
PUnet: A robust framework for
phase unwrapping in
interferometric SAR

Boyu Liu1*, Lingda Wu1, Xiaorui Song2, Hongxing Hao1, Ling Zou3

and Yu Lu4

1Science and Technology on Complex Electronic System Simulation Laboratory, Space Engineering
University, Beijing, China, 2Beijing Institute of Remote Sensing Information, Beijing, China, 3School of New
Media Art and Design, Beihang University, Beijing, China, 4Naval aviation university, Yantai, China

Synthetic Aperture Radar Interferometry (InSAR) has grown significantly over the
past few decades, which were mainly used in remote sensing applications. Most
InSAR applications (e.g., terrain mapping and monitoring) utilized a key technique
called phase unwrapping Phase unwrapping obtained the absolute phase from the
wrapped phase for the subsequent application. However, the collected wrapped
phase inevitably contains noise due to the influence of factors such as atmosphere
and temperature in the InSAR acquisition stage. This noise made it challenging to
obtain the absolute phase from the wrapped phase. This study proposed a deep
learning framework (PUnet) for phase unwrapping form InSAR data. pUnet was a
robust framework using U-net as the basic structure combined with an attention
mechanism and positional encoding, facilitating accurate phase unwrapping from
the wrapped phase. Through comparative experiments with typical phase
unwrapping algorithms, we demonstrated that pUnet could obtain absolute
phases with high accuracy and robustness than from the wrapped phase under
various levels of noise.
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1 Introduction

Synthetic Aperture Radar Interferometry (InSAR) is a hotspot in satellite Earth
observation research. It obtains single look complex (SLC) imagery obtained through
dual-antenna or iterative orbital observations. A digital elevation model (DEM) can be
generated from two or more SLC images, through the use of processes such as filtering, co-
registration, interference, terrain deflattening, spectral filtering, phase unwrapping, and geo-
coding. In these steps, phase unwrapping (hereinafter referred to as PU) is a relatively
difficult step (Costantini, 1998a). Many previous evidence has proposed phase-unwrapping
algorithms with significant effects, which could be generally divided into three categories:
path-following, optimization-based, and integrated denoising and unwrapping methods.

Path-following methods are the most common in PU, the rationale of which is to choose
reliable integrated paths to obtain correct PU results. In the path-following method, the
integration path may be determined by the residual distribution or the quality map. In other
words, the path-following method may guarantee that the input phase fringes of the PU
result are consistent with the rewrapped phase fringes. Path-following methods typically
have low time and space complexity, and their PU accuracy in high-quality regions is
credible (Ghiglia and Pritt, 1998). Classical path-following methods included the quality-
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guided algorithm (Xu and Cumming, 1999; Zhao et al., 2011;
Herraez et al., 2016; Jian, 2016; Gao et al., 2019; Chen et al.,
2022), the branch-cut algorithm (Goldstein et al., 1988), the
mask-cut algorithm (Gao and Yin, 2012), and the minimum
discontinuity algorithm (Ghiglia and Romero, 1996; An et al.,
2000; Yu et al., 2013; Liu et al., 2018). The path-following
algorithm has the advantage of low computational cost; however,
this is accompanied with poor adaptability. Overall, this method has
relatively low PU accuracy in low-quality regions.

Optimization-based methods used different objective
functions to minimize the difference between the unwrapped
phase gradient and the estimated gradient as much as possible
(Yamaki and Hirose, 2007). A representative approach is the Lp-
norm method. Among them, when p = 1, the Lp-norm PU
method is equal to the minimum cost flow (MCF) PU method
(Costantini, 1998b) and the Flynn minimum discontinuity method
(Flynn, 1997; Xu et al., 2016). Some evidence (Ghiglia and Romero,
1996; Ferretti et al., 2007) have provided typical algorithms for p ≤
1. Many statistics-based methods existed in addition to the Lp-
normmethod (Nico et al., 2000; Chen, 2001; Dias and Leitao, 2002;
Ying et al., 2006; Dias and Valadao, 2007; Chen and Zebker, 2011).
A major benefit of these methods is that multiple priors (e.g.,
SAR image intensity or interferogram coherence) can be
efficiently fused. In particular, the SNAPHU method is one
representative statistics-based method a statistical cost model to
compute the most probable PU solution proposed in (Chen and
Zebker, 2011).

In the traditional InSAR processing flow, phase denoising and
phase unwrapping were two separate steps (i.e., denoising is
followed by unwrapping). However, the evidence showed that
this two-step approach inevitably introduced some additional
processing errors, as each step had different algorithmic
approximations and assumptions. For instance, in order to
specifically illustrate the error caused by the approximation and
assumption of the algorithm, the PU algorithm named SpInPhase is
divided into two part (Hongxing et al., 2015) Particularly, in the first
step, SpInPhase solved the phase de-noising problem through
dictionary learning and sparse coding methods. In the second
step, SpInPhase solved the PU problem after phase denoising
with Markov random fields. However, in the first step of the
sparse coding denoising algorithm, the researchers used the
L1 norm as an approximation of the L0 norm to address the
problem that the L0 norm was a non-convex function. This
approximation method may inevitably introduce errors and result
in excessive residual noise in the interferogram. These residual
noises may be misjudged as phase features by the PU algorithm,
which may contribute to biased PU results. The appearance of this
bias may not be due to the defects of the PU algorithm itself. Instead,
it is from the misleading information left in the previous step (phase
denoising). Therefore, the PU may be affected by the error of the
denoising step algorithm if the denoising and unwrapping
algorithms are improved separately. In order to solve the
unavoidable error in the two-step method, Relevant studies
generally provided two solutions. First, the errors contained in
such algorithms could be solved by adding anti-noise ability and
robustness to the PU algorithm. The other solution adopted some
integrated denoising and unwrapping methods (Zhou et al., 2021a;
Zhou et al., 2021b; Yuan et al., 2022; Zhang et al., 2022; Zhou et al.,

2022) (i.e., PU performed simultaneously with phase noise filtering)
which used a combination of denoising and unwrapping to recover
the information of noisy pixels. The problems of the existing
integrated denoising and unwrapping methods may be that the
computational cost is higher than others. Due to the complex
features and high noise level of InSAR images, the computational
cost of such methods is generally high, and the consistency of
solutions still needs to be paid attention to.

