core point. Under
the minimum distance between the data points and pi, a cluster
partition C1, C2, . . . , Cn{ } is formed, whereby, each cluster Ci has a
direct correspondence with pi. To obtain PIW of pi the following
equation can be used:

PIW(pi) � n
m
.
∑m

j�1d dj, cp( )∑n
i�1d di, cp( ).d min(pi, cp)

Wherein, n is the number of data points in a cluster C, m is the
number of points in a cluster Ci, d(di, cp) is the distance from cp to
each data point in the cluster C, and d(dj, cp) is the distance from
cp to the data points in the cluster Ci.

To select the appropriate RePts, the PIW(pi) value is compared
with the threshold value η. When PIW(pi)≤ η the point is marked as
noise and is eliminated. The initial threshold η is set as:

η � n
5m

.
∑m

j�1d dj, cp( )∑n
i�1d di, cp( ).d min pi, cp( )

This selection process will be repeated until the appropriate
RePts are selected.

3.4.2.2 Uncertain data and CIBD method
Uncertain data is the type of data, that is, in some range, and its

specific value is not well-known (Ren et al., 2009). This data is presented
with its lower and upper bounds such asp � (a, b)where a denotes the
lower bound and b denotes the upper bound. Alternatively, the data can
be represented using its midpoint (mp) and radius r) as p � (mp, r)
where mp � (a + b)/2 and r � (b − a)/2.

Thus, to calculate the distance between data points in the CURE
algorithm, the CIBD (de Souza and De Carvalho, 2004) is applied,
which can facilitate the successful processing of uncertain data,
whereas, the other data types will be considered as special uncertain
data with mp(p) � p, and r(p) � 0. Hence, the CIBD method can
be applied to attributes with different data types: continuous,
discrete and uncertain attributes.

Let p � (a, b) and p+ � (a+, b+) be two random uncertain points
in a dataset containing n points, using radius and midpoint the CIBD
d(p,p+) between these points is expressed in the equation below:

d p, p+( ) � ∑n
i�1
λi[ mp p( ) −m p+( )∣∣∣∣ ∣∣∣∣ + r p( ) − r p+( )∣∣∣∣ ∣∣∣∣

Thus, by merging the PIW-based method and CIBD into the
CURE algorithm, the proposed O-CURE algorithm is summarized
in the following steps.

Step 1: Select a small sample of data and cluster it using a bottom-
up hierarchical approach.

Step 2: Calculate η and PIW(pi) for each cluster, and accordingly
select RePt for each cluster

Step 3: If PIW(pi)≤ η, delete pi, and select a new representative
point

Step 4: Based on the uncertain data model, apply CIBD to
calculate the distance between the RePt of the clusters, and
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find the minimum distance (Dmin) between the RePt of one
cluster and the RePt of the other clusters.

Step 5: Shrink every RePt to a fixed fraction (about 20% or 30%) of
the original distance between its current position and its cluster
centroid.

Step 6: Use Dmin to merge two clusters whose pair of RePt, one
from each cluster, that are sufficiently close.

Step 7: After every such merging, select a new RePt to represent the
new cluster.

Step 8: Repeat the merging step until there are no sufficiently close
clusters left.

Note: Points in this algorithm are referred to as mapping units
(described by the attribute values) in LSM modeling.

3.5 Landslide susceptibility classification
methods

The O-CURE clustering method grouped the mapping units
(points as used in the algorithm) to their respective subclasses but
did not indicate the susceptibility levels in the subclasses. Thus, to do
that, in this study, the PAM clustering algorithm and Landslide
Density were applied.

