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Soil oxides are important diagnostic indicators for soil quality assessment, and
their content has a positive effect on adsorption of heavy metals, remediation of
pollution, and enhancement of organic matter enrichment. Moreover, soil oxides
are affected bymultiple environmental factors such as soil pH, geomorphological,
and elevation, and their distribution is highly regional. In this study, 421 ground soil
samples and 2 hyperspectral satellite data were collected. The content distribution
of 8 main oxides in soil, including SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, and
Corg. were obtained according to the process of data preprocessing, spectral
transformation, feature extraction, band combination, and model establishment.
The results indicated that the homogenization spectral transformation method is
the most suitable; The calculation accuracy of complex spectral characteristic
parameters is inferior to that of characteristic bands; The differencemodel is more
suitable for the extraction of soil oxide content in this study area; The average
content of SiO2 and CaO shows a decreasing trend with the elevation increasing;
The average content of SiO2 and Fe2O3 shows an upward trend with the increase
of slope; East is the main geomorphic direction of soil oxide enrichment. SiO2,
Al2O3, and MgO are the three soil oxides with the highest correlation. The
response relationship between soil oxides, topography and pH is discussed,
and the distribution rule of soil oxides and environmental determinants are
obtained, which provides a set of technical schemes for digital soil research.
This study can extract the content of soil components in a large area, analyze the
causes, and provide a new technical scheme for soil investigation and treatment.
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1 Introduction

Soil oxides are an crucial materials of soil formed by weathering
of rocks, forming the nutrients required for plant growth and food
production (Richter et al., 2009). Therefore, the content of soil
oxides is a key diagnostic indicator in the soil rating and
classification systems of various countries (Shi X. et al., 2014;
Mezned et al., 2018; Marghany, 2021; Sahwan et al., 2021).
Research shows that, firstly, oxides in soil can hold certain
substances. Iron aluminum oxides can adsorb organic carbon (Qi
et al., 2021) and precipitate organic carbon (Xu et al., 2022). The
stability of soil aggregate water is gradually enhanced with the
increase of Al, Fe, Mn oxide content (Allegretta et al., 2022). It
can also regulate the content of organic matter, nitrogen cycle, and
other nutrients in soil effectively (Gu et al., 2019). Secondly, oxides
in soil can repair heavy metal pollution. Iron manganese oxide will
have oxidation-reduction effect with arsenic, reducing the degree of
heavy metal pollution (Wan et al., 2021; Zhao et al., 2022). Soil
oxides are also key material for remediation of antibiotic
contamination in soil (Zhao et al., 2019). Iron oxides and their
precursors have been widely used in in-situ remediation of heavy
metal contaminated soil (Huang et al., 2021). Manganese oxide is an
fatal active component of soil minerals, which can strengthen the
remediation of pyrene contaminated soil (Rathod et al., 2016).
Thirdly, oxides in soil are indicators of many physical and
chemical parameters. Adding iron oxides can counteract the
adverse effects of hydrothermal carbon on soil physical and
chemical properties (Zhao et al., 2022). Amorphous aluminum
oxides inhibit the decomposition of soil organic matter through
adsorption and inhibition of microbial activity (Zhao et al., 2019),
and soil texture can be evaluated based on soil oxide data (Richter
et al., 2009).

In addition, the environmental factors closely related to the
distribution of soil oxides are also significant reference information
for analyzing soil composition. The research indicates that the micro
terrain shaping caused by rainfall intensity has a direct impact on the
soil moisture of the soil slope (P et al., 2022). The content of total
arsenic in soil will gradually increase with the decrease of elevation
and slope and the content of heavy metals in soil will increase under
a certain range of elevation and slope (Saidi et al., 2022). Iron oxide
was formed by aging of soil iron crystals, and the content of iron
oxide increased with the increase of soil depth (Mendes et al., 2022).
Manganese oxide is mainly affected by soil pH, and the content of
manganese oxide increases with the increase of pH. The trend of soil
silicon oxide and aluminum oxide is opposite, and their contents
decrease with the increase of pH (Zabcic et al., 2014).