With the wide use of deep learning methods in computer vision
and image processing, more and more researchers adopted them to
solve the PU problem. The most commonly used is the Deep
Learning Performed Wrap Count method (hereinafter abbreviated
as DLPWC method). Although the phase value of each pixel in the
interferogram is different, the wrap counts are the same within one
fringe period. Phase un-wrapping may thus be viewed as a
classification or segmentation problem; that is, the wrap count
corresponding to the phase value of each pixel is treated as a class
label (Liang et al., 2018; Spoorthi et al., 2018; Zhan et al., 2019;
Zhang et al., 2019; Wu et al., 2020). Liang et al. (2018) first
proposed this idea. On the other hand, Spoorthi et al. (2018)
proposed a phase data set generation method, where the generated
data set was used to train the network for the purpose of predicting
wrap counts, and post-processing with clustering-based
smoothness which is performed to alleviate the classification
imbalance. Zhang et al. (2019) have used three networks to
perform phase unwrapping in the sequence which were
respectively oriented to wrapped phase denoising, wrap count
prediction, and post-processing. One study verified the phase
unwrapping capability of the proposed network, DeepLab-V3,
and proposed the use of refined post-processing (Zhan et al.,
2019). Similarly, Wu et al. (2020) have optimized the phase
unwrapping method in Doppler optical coherence tomography
by exploiting multi-scale context information and full-resolution
residual blocks. This type of method (Sica et al., 2020; Li et al.,
2022) was derived from traditional machine learning algorithms
and fitted well with the principles of phase un-wrapping. The
common advantages were the simple network structure the short
training time, and the accuracy of unwrapping. However, there are
some drawbacks (i.e., poor anti-noise and insufficient feature
extraction capability), which may result in decreased PU
accuracy when the noise level in the interferogram is high.
Specifically, the “absolute phase” in the sample pair was saved
as an integer in the training set (test set) of the DLPWC method.
For example, if the integer on a pixel is n, it means that in a sample
pair, the difference between the real absolute phase and the
corresponding interferogram on the pixel is nπ. The fact is that
these methods treated the PU problem as a classification problem
(treat the integer n on each pixel as a classification label), so they
had poor noise recognition ability and weak noise resistance.
Therefore, DLPWC is generally used together with other de-
noising algorithms.

Another deep learning-based PU method is the deep regression
method. This method appeared relatively late. In this context, PU
could be viewed as a regression problem (He et al., 2019; Wang et al.,
2019; Dardikman-Yoffe et al., 2020; Qin et al., 2020; Park et al., 2021;
Perera and De Silva, 2021), where the neural network directly
learned the mapping between the wrapped phase and the
absolute phase. Such a mapping relationship was the most direct
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and intuitive. However, the unwrapped phase did not strictly follow
the stipulation of adding or subtracting an integer number of 2π to
the phase value on each pixel of the wrapped phase in the PU
principle. A recent study (2019) proposed a deep regression method
and verified the superiority of this method in terms of anti-noise and
anti-aliasing (Wang et al., 2019). He et al. (2019) tested the phase
unwrapping performance of a bidirectional recurrent neural
network (RNN) and 3D-ResNet using MRI data. Dardikman-
Yoffe et al. (2020) disclosed a sample set of biological cells and
confirmed the accuracy and robustness of deep regression methods.
In order to obtain higher accuracy, Qin et al. (2020) adopted a larger
capacity Res-UNet to solve the phase unwrapping problem.
Although the computational cost of this method was higher, they
reported significant benefits. Some studies (Park et al., 2021; Perera
and De Silva, 2021) tested the PU performance of long short-term
memory (LSTM) networks and Generative Adversarial Networks
(GANs), demonstrating their effectiveness. In general, the deep
regression method did not fully match the principle of PU when
compared with the DLPWC method; however, a more complete
network structure could be used to improve accuracy. On the other
hand, the anti-noise capability of a deep regression method will
become stronger with the improvement of the feature extraction
ability of the network. The problem is that the noise models assumed
by the existing deep regression methods were too simple (e.g.,
Gaussian white noise is directly added to the phase value of each
pixel of the interferogram (Wang et al., 2019). In the research area of
InSAR denoising, two common simulated noise models are the
complex Gaussian noise model and the coherent noise model. A
study first proposed the coherent noise model (Deledalle et al.,
2011), which may be considered as the most suitable analogue noise
model for InSAR imaging principle. Some researchers studied the
relationship between the complex Gaussian noise model and the
coherent noise model and proved the effectiveness of the complex
Gaussian noise model for practical denoising applications when
testing the anti-noise ability of the models (Hongxing et al., 2015).
Therefore, the PU performance may fall short when dealing with
real-world interferograms with high noise levels. Their robustness
and feature extraction ability still need to be improved.

Based on the evidence above, we proposed an architecture for
PU of interferometric synthetic apertures (i.e., PUnet) to improve
the robustness of PU and reduce the pre-processing steps before pU.
A robust framework was formed through pUnet combining spatial
attention (Woo et al., 2018), self-attention (Vaswani et al., 2017),
and positional encoding (Vaswani et al., 2017) to deeply and multi-
dimensionally mine the features of interferograms based on U-net.
In addition, we demonstrated the effectiveness of pUnet through
testing and analysis of simulated and real-world data under different
conditions.

Our key contributions are summarized as follows:

1) We proposed a simple, robust, and effective framework for PU of
SAR interferometric images (i.e., PUnet). U-net was the basic
structure of PUnet and supplemented by an attention module,
targeting achieving the functions of synchronously completing
interferometric phase denoising and phase unwrapping. Some
function of PUnet (i.e., synchronize denoising and phase
unwrapping) could avoid the error caused by approximation
in traditional two-step cascade algorithms.