3.5.1 PAM clustering algorithm
PAM (Rdusseeun and Kaufman, 1987) is a clustering algorithm

that partitions data into some clusters based onm selected points called
medoids which represent the number of clusters to be obtained. In this
study, PAM is applied to partition the subclasses obtained from the
O-CURE algorithm, into five landslide susceptibility levels (hence,m =
5). The algorithm follows the steps below.
Step 1Fix the value of m to 5, to represent the number of
susceptibility levels
Step 2From the input data randomly choose 5 subclasses as medoids
m) for each susceptibility level
Step 3Each subclass gets assigned to the susceptibility level to which
its nearest medoid belongs.
Step 4For each subclass of susceptibility level i, its distance from all
other subclasses is computed and added. The subclass of ith
susceptibility level for which the computed sum of distances
from other subclasses is minimal is assigned as the medoid for
that susceptibility level.
Step 5Steps (3) and (4) are repeated until the medoids stop changing.

3.5.2 Landside density
Landslide density [LD (Hu et al., 2019)] is computed using the

number of landslides per square kilometer (km2) of a mapping unit
in a subclass and is applied to specify the susceptibility level of that
subclass. When the number of landslides in a subclass is zero, which
means the LD is also equal to zero, then, the attribute values (which
describe more the characteristics of the area) based on geology
expertise were applied to specify the susceptibility level.

3.6 Model evaluation and comparison

3.6.1 Evaluation metrics
The developed LSM models need to be validated to check their

prediction capability (Pham et al., 2020; Pal et al., 2022), and up to
date, there are no universal metrics to perform this task. In this
study, we apply some standard and popular statistical metrics,
namely, accuracy (Ac, for the correctly predicted landslide and
non-landslide samples), sensitivity (St), specificity (Sp), kappa
(ka), and AUC, plotted using Sensitivity (y-axis) against 1-
Specificity (x-axis) (Su et al., 2021; Ling et al., 2022). These
metrics are computed using four prediction indices: true positive
(tp), true negative (tn), false positive (fp), and false negative (fn)
(Dou et al., 2020; Pham et al., 2020; Pal et al., 2022). Tp and fp are the
landslide samples that have been correctly predicted as landslide and
non-landslide samples respectively, while, tn and fn are the landslide
samples that have been incorrectly predicted into landslide and non-
landslide classes respectively. The metrics are expressed in the
equations below:

TABLE 3 Results of Multicollinearity analysis.

Landslide conditioning factors VIF TOL

Elevation 2.23 0.43

Slope angle 4.68 0.21

Slope aspect 3.31 0.30

Profile curvature 2.13 0.47

NDVI 2.07 0.48

Lithology 2.55 0.39

Rainfall 2.96 0.34

FIGURE 6
The distribution of the obtained subclasses in the study area.
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Ac � tp + tn
tp + tn + fp + fn

St � tp
tp + fn

Sp � tn
tn + fp

ka � Pa − P exp

1 − P exp

Whereby Pa � (tp + tn)/(tp + tn + fp + fn) and
P exp � tp + fn( ) tp + fp( ) + tn + fp( ) tn + fn( )( )/ tp + tn + fp + fn( )2( )

Ac and ka close to 1 indicate that themodel is reliable, while close to
0 means the model is not reliable and has very poor performance
(Landis and Koch, 1977; Ruidas et al., 2022a). Also, when AUC is
almost 1 implies that the model is perfect while when AUC = .5 means
the model is inaccurate (Huang and Ling, 2005; Jaydhar et al., 2022).

TABLE 4 Attribute values, landslide density, and landslide susceptibility levels of subclasses.

Sub-
class
No

Attribute values Landslide density Landslide
susceptibility

levelElevation Slope
angle

Profile
curvature

Slope
aspect

Lithology NDVI Rainfall Area
(km2)

Landslides LD
(/km2)

1 30.21 26.89 0.028 S II 0.66 24–233 9.54 1 0.1 Low

2 25.35 20.19 0.033 SE I 0.54 20–192 6.53 5 0.77 High

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

235 21.97 41.23 0.59 NE III 0.59 28–187 14.25 0 0 Determined by
expert

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

410 19.89 33.19 0.47 N II 0.49 33–267 25.06 16 0.64 Moderate

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TABLE 5 Analysis of landslide susceptibility classification.