In view of this, the remote sensing technology is introduced into
the extraction of soil components to give full play to its advantages of
non-contact, nondestructive, large-area extraction, etc., in order to
extract the soil oxide components, in order to extract the soil oxide
content (Marghany, 2022b). The traditional method is to design a
kilometer grid, organize manpower to take samples, and send them
to professional laboratories for laboratory analysis (Rathod et al.,
2016). Remote sensing technology has technical advantages in the
identification, inversion, supervision, and risk assessment of soil
composition (Kusuma et al., 2012; Shi X. et al., 2014; Rathod et al.,
2016). Accurate extraction of iron oxide (Liu and Sun, 2019), water
content (Cudahy et al., 2010), and heavy metal (Ding et al., 2022) has

been achieved through the process of characteristic bands selection
(Pessoa et al., 2016), building remote sensing reflectance index (Shi
X.-Z. et al., 2014), establishing calculation model (Mendes et al.,
2022), conducting band combination (Sellitto et al., 2009), content
prediction (Li, 2020), etc. The reflectance variation of soil oxides can
be obtained based on the combination of hyperspectral satellite and
ground spectral data (Sahwan et al., 2021). The reflectivity of
350–570 nm band decreases, and the reflectivity of 570–2,500 nm
band increases with the increase of iron oxide content (Xu et al.,
2022). In terms of algorithm, both conventional regression
algorithm (Lin et al., 2013; Steinberg et al., 2016; McLennan
et al., 2017) and machine learning algorithm (Huang et al., 2021;
Mendes et al., 2022; Saidi et al., 2022; Xu et al., 2022) have achieved
good accuracy in soil oxide extraction. The response relationship
between oxides and environment was explored in order to improve
the applicability of spectral extraction of soil oxides. pH and soil
oxides can undergo dissimilatory reduction reaction (Heller
Pearlshtien and Ben-Dor, 2020), improving the absorption of soil
silicon source (Rathod et al., 2016), regulate soil activity (Heller

FIGURE 1
Basic information of the study area. (A) Study area and the
geographical distribution of sampling sites; (B)Geographic location of
the study area; (C) Located the sampling points by hand-held GPS, and
the center of the crosshair is the geographic coordinate of the
sampling sites. Then take soil for in-situ analysis in the region
within 1 m.
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Pearlshtien and Ben-Dor, 2020), and participate in the nitrogen
cycle (Dong et al., 2011). A series of new application achievements
have been made in the prediction of heavy metal content in soil
(Zabcic et al., 2014; Huang et al., 2021; Bouzidi et al., 2022; Tobi
et al., 2022), extraction of organic matter content (Qi et al., 2021),
and formulation of soil remediation plan (Velicogna et al., 2021) by
analyzing the mechanism of pH according to these phenomena.

Fenghuang County, which is representative of soil composition
and environment, was selected as the study area. spectral
transformation, feature extraction, band combination and other
algorithms were studied, and the extraction results of eight soil
oxide components were obtained supported by hyperspectral
satellite data and 421 ground sampling point data. The response
relationship between soil oxides, topography, and pH is discussed,
and the distribution rule of soil oxides and environmental
determinants are obtained, which provides a set of technical
schemes for digital soil research (Bouzidi et al., 2022). It is of
great significance for the innovative application of remote sensing
technology, especially hyperspectral technology in the field of soil
investigation and resource exploration (Gu et al., 2019; Sahwan et al.,
2021).

2 Materials and methods

2.1 The study area

Fenghuang County, Xiangxi Tujia and Miao Autonomous
Prefecture, Hunan Province, China is selected as the study area
(109°18′E~109°48′E, 27°44′N~28°19′N). Fenghuang County is
located in the hinterland of Wuling Mountains, 66 km long from
north to south, 50 kmwide from east to west, with a total land area of
1745 km2. The area of cultivated land is 343 km2, including 258 km2

of paddy field and 85 km2 of dry land. The altitude of the study area
is 169–1059 m. The valley and hilly area in the east and southeast
corner are the first step (Huang et al., 2021), the middle area from
northeast to southwest is the second step, and the middle mountain
area in the northwest is the third step (Figure 1). The surface
material is mainly red rock with some limestone and face rock.
The land is mainly planted with rice, oil crops, medicinal materials,
tea, citrus, and kiwi (Figure 1).