2) We proposed a learning block (Phase Unwrapping Learning
Block; abbreviated as PULB) for phase feature extraction. PULB
consists of multiple branches aimed to extract phase features
from different perspectives using different methods, which
eventually obtain multi-scale features. The traditional feature
extraction method involved solving the problem of insufficient
feature extraction by adding more convolution layers. Our
proposed PULB may simplify the network structure and
greatly reduce layer depth.

3) We proposed an attention module to enhance phase feature
learning. The attention module was used to extract the deep
feature information in the high-dimensional feature map after
completing down-sampling. The module was mainly composed
of three components: Spatial attention, positional encoding, and
self-attention, which performed feature extraction on high-
dimensional feature maps from different dimensions and
further strengthened the feature extraction capability of the
network.

The structure of this paper was as follows: In Section 2, we
introduced the PU problem model. In Section 3, we introduced the
structure and details of PUnet. In Section 4, we conducted
quantitative and qualitative experiments on pUnet and other
advanced algorithms, using simulated and real-world
interferograms under different extreme conditions. Finally, our
conclusions are presented in Section 5.

2 Problem model

2.1 Problem model of PU

The interferometric phase is typically acquired in the form
of a complex-valued image. However, the obtained interferogram
is not the actual application signal and only reflects the properties
of the actual application signal. The synthetic aperture radar
interferometry technology maps the signal to the interval [−π,
π) by performing the complex phase angle operation on
the actual signal; this is the process of phase wrapping. Taking
a two-dimensional interferogram as an example, the
definition of the phase unwrapping operation on each pixel
point (x, y) was provided in formula (1), where φ(x, y) and
ϕ(x, y) were the wrapped phase and the absolute phase,
respectively:

ϕ x, y( ) � φ x, y( ) + 2πk x, y( ) (1)
Some physical quantities were related to the absolute phase in

some published applications. Thus, it is necessary to restore the
interferometric phase (i.e., the wrapping phase) X to the absolute
phase Y using an algorithm. This process is called phase
unwrapping. As described in Section 1, the DLPWC methods, k
(x, y) is treated as an integer inmost traditional algorithms (i.e., wrap
count). Eq. 2 shows the relationship between the absolute phase
ϕ(x, y) and the wrapped phase φ(x, y) in the depth regression
method:

ϕ x, y( ) � F φ x, y( )( ) (2)
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where F(•) denotes the mapping relationship between the
absolute phase ϕ(x, y) and the wrapped phase φ(x, y). At the
same time, F(•) is the target that the deep regression method
aims to learn.

2.2 Discussion of two problem models

The model described in Equation 1 was in line with the principle
of pU. Asmentioned above, the deep learningmethod aimed to realize
PU was to treat PU as a classification problem. Furthermore, it
involved treating the wrap count k (x, y) as the label of the class.
This method may achieve good PU results in the early stage of the
proposal. However, the DLPWC method has been found to have
insufficient robustness through in-depth study (Wang et al., 2022). It
is also noted that this model cannot often accurately determine the
wrap counts corresponding to the pixels on these special terrains if
there are complex interferometric fringes or low-amplitude stripes in
the interferogram. Additionally, the DLPWC method can recognize
the noise as phase information at the pixel point when the noise level
in the interferogram is high, whichmay result in a misjudgment of the
wrap count. Some recent research have continuously proposed new
methods to improve the robustness of DLPWC methods. For
example, one study proposed estimated wrap count in a
differential term by focusing on the variation of k (x, y)rather than
absolute value, and then integrating them appropriately (Sica et al.,
2020). This operation may make the network not overly sensitive to
the value of the absolute phase during training, ultimately contribute
to generalization ability. The DLPWC method has the benefits of
fitting well with the principle of pU. However, robustness and stability
still need to be solved for such methods (Wang et al., 2022).

The model described in Equation 2 was proposed from the
perspective of deep learning. From Equation 1, PU was an ill-
posed inverse problem. As k (x, y) was discrete, the traditional
algorithms to solve this kind of problem approximated it by a
continuous function to obtain the final solution (e.g., (Hongxing
and LingdaPUMA-SPA, 2014)). As mentioned above, the discrete
term is usually made continuous by use of the differential term in PU
methods based on deep learning. The proposed model in Equation 2
could effectively avoid this problem instead of treating the PU
problem as a regression problem. Using the feature relationship,
the mapping relationship corresponding to each pixel point
(i.e., the mapping relationship between the wrapped phase and the
absolute phase) was learned. Although this method did not fully
conform to the principle of PU, it was possible to obtain accurate PU
results on the premise theoretically that the feature relationship
between phase values was fully learned. As introduced in Section
1, they have been valued by previous research although deep
regression methods based on Equation 2 model appeared relatively
late. They were characterized by strong robustness and could learn the
mapping relationship effectively between the wrapped phase value
and absolute phase value on special terrain or objects.

In general, the deep learning methods based on Model 1) were
reasonable in terms of the principle of pU. The results showed
significant performance in solving the PU problem. However,
considering the possible noise and interference in the interference
phase, their robustness and anti-noise capability need to be further
studied. The deep learning methods based on Model 2) have a clear

purpose and effectively avoid the trouble caused by the ill-posed
nature of pU. However, there is no denying that more room are still
needed for improvement in deep regression methods in terms of
feature learning as real-world interferograms tend to contain many
special terrains and objects.

3 The proposed PUnet

This section showed the details of PUnet. The characteristics of
the InSAR wrapped phase were complex and informative. There was
typically irregular noise in the wrapped phase considering the
influence of factors such as atmosphere and temperature in the
acquisition. Such noise could seriously impact PU performance. In
order to eliminate the influence of noise, the traditional cascaded
wrapped phase processing flow included the two steps of denoising
and pU. It was important to emphasize that the former step inevitably
resulted in unknown effects on the latter. We proposed pUnet to solve
the denoising and PU problems in one step which was based on the
idea of deep regression and took advantages of the power of modern
GPUs and the rapid development of deep learning methods.
Specifically, we considered two aspects: 1) Deep learning methods
had advantages over traditional algorithms in capturing spatial
features; and 2) Extraction of the mapping relationship between
the noisy wrapped phase and the absolute phase is feasible with a
strong GPU and adequate training on numerous samples.