Landslide density % Of subclasses Landslide susceptibility levels

0.90–1.70 17 Very High

0.70–0.90 19 High

0.14–0.70 34 Moderate

0.04–0.14 16 Low

0–0.04 14 Very Low

FIGURE 7
Landslide susceptibility map.
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3.6.2 Comparison methods
To assess the performance of the proposed method for landslide

susceptibility modeling, its results were compared with four other
clustering methods CURE, CA-AQD, AHC-OLID, and OA-HD.
CA-AQD, AHC-OLID, and OA-HD clustering methods were
previously developed to also address the uncertain data processing
problem and were implemented in the same study area, and they are
here compared with the newly proposed model. The comparison is
based on the evaluation metrics mentioned above. Furthermore, using
the same dataset the performance of the model was also compared with
three supervised learning methods, namely, decision tree (DT),
uncertain decision tree (DTU), and support vector machine (SVM)
based on their performance accuracies. DT is a popular decision-
making algorithm that applies a tree-structured model of decisions
and their possible outcomes, such as landslide event outcomes. DTU is
an improved DT algorithm based on uncertain data processing that was
previously proposed and implemented in Baota District. SVM is an SL
algorithm with good performance, used for classification, and
regression, but is mostly applied for classification problems. A
detailed description of DT and SVM algorithms is given in the
literature (Nikoobakht et al., 2022) and DTU (Mao et al., 2017).
These methods were selected as benchmark methods. The objective
of these comparisons is to evaluate and show the possible differences
and improvements between the proposed method and the compared
methods in LSM modeling.

4 Results

4.1 Results of multicollinearity

The results of the 7 selected factors under the Multicollinearity
analysis are shown in Table 3, demonstrating that VIF values were
not more than 4.68, and TOL values were above .21. Therefore, there
was no correlation orMulticollinearity problem among the 7 factors,
and they were all acceptable for LSM modeling.

4.2 Clustering results

During the preparation of attributes’ data for the mapping units,
each attribute value was normalized by its maximum value so that the
value is between 0 and 1. After normalization, following the procedures
mentioned in Section 3.4, and taking the attributes’ values as inputs, the
O-CURE clustering algorithm was applied to divide the mapping units
into different subclasses and output the statistical signature of each
subclass. 485 subclasses of varying shapes and sizes, with distinguished
geology and topography characteristics, were obtained. These results
indicate that the model has a good and effective clustering capability.
Figure 6 portrays the distribution of the obtained subclasses in the study
area, and the subclasses are presented in different colors.

4.3 Landslide susceptibility mapping

The results obtained from the proposed clustering algorithm can
only indicate the statistical values of the subclasses, but do not give any
information about the landslide susceptibility for each subclass. So, forTA
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that purpose, in this study, the PAM algorithm was applied to the final
statistical values of the subclasses to indicate the susceptibility levels of
the subclasses based on LD and attribute values, which were then used
to construct a landslide susceptibility map in the ArcGIS 10.2 platform.
Firstly, the number of landslides in every subclass was determined and
LD for every subclass was calculated. Then PAM clustering method
(with a value of m = 5) was used to divide those subclasses into five
susceptibility levels (very low, low, moderate, high, and very high). To
assign the subclasses to their respective levels, landslide density, and
attribute values were applied in the sense that highly susceptible
subclasses had higher LD while those with low susceptibility had
lower LD. Meanwhile, for zero LD, the common knowledge and
expert experience that landslide occurrence is mostly influenced by
local topographic, geological, and hydrological settings of the area; the
attribute values were applied to judge the susceptibility level. All these
procedures were conducted in ArcGIS 10.2 under its potential spatial
analyst toolbox. Table 4 presents some subclasses together with their
attribute values, landslide densities as well as susceptibility levels.