2.2 Data collation

Soil samples were collected from the farmland at an equal
distance interval of 2 km (Laukamp, 2022). Take 0–20 cm of
topsoil, collect 5 sub samples in equal amount, take 1000 g as the
final sample after complete mixing, put it into a sealed polyethylene
bag, and the sealed polyethylene bag shall be put into a cloth bag (Liu
and Sun, 2019). After being ground, it passes through 150 μm nylon
screens, attached with the unique barcode and longitude and latitude
information, bagged for testing, and a total of 421 valid sample
points are obtained (Leroi et al., 2008; McLennan et al., 2017).
421 samples were divided into 295 samples in the modeling set and
126 samples in the validation set at a ratio of 7:3.

Sorted and standardized after the soil samples are numbered,
they are sent to Wuhan Mineral Resources Supervision and

Testing Center of the Ministry of Land and Resources for
testing. The content of 8 kinds of soil main oxides, such as
SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, and Corg., were
obtained (Rathod et al., 2016; Bouzidi et al., 2022; Laukamp,
2022). Among them, SiO2, Al2O3, Fe2O3, and K2O are detected by
Axios wavelength dispersive X-ray fluorescence spectrometer
according to Supporting Methods for Regional Geochemical
Analysis Part 3: Determination of 24 Elements including
Silicon by X-ray Fluorescence Spectrometry (standard number:
WHCS-FF-CS/03-2019) (Mendes et al., 2022); MgO, CaO, and
Na2O are detected by ICAP 7400 Inductively Coupled Plasma
Spectrometer according to Supporting Methods for Regional
Geochemical Analysis Part 2: Determination of 20 Elements
including Barium by Inductively Coupled Plasma Atomic
Emission Spectrometry (standard number: WHCS-FF-CS/02-
2019) (Shi X. et al., 2014); Corg. was tested according to
Supporting Methods for Regional Geochemical Analysis Part
18 Determination of Organic Carbon by potassium
dichromate Volumetric Method (standard No.: WHCS-FF-CS/
18-2019) (Qi et al., 2021). The content of 8 soil oxides basically
follows the normal distribution law (Table 1).

2.3 Hyperspectral data acquisition and
processing

The selected Orbiter satellite OHS sensor is used for data
acquisition (Steinberg et al., 2016; Ding et al., 2022). Push scan
imaging mode is adopted, with single imaging of 150 km × 400 km,
with a spatial resolution of 10 m, and a spectral resolution of 2.5 nm.
The hyperspectral data of 32 wavebands can be obtained in the range
of 400–1000 nm. The date of data acquisition is 13 September 2022,
and the data of the two sceneries covers 96% of the administrative
area of Fenghuang County (Figure 2).

2.4 Methods

1) Spectral transformation algorithm

The reflectance data are transformed into four types, logarithm,
exponent, first-order differential, and spectral homogenization in
order to highlight the soil oxide information contained in the
spectral value (Ben-Dor et al., 2006). The logarithm of reflectivity
will not change the relative relationship of the data, which can help
stabilize the variance, so that the reflectivity is always dispersed in a
manner close to the normal distribution, and the logarithmic
reflectivity distribution is independent of the mean value
(Steinberg et al., 2016; Gopinathan et al., 2022). Since the
reflectivity is between 0 and 1, the absolute value is generally
taken for ease of calculation (Huang et al., 2021). The calculation
formula is:

Ri LN � Ln Ri( )| | (1)
Where, Ri LN is the reflectivity of the ith band after logarithmic

transformation; Ri is the original reflectivity; i is the band number.
Exponential change can map data with low reflectivity to a wider
range, and data with high reflectivity to a narrower distribution
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range, improving the characteristics of spectral data (Pessoa et al.,
2016). The formula for calculating is:

RiEX � eRi (2)
Where, RiEX is the reflectivity of the ith band after exponential

transformation; Ri is the original reflectivity; i is the band number.
First order differentiation can significantly improve the position of
spectral distortion, amplify the characteristics of reflection peaks
and absorption valleys, and facilitate the establishment of models
(Shi X.-Z. et al., 2014). The calculation formula is:

RiFD � Ri+1 − Ri−1
2 × Bi+1 − Bi−1( ) (3)

Where, RiFD The first order differential is the reflectivity of the
ith band after the first order differential transformation; Ri+1 and
Ri−1 is the reflectivity of two bands adjacent to the ith band; Bi+1 and
Bi−1 is the wavelengths of two bands adjacent to the ith band; i is the
band number. Solving homogenization can significantly remove this
multiplicative error and improve the comparability of reflectivity for
spectral data with systematic noise in reflectivity (Steinberg et al.,
2016). The calculation formula is:

RiHM � Ri

Ri

(4)

Where, RiHM is the reflectance of the ith band after spectral
homogenization transformation; Ri is the original reflectivity; Ri is
the average reflectivity; i is the band number.

2) Spectral feature algorithm

Five spectral characteristics are solved for the original
reflectivity and the transformed reflectivity, spectral integral,
absorption depth, absorption width, dispersion coefficient, and
spectral variance (Leroi et al., 2008; Shi X. et al., 2014; Demattê
et al., 2015; Laukamp, 2022). Spectral integration expresses the
overall trend of reflectivity within the wavelength range by
calculating the sum of reflectivity within the wavelength range.
The calculation formula is:

FSI � ∫k

j
Ridi (5)

Where, FSI is the spectral integral value from the jth band to the
kth band; Ri is the original reflectivity; i is the band number; j and k
are the starting and ending band numbers of the characteristic
band, respectively. The absorption depth reflects the spectral
contribution of the absorbed material in the soil (Dong et al.,
2011). Here, the extreme value range is used to express the
absorption depth. The calculation formula is:

FAD � Rmax j, k( ) − Rmin j, k( ) (6)
Where, FAD is the absorption depth value from the jth band

to the kth band; Rmax(j, k) is the extremely high reflectivity
within the wavelength range; Rmin(j, k) is the extremely low
value of reflectivity within the wavelength range. The
absorption width is based on the calculation of the
absorption depth, and the wavelength of the characteristic
position is calculated, which reflects the wavelength shift
effect of the element acting at a specific position (Zhang
et al., 2022). The calculation formula is:

FAW � k − j

FAD
(7)

Where, FAW and FAD are the absorption width and the
absorption depth from the jth band to the kth band respectively;
j and k are the starting and ending band numbers of the
characteristic band, respectively.

TABLE 1 Content of soil oxide in samples.

Number Value SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O Corg

1 Minimum 57.11 9.91 2.97 0.66 0.12 0.10 1.65 0.74

2 Maximum 77.92 18.52 7.56 4.59 5.58 0.96 5.78 3.29

3 Average 69.14 13.62 4.73 1.37 0.66 0.36 3.17 1.59

4 Standard deviation 3.57 1.39 0.78 0.39 0.70 0.18 0.79 0.41

Note: The unit is g kg-1.

FIGURE 2
OHS hyperspectral satellite data observation.
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3) Band combination algorithm

Spectral characteristic values are obtained, and mathematical
models of soil oxide content, pH and spectral characteristic values
are established on the basis of spectral transformation and spectral
feature extraction (Zabcic et al., 2014). Three band combination
algorithms including band difference, band ratio, and band
difference and ratio are selected for content inversion and
accuracy evaluation in order to facilitate the understanding and
understandability of the model (Kusuma et al., 2012; Li, 2020). The
band difference model can remove the interference information and
obtain the spectral characteristic variable closest to the content
(Sahwan et al., 2021). The calculation formula is:

y � a F1 − F2( ) + b (8)
Where, y is the inversion value of the oxide content in the soil;

a and b are model coefficients; F1 is the characteristic variable
most related to the content; F2 is the characteristic variable least
related to the content. The band ratio model plays a more
significant role in amplifying favorable features and
suppressing unfavorable features (Ben-Dor et al., 2006;
Steinberg et al., 2016). It can further remove the multiplicative
error between features and improve the inversion accuracy of the
model on the basis of enhancing spectral features (Cudahy et al.,
2010). The calculation formula is:

y � a
F1

F2
( ) + b (9)