3.1 Overview of PUnet

The architecture of pUnet was illustrated in Figure 1. The overall
design of pUnet was inspired by U-net (Ronneberger et al., 2015). Its
main components were a five-stage encoder, the attention module, a
four-stage decoder, and bridge paths in the middle. In the encoder
and decoder, we proposed a PU learning block (PULB) for PU
feature extraction. The details of the PULB were provided in Section
3.2. The multi-channel feature map output by each encoder was
connected with the next layer of encoders by a 2 × 2 max-pooling
operation (i.e., down-sampling). The bridge paths in the middle
were used to connect the contraction and expansion paths.
Specifically, we directly established skip connections between the
feature maps in the shrinking path without the max-pooling
operation and the corresponding positions in the expanding path.
Before up-sampling, we incorporated an attention module to extract
features from high-dimensional feature maps from different
dimensions. The attention module mainly consisted of three
parts: Spatial attention, positional encoding, and self-attention.
The details of the attention module were provided in Section 3.3.

3.2 PULB

As is known, convolutional neural networks employed
multiple convolution layers for feature extraction. When dealing
with samples with complex features, methods such as
concatenating multiple convolutional layers or increasing the
layer depth are often used to improve the feature learning
ability of the network. Although these methods are effective,
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they increase the computational cost and are not conducive to the
extraction of multi-scale feature information. We aimed to design
a feature learning block with a branch-parallel form inside, which
could effectively extract multi-scale feature information without
increasing the layer depth. PULB was inspired by the previous
study (Szegedy et al., 2016), and its specific content consisting of
five branches was shown in Figure 2. The design idea was to learn
different features through these five branches, and then combined
the learned features in a specific way. Each branch was composed
of Conv + BN or Conv + BN + ReLU. The PULB designed under
the concept of “inception architecture” (Krieger et al., 2007) can
control the layer depth of the network through a multi-branch
parallel approach, thus making the network training more
efficient. In addition, PULB can avoid gradient explosion by
this connection.

3.3 Attention module

To improve the feature extraction ability of the network, we
added an attention module before up-sampling, as shown in
Figure 3A. The main components included spatial attention,
positional encoding, and self-attention. These three components
respectively performed feature extraction on different dimensions of
the feature map. Figure 3B showed a schematic diagram. The
function of spatial attention was to find the important channels
among the 1024 channels, according to the dimension of the number

of feature map channels. The positional encoding filtered the
meaningful parts from in the 1 × 1 × 1024 feature vector,
corresponding to each pixel on the 8 × 8 feature
map. Specifically, position encoding embedded the rows and
columns in the feature map, and then found the location of
important pixels. Finally, self-attention achieved global
supervision of all 1024 × 8 × 8 feature values in all channels.
Figures 3C, D showed the details of spatial attention and self-
attention respectively. The spatial attention and self-attention in
this part were inspired by the Scaled Dot-Product Attention
(Vaswani et al., 2017). It is noted that we performed convolution
operations on Query (Q), Key (K), and Value (V) in spatial
attention. The positional encoding obtained the weight
corresponding to each 1 × 1×1024 feature vector through the
embedding operation. As the output calculated by the positional
encoding did not contain the original input, we used skip
connections to add the weight information calculated from the
original input and the position encoding, which was then passed
to the self-attention module.

In general, the attention module was divided into two branches:
One branch was spatial attention, which was used to extract
important information in the channel number dimension. The
other branch included positional encoding and self-attention,
which were responsible for extracting the feature information of
the 1 × 1 × 1024 feature vector corresponding to each pixel and
global supervision respectively. Finally, the information generated
from the two branches was fused.

FIGURE 1
Architecture of the proposed PUnet.
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4 Experiments

4.1 Training set and test set

Assuming that the absolute phase to be determined
corresponding to the pixel point (x, y) in the interferogram is
ϕ(x, y), while φ(x, y) is the wrapping phase provided by the
observation system, then the relationship between them can be
given as Equation 3:

φ x, y( ) � angle ej·ϕ x,y( )( ) (3)

where j is the imaginary unit; angle(•) denotes the operation of
taking the phase angle of the complex number; and the obtained
phase angle is in the range of [-π, π). PU can also be interpreted as
reconstructing ϕ(x, y) from φ(x, y). Our data set was designed to
generate absolute phases ϕ(x, y). The corresponding wrapping
phase can be obtained by performing the operation in Equation 3
on the generated absolute phases ϕ(x,y), thereby forming a valid
data pair.

Our data generation method was inspired by the previous
study (Ghiglia and Pritt, 1998). First, we generated an initial
square matrix with random size (ranging from 1 × 1 to 30 × 30),
value range (1–100), and distribution type (uniform or
Gaussian). Among these, the size determined the number and
position of extreme points in the final absolute phase, while the

range of values determined the gradient of the absolute phase.
Next, we used interpolation and bilinear methods to enlarge the
matrix. The size used for the experiments in this study was 128 ×
128. We generated a total of 22,000 absolute phase–wrapped
phase image pairs. Among all image pairs, 20,000 image pairs
were used as the training set, while the remaining 2,000 were used
as the test set. In the PU experiments with noisy wrapped phases,
the noise setup was as described in Equation 4. We added
independent and identically distributed Gaussian noises nreal
and nimag to the real a and imaginary b parts of the complex-
valued image z corresponding to the wrapped phase φ(x, y),
respectively. The noise added to each interferogram had zero
mean. The noise variance was random and had a maximum value
of σ2/2. In quantitative experiments, we tested the performance of
pUnet and the comparison algorithm under four noise levels,
with σ equal to 0, 0.3, 0.5, or 0.7. The image pairs in the training
set were composed of the noisy wrapped phase φnoisy(x, y) and
the correct absolute phase ϕ(x, y). Figure 4 presented an example
of image pairs in the training set. From left to right were the
wrapped phase, the absolute phase, and the absolute phase (in the
form of a surface).

z � exp j · φ x, y( )[ ] � a + b · j
znoisy � exp j · φ x, y( )[ ] + n
n � nreal + j · nimag

φnoisy x, y( ) � angle znoisy( ) (4)

FIGURE 2
The PU residual learning block.
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Our proposed pUnet was trained on an NVIDIA Tesla
V100 GPU for a training duration of 8 h (with PyTorch
1.4.0) with a total of 100 epochs with a learning rate of
0.005. The loss function of pUnet was the absolute value loss
(i.e., L1 loss).