Table 5 presents the analysis of landslide susceptibility
classification, it is clear that most subclasses (33% and 24%) are
susceptible to landslides at a very high and moderate level
respectively, followed by a high level (18%). Few subclasses (13%
and 12%) fell into the low and very low susceptibility levels. The
constructed susceptibility map is shown in Figure 7.

4.4 Evaluation and comparison results

4.4.1 Comparison among the clustering models
The evaluation results of the proposed model and comparison

results are presented in Table 6. From the Table, it can be observed
that the O-CURE algorithm achieved the highest performance

results with St = .9215, Sp = .9577, Ac = .9368, and ka = .8496;
more than the compared models: CURE (St = .802, Sp = .7606, Ac =
.8353, and ka = .6637), AHC-OLID (St = .8532, Sp = .8451, Ac =
.8636, and ka = .7219), OA-HD (St = .9010, Sp = .9202, Ac = .9091,
and ka = .8148) and CA-AQD (St = .9147, Sp = .9390, Ac = .9249,
and ka = .8471). These results showed a strong performance
capability of O-CURE compared to the other clustering models.
Additionally, the proposed O-CURE algorithm showed the highest
AUC of .896 in the ROC shown in Figure 8.

4.4.2 Comparison with supervised learning
methods

To construct and evaluate the supervised learning models, the
dataset was randomly divided into training and validation sets at a
ratio of 20:80. With the general knowledge that the increase in the
training set can increase the validation accuracy, the process was
executed iteratively by adding 10% of the data from the validation set
to the training set until there was 80% of the data in the training set.
From the comparison results (Figure 9), the O-CUREmodel showed
nearly constant performance accuracy during the experiment while
the DT, DTU, and SVM models started with low accuracies which
kept on increasing as more data was added to the training set, and
the DTU showed the highest increase of accuracy than the other
models.

5 Discussion

Landslide is one of the most destructive disasters in different
parts of the world. Because of this, numerous attempts have been
made to develop appropriate landslide prevention and mitigation
strategies. Among them, LSM is one of the crucial strategies by
which landslide-susceptible areas can be easily identified. Thus, in
this study, a new clustering algorithm was developed and applied to
conduct landslide susceptibility mapping in Baota, District, China.
The performance of the model was evaluated and compared with
that of CURE, CA-AQD, OA-HD, and AHC-OLID clustering
methods based on sensitivity, specificity, accuracy, kappa, and
ROC evaluation metrics. Also, DT, DTU, and SVM - supervised

FIGURE 9
Performance evaluation of O-CURE, DT, DTU, and SVM models.

FIGURE 8
ROC curves for O-CURE, CA-AQD, OA-HD, and CURE LSM
clustering models.
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methods were adopted for comparison based on performance
accuracy.

The results indicate that the O-CURE obtained higher
performance in all cases compared to other clustering models.
Also, based on the underlying principle that the higher the
kappa, accuracy, and AUC values (closer to 1) the stronger the
predictive ability of the model, the O-CURE model obtained
accuracy >.9, kappa >.8, and AUC >.85, indicating its strong
predictive ability and that it is nearly in complete agreement with
the field survey data. This significant performance of the O-CURE
model was facilitated by the introduced and improved functions.
The Multicollinearity analysis on the selected landslide conditioning
factors helped to avoid errors and over-fitting problems that could
have resulted from correlated factors. Thus, verified that all the
factors were acceptable for modeling and could result in an accurate
model. The PIW-based method enhanced the selection of
appropriate representative points, and supported the effective
elimination of noise data which improved the clustering quality.
This method enabled O-CURE to perform better than the CURE
model which uses a random selection approach to select the
representative points, an approach, that is, subjected to errors
and may lead to incorrect results. Also, the CIBD-based method
facilitated proper processing of the uncertain data, which also
supported better clustering results than CURE clustering which
does not consider the uncertain data processing. In addition,
O-CURE performed better than CA-AQD, OA-HD, and AHC-
OLID because the models are sensitive to the arbitrarily shaped
clusters, sensitive to noise, and cannot perform well in large datasets,
hence obtaining lower performance results. All these limitations
have been addressed and dealt with in the O-CURE model.