Where, y is the inversion value of the oxide content in the soil; a
and b are model coefficients; F1 and F2 are an arbitrary combination
with two spectral characteristic variables. The band difference and
ratio are the most classical spectral content calculation models,
which can both amplify spectral characteristics and remove certain
systematic errors (Gu et al., 2019). They have the advantages of the
above two models. The calculation formula is:

y � a
F1

F2
( ) + b (10)

Where, y is the inversion value of the oxide content in the soil; a
and b are model coefficients; F1 and F2 are an arbitrary combination
with two spectral characteristic variables.

4) Precision evaluation method

The determination coefficientR2 and rootmean square error RMSE
were selected to evaluate the accuracy of the model (Zhang et al., 2023).
R2 reflects the accuracy of model fitting data and represents the
proportion of variance explained by the model. The range is 0–1.
The closer to 1, the stronger the ability of equation variables to interpret
y, and the more suitable the model is for the data. On the contrary, the
closer to 0, the worse themodel fitting (Zhang et al., 2022). For example,
R2 = 0.7 means that the model explains 70% of the uncertainty, and the
model is acceptable. The R2 coefficient calculation formula is:

R2 � 1 − ∑n
i�1 yi − ŷi( )2∑n
i�1 yi − �y( )2 (11)

Where, n is the sample size; yi is the measured value of sample
point i content; ŷi is the content prediction value of the ith sample
point by spectral method; �y is the average value of the measured
value of the sample. RMSE is the root mean square error in the same
unit as the true value, ranging from 0 to infinity. RMSE = 1 means
that the average difference between the predicted value and the
actual value is 1 (Dai et al., 2022). When the expected value of the
current period is completely consistent with the actual value, it is
equal to 0, that is, the perfect model; The greater the error, the
greater the RMSE value, and the worse the model. The calculation
formula is:

RMSE �
														
1
n
∑n

i�1 yi − ŷi( )2√
(12)

Where, n is the number of sample points; yi is the measured
value of the content of the ith sample point; ŷi is the predicted value
of the content of the ith sample point.

3 Results

3.1 Inversion model and accuracy evaluation

The inversion model accuracy of 8 soil components was
calculated under different spectral transformation and band
combination algorithms. The relatively optimal spectral model
was selected based on the determination coefficient and root
mean square error (Li N. et al., 2022). In general, the root mean
square error of the model with high determination coefficient is low
(Zhang et al., 2022). The two calculation results show obvious
negative correlation effect, which facilitates the selection of
optimal model (Figure 3).

The results indicate that (Table 2), 1) The extraction accuracy of
SiO2, Fe2O3, MgO, and Na2O is higher after spectral
homogenization. The accuracy of the model is higher after the
first order differential treatment of CaO. K2O and Corg. also
improved the accuracy of the model after exponential and
logarithmic processing. Al2O3 can be directly modeled by the
original spectrum; 2) Although spectral integral, absorption
depth, absorption width, dispersion coefficient, spectral variance,
and other characteristic variables have been solved, only the content
of MgO and Corg. was calculated, and satisfactory results were
obtained with such complex spectral characteristics. The other seven
soil component characteristic parameters with higher accuracy are
the reflectivity or reflectance conversion value of the specified
wavelength (Richter et al., 2009; Brossard et al., 2016); 3) Among
the 8 extraction models of soil components, 3 models with higher
relative accuracy used ratio models, 4 models used difference
models, and only 1 model used difference and ratio models. The
result indicated that the difference model is more suitable for the
extraction of soil oxide content in this study area (Saidi et al., 2022);
4) In terms of the extraction accuracy of the model, the
determination coefficients of SiO2, Fe2O3, CaO and Corg. exceed
0.80. The root mean square error is mainly related to the data
dispersion of the sample points (Shi X. et al., 2014). The larger the
standard deviation is, the larger the root mean square error of the
model is (Zhang et al., 2022).
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FIGURE 3
Inversion accuracy of 8 soil components.