4.2 Evaluation criteria and comparison
algorithms

In the quantitative analysis of simulated and real-world InSAR
data experiments, we employed the root mean square error (RSME)

and structural similarity (SSIM) to evaluate the PU performance of
the different algorithms, calculated as follows:

RMSE ϕ̂, ϕ( ) �
������������������

1
N1 ·N2

∑N1 ·N2

i�1
ϕ̂ − ϕ( )2

√√
(5)

SSIM ϕ̂, ϕ( ) � 2μϕ̂μϕ + c1( ) 2σϕ̂ϕ + c2( )
μϕ̂

2 + μ2ϕ + c1( ) σϕ̂
2 + σ2ϕ + c2( ) (6)

whereN1, N2 in Eq. 5 are the length and width of the image and ϕ̂, ϕ
are the PU and correct absolute phase, respectively; meanwhile, in
Eq. 6, μϕ̂, μϕ are the means of ϕ̂,ϕ,respectively, σϕ̂, σϕ denote the

FIGURE 3
(A) Connections in the attention module; (B) Schematic diagram of features of different dimensions targeted by different attentions; (C) Spatial
attention; and (D) Self-attention.
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standard deviations of ϕ̂, ϕ, respectively, σϕ̂ϕ denotes the covariance
of ϕ̂ and ϕ, and ci, i � 1, 2 are constants.

In the experiments detailed below, we chose REPU (Chen and
Zebker, 2011) and DLPU (Wang et al., 2019) as algorithms for
comparison. REPU was a statistics-based PU algorithm, which was a
traditional algorithm that has been shown to perform well in the PU
field recently, while DLPU was a deep regression method with fairly
good stability. Their selection was mainly based on two
considerations: 1) REPU has been shown to have significantly
effective PU performance in previous studies, even comparable to
some recent Deep Learning-PerformedWrap Count methods under
special conditions. Therefore, REPU was chosen as a representative
algorithm which treats Equation 1 as the research model. 2) DLPU
was a deep regression method with better PU performance, which
has been proposed more recently. It has been confirmed to have
strong stability and good anti-noise performance. Therefore, DLPU
was chosen as a representative of the algorithm which treats
Equation 2 as the research model.

4.3 Simulated experiments

We conducted experiments on the proposed pUnet and the two
algorithms selected for comparison. Three algorithms were tested on
the test sets with four different noise levels. Next, the correct
absolute phase was uniformly expressed as the Ground truth.
Table 1 presented the PU results of REPU, DLPU, and pUnet for
2000 samples in the test set under different noise conditions. The
evaluation criteria obtained after the testing of 2000 test samples
under each noise level were averaged. The result indicated that
REPU performs well when the interferogram did not contain noise
in Table 1. However, as the noise level increases, the PU
performance of REPU gradually decreased. Differently, the PU
performance of DLPU was much less affected by noise level than
REPU, and the PU performance of the proposed pUnet was

relatively stable under different noise levels. From the
quantitative evaluation criteria of pUnet and DLPU, the deep
learning methods presented advantages in terms of anti-noise
ability. As shown below, we detailed specific experimental results
combined to verify the robustness and anti-aliasing effect of pUnet
from different perspectives. At the same time, we conducted a
detailed analysis of the advantages and disadvantages of the two
comparison algorithms.

Figure 5 showed the test results for REPU, DLPU, and pUnet on
some samples when σ = 0. For ease of description, we use “noise
level-algorithm name-sequence number of columns” to locate each
subgraph. For example, the subgraph on the third row and the first
column in Figure 5 could be expressed as "σ = 0-REPU-1". We took
the interferometric fringe density as the main screening condition
and selected four test samples with obvious differences in this
condition. The higher the density of interferometric fringed, the
easier it was to judge the relationship between adjacent pixels. Dense
interferometric fringes were much beneficial for REPU, which was
good at calculating the gradient relationship between the phase
values of adjacent pixels. From "σ = 0-REPU-1″ and "σ = 0-REPU-
2″, it is clear that REPU had a unique advantage under the condition
of no noise in the interferogram, when the density of interferometric
fringes was large. As shown by "σ = 0-REPU-3″ and "σ = 0-REPU-

FIGURE 4
Example of training set samples.

TABLE 1 Average root means square error/average structural similarity (RMSE/
SSIM) between Ground truth and PU with REPU, DLPU, and pUnet under
different noise conditions and 2000 simulated samples.

RMSE/SSIM REPU DLPU PUnet

σ = 0 0.0314/0.9963 0.0653/0.9591 0.0302/0.9981

σ = 0.3 0.1725/0.8025 0.0711/0.9327 0.0399/0.9806

σ = 0.5 0.3036/0.6161 0.0948/0.8925 0.0456/0.9715

σ = 0.7 0.5628/0.5210 0.1203/0.8490 0.0671/0.9640

The bold values in Table represent the best experimental results in the corresponding row.
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4″, the PU performance of REPU could decrease when the
interferometric fringe density was lower. In contrast, the results
of both DLPU and pUnet were relatively stable at different fringe
densities. In particular, the two evaluation criteria of "σ = 0-PUnet-
3″ and "σ = 0-PUnet-4″ were both stable and better than "σ = 0-
PUnet-1″ and "σ = 0-PUnet-2″, indicating that pUnet maintained a
good feature extraction ability when the interferogram features were
relatively simple, and there was no over-fitting.