Furthermore, in comparison with the DT, DTU, and SVM
supervised learning models, these models showed dependence on
labeled training data and their performance increased with an
increase in the amount of training data. This is an indication that
their performances are not consistent and they cannot guarantee an
accurate and reliable LSM, especially in large study areas where
obtaining enough datasets is a challenge. On the other hand, the
O-CURE model showed nearly consistent performance (despite the
amount of supplied data) throughout the process indicating that it can
be applicable even when there is not enough data and can quickly
evaluate the susceptibility of landslide events over a large area. Thus,
based on this, the proposed unsupervised learning model is more
advantageous than the supervised learning models.

A landslide susceptibility map was constructed based on the
developed O-CURE model. It was discovered that about 18% and
33% of the study area were observed in high and very high susceptibility
levels while classes 24% are susceptible to landslides at a moderate level.
This map can be very useful and practical for landslide management,
landslide disaster, risk analysis, and land-use management in general.
Also, understanding the differences between various machine learning
techniques is essential to obtain and apply an optimal LSMmodel for a
specific study aim and area. For example,; the findings of this study
showed that the unsupervised learning models which are rarely used
could also be significantly helpful in assessing landslides as a
preliminary technique.

Although the results indicated the high-performance capability
of the proposed model, the limitation of this study is: the study
considered only 7 landslide conditioning factors, there are other

several factors (Dias et al., 2021; Lima et al., 2022; Tehrani et al.,
2022) that are known to have an association with landslide
occurrences. Moreover, further comprehensive studies will be
conducted to compare the proposed model with other commonly
applied models, increase the number of conditioning factors, and
apply it in other study areas with a different dataset to evaluate its
performance in LSM modeling. Also, non-location samples were
randomly selected based on expert knowledge and existing data.
This can cause some errors in the modeling procedure. For further
studies, more and other famous evaluation metrics will be applied to
evaluate the performance of the model. Nevertheless, the result
analysis suggests that the proposed model and its comparison will
guarantee a basis and better implementation of results for future
studies.

6 Conclusion

The main objective of this study was to develop an optimized
clustering algorithm for landslide susceptibility mapping based on a
combination of a CURE algorithm, the partition influence weight-based
method, and CIBD (O-CURE algorithm). The study targeted to
enhance the performance capability of the CURE algorithm and
improve landslide susceptibility modeling by addressing the
limitations found in the CURE algorithm and existing clustering
models, including the inability to detect subclasses with arbitrary
shapes, sensitivity to noise, inability to perform well in large study
areas with large datasets and to obtain an optimal solution for
quantifying the uncertain data (rainfall). The developed model was
implemented in Baota District, Shaanxi province, China. The
performance of the model was evaluated using statistical metrics and
AUC from ROC. It was then compared with the CURE algorithm, CA-
AQD, AHC-OLID, and OA-HD clustering algorithms, as well as DT,
DTU, and SVM supervised learning models. Among others, O-CURE
obtained the best performance inmapping landslide susceptibility in the
area with accuracy >.90, kappa >.80, and AUC >.85. These results
suggest that the model could be a useful tool in identifying landslide
vulnerable areas and developing landslide preventive measures and
mitigation strategies as well as in land use planning and policy. For
instance, responsible authorities should pay more attention and give
warnings and strategies on building any sort of projects along the high-
very high susceptibility areas, or further evacuate people and stop the
ongoing projects from those areas. For the moderate-very low
susceptible areas, landslide preventive measures could be set and
applied while providing proper and sustainable land use planning
and environmental protection. Lastly, it is worth mentioning that
the results of this study provide a theoretical framework upon which
more unsupervised learningmethods could be applied, a consistent and
reliable tool to assess landslide susceptibility. In addition, this study not
only provides insightful contributions to this field and scientific
literature but also can be applied and experimented with in other
natural disaster assessment studies in other areas around the world.
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