As shown in Figure 6, in order to test the anti-aliasing
performance, we selected the noise-free wrapping phase with
irregular interferometric fringe density and complex terrain
features to conduct specific error analysis regarding the PU
capabilities of REPU, DLPU, and PUnet. In terms of PU error,
pUnet had the smallest error range (as evidenced by the right scales
in Figures 6F–J). The PU results of REPU, DLPU, and pUnet based
on the SSIM analysis indicated that the detail preservation ability of

FIGURE 5
PU results of REPU, DLPU, and pUnet on the four wrapped phases drawn from the test set with σ = 0. From top to bottom: the wrapped phase, the
correct absolute phase (Ground truth), the PU of REPU, the PU of DLPU, and the PU of PUnet. Above the subgraphs in the third to fifth rows are the
quantization results corresponding to the subgraphs.
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the absolute phases calculated by the three algorithms could be
recognized. It showed that the RMSE of REPU was poor and the
SSIM results were not significantly deficient, suggesting that the
accuracy of the PU results of REPU in some regions was low, which
can be corroborated from Figure 6D. In contrast, Figures 6H–L
indicated that it was not difficult to find that the error distributions
of DLPU and pUnet were more uniform. This may verify the unique
advantages of deep learning methods in feature extraction. It is
important to emphasize that pUnet can control the error within a

pretty small range. Simultaneously, pUnet presented strong anti-
aliasing effect in the PU experiment under the condition of irregular
fringe density (Figure 6). It could both control the error within a
small range and not appear, as shown in Figure 7D, where the error
was very prominent in a certain part of the absolute phase.

In order to verify whether pUnet can complete the phase
unwrapping of the noisy wrapped phase in one step (i.e., one-
step PU), we selected the wrapped phase with different noise levels in
the test set with σ = 0.7, respectively; then, for REPU, DLPU, and

FIGURE 6
Test samples for error analysis with σ = 0. From left to right: Wrapped phase, Ground truth, and Surface of Ground truth.

FIGURE 7
PU Error Analysis of REPU, DLPU, and PUnet with σ= 0. (A–D) is the PU result, PU error, PU surface and PU error surface of REPU, respectively. (E–H)
is the PU result, PU error, PU surface and PU error surface of DLPU, respectively. (I–L) is the PU result, PU error, PU surface and PU error surface of PUnet,
respectively. Above the subgraph in the first column is the quantization result corresponding to the subgraph.
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PUnet, we conducted quantitative and qualitative analysis of PU
performance. Figure 8 illustrated the PU results for the three
algorithms. “Wrapped phase-3″ was a very noisy sample. The
evaluation criteria of "σ = 0.7-REPU-3" (RMSE = 0.6436, SSIM =
0.1562) indicated that the PU effect of REPU was not good when the
noise level was high. As a traditional cascaded PU algorithm, REPU
relied on independent denoising algorithms under high noise
conditions. However, the anti-noise performance of REPU itself
could not be ignored. The result of "σ = 0.7-REPU-3″ showed that,
when there was a small amount of noise in the wrapping phase, the
PU result of REPU still had a strong ability for detail preservation
(SSIM = 0.9643); however, there were more estimation errors in

some special areas (RMSE = 0.2356) at the same time. The PU
performances of DLPU and pUnet on “Wrapped phase-3″ were
much better than that of REPU. By comparing "σ = 0.7-DLPU-3″
and "σ = 0.7-PUnet-3″, the RMSE values of DLPU and pUnet were
similar when the noise level in the wrapped phase was high;
however, there was a gap between DLPU and PUnet, in terms of
SSIM. Through comparison of "σ = 0.7-DLPU-3″, "σ = 0.7-PUnet-
3″, and “Ground truth-3″, pUnet was much stronger than DLPU in
terms of detail preservation.

In order to further test the robustness and anti-noise ability of
PUnet, we selected a test sample with relatively uniform distribution
of interferometric fringes and high noise level and conducted

FIGURE 8
PU results of REPU, DLPU, and pUnet on the four wrapped phases drawn from the test set with σ = 0.7. From top to bottom: Wrapped phase, the
correct absolute phase (Ground truth), the PU of REPU, the PU of DLPU and the PU of PUnet. Above the subgraphs in the third to fifth rows are the
quantization results corresponding to the subgraphs.
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specific error analysis for pUnet and the other two comparison
algorithms. Figures 9B, D illustrated that it was almost uniformly
distributed in an interval at higher noise levels despite the fact that
the PU error of REPU was larger. Combined with Figure 9C, the
ability of REPU to estimate the absolute phase information in the
package phase could not be underestimated in the case of almost
only noise interference and no other special terrain. On the other
hand, this proved that the noise immunity of REPU was weak.
Compared with DLPU, pUnet had better PU performance, no
matter which metric (RMSE, SSIM) was analyzed. Figures 9J–L
both proved the good anti-noise ability and good detail preservation

ability of PUnet. This could be confirmed through comparison of the
surfaces in Figure 9K; Figure 10. The robustness and anti-aliasing of
pUnet could be verified by combining the PU experimental results of
the wrapped phase with high noise level and the test results for the
noise-free wrapped phase above.

4.4 Real-world InSAR data experiments

We then tested the PU performance of REPU, DLPU, and pUnet
on real-world InSAR data (Ronneberger et al., 2015). As REPUwas a

FIGURE 9
PU Error Analysis of REPU, DLPU, and PUnet with σ = 0.7. (A–D) is the PU result, PU error, PU surface and PU error surface of REPU, respectively.
(E–H) is the PU result, PU error, PU surface and PU error surface of DLPU, respectively. (I–L) is the PU result, PU error, PU surface and PU error surface of
PUnet, respectively. Above the subgraph in the first column is the quantization result corresponding to the subgraph.

FIGURE 10
PU Error Analysis of REPU, DLPU, and pUnet with σ = 0.7. From left to right: PU, PU error, surface of PU, and surface error of pU. Above the subgraph
in the first column is the quantization result corresponding to the subgraph.
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PU algorithm with a traditional cascaded framework, it was not able
to handle high-level noise despite the fact of its anti-noise ability.
Therefore, we used real-world InSAR data with lower noise to test
the three algorithms to avoid the additional error caused by the
introduction of a denoising algorithm. At the same time, considering
that the quantitative analysis results can reflect the performance of
the algorithms well, we finally chose to obtain real-world data from

TABLE 2 Average root means square error/average structural similarity (RMSE/
SSIM) between Ground truth and PU of REPU, DLPU, and pUnet under different
noise conditions and 2000 real-world samples.

RMSE/SSIM REPU DLPU PUnet

0.2620/0.9385 0.1200/0.9671 0.0481/0.9912

The bold values in Table represent the best experimental results in the corresponding row.

FIGURE 11
PU results of REPU, DLPU, and pUnet on four wrapped phases extracted from real-world InSAR data. From top to bottom: Wrapped phase, the
correct absolute phase (Ground truth), the PU of REPU, the PU of DLPU and the PU of PUnet. Above the subgraphs in the third to fifth rows are the
quantization results corresponding to the subgraphs.
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the digital elevation model (DEM) generated from the InSAR data
collected by the TerraSAR satellite. Specifically, we obtained the
absolute phase by removing the geocoding in the DEM. We
performed the wrap(•) operation on the absolute phase to
obtain the corresponding wrapped phase
(i.e., wrap(x) � mod(x + π, 2π) − π, where mod(•) is the
modulo operation). The above operations allowed us to obtain
absolute phase-wrapped phase sample pairs based on real-world
data. By segmenting and selecting the wrapped phases, we obtained a
total of 400 real-world data samples that could be used for testing. In
order to effectively test whether REPU, DLPU, and pUnet had good

anti-aliasing effect and were robust to real-world InSAR data
experiments, the conditions for selecting these 400 test samples
were that the density of interference fringes in the interferogram was
irregular or that they contained special terrain and/or objects.

Table 2 provided the PU results of REPU, DLPU, and pUnet on
the 400 real-world (128 × 128) InSAR data samples (shown in the
form of RMSE and SSIM). Figure 11 showed four wrapping phases
randomly selected from the 400 real-world InSAR samples and their
computation results by three algorithms. From Table 2 and
Figure 11, the PU results of REPU, DLPU, and pUnet were all
significantly effective in terms of detail preservation, where pUnet

FIGURE 12
Test samples from real-world InSAR data for error analysis. From left to right: Wrapped phase, Ground truth, and Surface of Ground truth.

FIGURE 13
PU Error Analysis of REPU, DLPU, and PUnet on test samples from real-world InSAR data. (A–D) is the PU result, PU error, PU surface and PU error
surface of REPU, respectively. (E–H) is the PU result, PU error, PU surface and PU error surface of DLPU, respectively. (I–L) is the PU result, PU error, PU
surface and PU error surface of PUnet, respectively. Above the subgraph in the first column is the quantization result corresponding to the subgraph.
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had a stable advantage in detail retention ability. REPU was not
sufficiently capable in discriminating the details of the wrapped
phase. Compared with the PU results of the three algorithms for
“Wrapped phase-3″, REPU lacked the ability to recognize and
reconstruct details (see the black boxes in the figure). From the
performance comparison of the algorithms, pUnet presented strong
stability when considering real-world InSAR data in terms of
the RMSE.

TABLE 3 Average root means square error/average structural similarity (RMSE/
SSIM) between Ground truth and PU of REPU, DLPU, and pUnet under different
noise conditions and 400 real-world samples.

RMSE/SSIM REPU DLPU PUnet

Coherence = 0.5 1.3155/0.5961 0.9248/0.8523 0.6017/0.9069

Coherence = 0.9 0.7726/0.8480 0.2571/0.9237 0.1152/0.9615

The bold values in Table represent the best experimental results in the corresponding row.

FIGURE 14
PU Error Analysis of REPU, DLPU, and PUnet on test samples from real-world InSAR data with Coherent noise (coherence = 0.5). (A–D) is the PU
result, PU error, PU surface and PU error surface of REPU, respectively. (E–H) is the PU result, PU error, PU surface and PU error surface of DLPU,
respectively. (I–L) is the PU result, PU error, PU surface and PU error surface of PUnet, respectively. Above the subgraph in the first column is the
quantization result corresponding to the subgraph.

FIGURE 15
PU Error Analysis of REPU, DLPU, and pUnet on test samples from real-world InSAR data with Coherent noise (coherence = 0.5). From left to right:
PU, PU error, surface of PU, and surface error of pU. Above the subgraph in the first column is the quantization result corresponding to the subgraph.
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Figure 12 showed a sample selected from real-world InSARdatawith
complex features. These data are prone to aliasing effect in the PU
process. We used this sample for specific error analysis of REPU, DLPU,
and PUnet. Combining the Ground truth in Figures 13A, D and
Figure 12, REPU slightly aliased and lost a lot of detail in the upper
half of the image (red part in Figure 13A). In contrast, from Figure 13H,
the errormargin of the PU result of DLPUwasmuch smaller than that of
REPU. However, comparing the Surfaces in Figure 13G; Figure 12, the
PU results of DLPU were over-fitted from the details in the black box.
Figure 13J–L indicated that pUnet only had a slight error in the overlap of

interference fringes, which are prone to aliasing effects. Furthermore, we
could infer the excellent ability of PUnet, in terms of detail preservation
by comparing the Ground truth and Surface in Figure 13I–K; Figure 12.

Table 3 showed the PU performance of REPU, DLPU and pUnet
on real world InSAR data with coherent noise. The PU result of REPU
was significantly affected by the coherent noise. The anti-noise ability of
DLPU and pUnet was still effective for coherent noise. As shown in
Figure 14 Figure 15, DLPU and pUnet were far better than REPU in
noise resistance. Regarding RMSE and SSIM, pUnet had stable
advantages over DLPU. The result of the experiment of coherent

FIGURE 16
PU experiments of DLPU and pUnet on real-world InSAR data collected by the European Remote Sensing Satellite (ERS): (A–C) Real-world wrapped
phases used for testing; (D–F) the PU results of DLPU; (G–I) the PU results of PUnet; (J–L) the surface of the PU result of DLPU; and (M–O) the surface of
the PU result of PUnet.
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noise has proved that pUnet had the function of removing coherent
noise in PU process, reflecting the robustness of PUnet.

Considering that DLPU and our proposed pUnet had
considerable anti-noise ability, we selected three InSAR images
(Figure 16A–C) collected by the European Remote Sensing
Satellite (ERS) and published by European Space Agency (ESA)
to conduct qualitative experiments on DLPU and PUnet. This test
posed a serious challenge to the anti-noise ability of DLPU and
pUnet because the selected images contained unknown noise and
the noise level was high. The selected images corresponded to the
area of Evaggelistria, Greece (from 38+18′30″N to 38+19′32″N and
from 23+01′15″E to 23+04′24″E).

Figure 16 presented the PU results of DLPU (σ = 0.7) and PUnet
(σ = 0.7) on the three InSAR images with unknown noise. Although
there was no ground truth as a benchmark, the significant difference
between the PU results of DLPU and pUnet can be found.
Comparing Figures 16D–F; Figures 16G–I, the PU results of
DLPU were missing a lot of detail. In areas with large elevation
differences, pUnet was much stronger than DLPU in terms of detail
retention which was demonstrated by the red areas in Figure 16D–I;
Figures 16G–I. Furthermore, the details in the black boxes in Figures
16J–L also demonstrated that the PU results of DLPU had many
errors in regions with large elevation differences. In addition, DLPU
seriously omitted topographic information contained in the
wrapped phase under the double interference of unknown noise
and irregular interference fringes. It could be demonstrated through
comparison of Figures 16K, N. In contrast, the curved surfaces of the
PU results of pUnet presented in Figures 16M–O are satisfactory,
demonstrating the strong anti-noise ability of PUnet.

4.5 Discussion on the efficiency of three
algorithms

Our experiments were performed on a graphics workstation
configured with an Intel Xeon Gold 5120T CPU and an NVIDIA
Tesla V100 GPU. The second row of Table 4 provided time required for
DLPU and pUnet to complete training on the same training set
(20,000 training samples). The third row of Table 4 showed the
average test time of REPU, DLPU, and pUnet for each test sample in
the simulated (2000 test samples) and real-world (400 test samples) data
experiments. DLPU was trained on an NVIDIA Tesla V100 GPU for a
training duration of 9 h (with PyTorch 1.4.0) with a total of 100 epochs
with a batch size of 32 and a learning rate of 0.005. There was not much
difference in training time between DLPU and pUnet on the same
training set, but pUnet presented a slight advantage. It may be that the
design concept of Inception (Szegedy et al., 2016) was applied in the
design of the encoder (decoder) of PUnet. As shown in Figure 2, we used
1 × 1 con-volution in the first branch to reduce the dimension of the

feature map, resulting in the decrease of the computational complexity.
On the other hand, thismulti branch parallel structurewasmore efficient
than the series structure of multi modules used in DLPU because the
parallel structure can play more effectively the performance of GPU to
improve the training efficiency. In the test time of a single sample, the
difference between the operation time of DLPU and pUnet was also
small. it is noted that the test time of DLPU and pUnet for a single test
sample was almost the same for the simulation and real-world data
experiments. The real-world data contained many special terrain types
and objects which were not found in the simulation test set indicating
that the test time of DLPU and pUnet was not significantly impacted
regardless of whether the test sample contained special terrain and
objects. This finding was also consistent with the principle of deep
regressionmethods. In addition, we applied the networkmodel whenwe
adopted a deep regression method to test the test samples. The feature
information of the model was obtained from training to perform
regression operations on the test samples and not directly related to
the features contained in the test samples. Both DLPU and pUnet
showed good PU results on the real-world data, whichmay further verify
that deep regression methods could extract more deep feature
information from many training samples. This information enabled
the network model to adapt and identify complex features in the test set
and eventually achieved good results in testing. At the same time, the
findings showed that there was a gap in the testing time of REPU for a
single test sample between the simulation and the real-world data. REPU
judged and learned the gradient information between each pixel in the
interferogram based on a probability model. Therefore, the presence of
special terrain and objects in the test sample may affect the test time of
REPU. This effect was more significant than that for DLPU and PUnet.

In general, the computational efficiency of REPU, DLPU, and pUnet
needs to be considered. When dealing with data with complex features,
the efficiency of REPUmay be significantly reduced; therefore, DLPU and
pUnet were significantly effective when processing large batches of data.

5 Conclusion

This study proposed PUnet, a simple, robust, and remarkably
efficient framework for PU of SAR interferometric images. It had a
good phase unwrapping effect on the noisy wrapped phase and could
effectively unwrap the clean wrapped phase. pUnet presented good
performance under different levels of interference and noise levels, both
in simulation experiments and experiments on real InSAR data. In
terms of quantitative results, the performance of pUnet in various
indicators was more stable than other algorithms used for comparison
(simulation experiments: noise-free phase unwrapping, RMSE= 0.0302,
SSIM = 0.9981; noise variance 0.32/2 phase unwrapping, RMSE =
0.0399, SSIM = 0.9806; noise variance 0.52/2 phase unwrapping,
RMSE = 0.0456, SSIM = 0.9715; noise variance 0.72/2 phase

TABLE 4 The training time of DLPU and pUnet in the simulation experiments, and the test time of REPU, DLPU, and pUnet in the simulation and real-world data
experiments.

Time REPU DLPU PUnet

Training time (hours) 9 8

Average test time for simulated/real-world data experiment (seconds) 1.5219/2.3518 0.0365/0.0377 0.0318/0.0325

The bold values in Table represent the best experimental results in the corresponding row.
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unwrapping, RMSE = 0.0671, SSIM = 0.9640; real-world InSAR data
phase unwrapping: RMSE = 0.0481, SSIM = 0.9912). Furthermore,
pUnet maintained advantageous detail preservation in the absolute
phase in the qualitative analysis. It is also noted that pUnet achieved
sufficient extraction of phase features when considering a simple
structure. Specifically, we proposed a phase unwrapping learning
block, which replaced the traditional convolutional layers.
Simultaneously, we only used the attention module to extract the
depth information of the high-dimensional feature maps instead of
using the attention module excessively, after completing all down-
sampling. This design could simplify the network structure and control
the computational cost of the network. Future study needs to focus on
developing a phase unwrapping function based on pUnet that can be
applied to interferometric phases in more complex environments.
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