TABLE 2 Relative optimal model of soil nine components.

Number Component Spectral
transformation

Spectral
characteristics

Band combination Model R2 RMSE

1 SiO2 Homogenization 940 nm,480 nm Ratio y = −8.931 x + 85.68 0.85 3.29

2 Al2O3 Original spectrum 940 nm,480 nm Ratio y = 3.332 x + 7.44 0.77 1.27

3 Fe2O3 Homogenization 910 nm,716 nm Difference y = 1.475 x + 1.986 0.81 0.75

4 MgO Homogenization 730nm, Spectral integration Ratio y = 0.6512 x + 0.1843 0.74 0.37

5 CaO First order differential 610 nm,536 nm Difference y = −686.6 x + 0.193 0.89 0.69

6 Na2O Homogenization 820 nm,880 nm Difference y = −0.3928 x + 0.3666 0.74 0.17

7 K2O Exponent 730 nm,896 nm Difference y = −18.34 x + 1.997 0.78 0.77

8 Corg Logarithm 480nm, Absorption depth Difference and ratio y = −1.228 x + 4.65 0.85 0.39
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3.1.1 Content distribution
According to the above model, calculate the content values

of 9 soil components in the study area (Figure 4). The content of
SiO2 in Fenghuang County is between 20.09 and 161.20 g kg-1,
with an average content of 69.24 g kg-1. The distribution is low
in the northwest and high in the southeast; The content of Al2O3

ranges from 0.27 g kg-1–51.87 g kg-1, with an average content of
13.57 g kg-1. The distribution of Al2O3 is high in the northwest

and gradually decreases toward the southeast; The content of
Fe2O3 is between 1.813 and 13.29 g kg-1, with an average
content of 3.18 g kg-1. The content in other areas is
relatively uniform except for the high content in the
northern mountain areas; The content of MgO ranges from
0.55 to 8.87 g kg-1, with an average content of 1.38 g kg-1. The
content of MgO is high in the northwest. Other areas are closely
related to the distribution of water systems and river valleys

FIGURE 4
Mapping results of 8 soil components.
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(Poppiel et al., 2020); The content of CaO is lower than 5.29 g
kg-1, and the average content is 0.45 g kg-1, which is evenly
distributed in the whole study area. There is no obvious regional
characteristics, and the content is generally low; The content of
Na2O ranges from 0.07 to 0.62 g kg-1, with an average content of
0.36 g kg-1, showing a zonal distribution to solve the north-
south trend, forming a very distinctive distribution zone; K2O
content ranges from 0.10 g kg-1–51.62 g kg-1, with an average
content of 3.16 g kg-1. The content is low in areas with dense
population activities and water systems, while the content in
forest and farmland areas is high (Zabcic et al., 2014); The
content of Corg. is 0.23–3.22 g kg-1, with an average content of
1.60 g kg-1. It is obviously low in urban areas, but high in
mountain and forest areas (Richter et al., 2009).

4 Discussion

4.1 Response relationship between soil
oxide content and geomorphological

Elevation (Cudahy et al., 2010), slope (Saidi et al., 2022), and
aspect (Leone, 2000) are selected as the potential environmental
determinants of soil oxide content relationship since the study
area presents typical three-level height difference
characteristics, and the response relationship between each
soil oxide and the surrounding environment is explored
(Zhang et al., 2023). The elevation of the remote sensing
image is the vertical height of each pixel from the datum
plane. The elevation of the study area is divided into six
grades. The relationship between the content and elevation is
studied by counting the content of soil oxides in each elevation
difference range (Figures 5A). The gradient of the surface unit
reflects the severity of the terrain change (Shi X. et al., 2014).
The gradient is divided into 9 grades according to the unequal
distance by the actual situation of the study area (Ben-Dor et al.,
2006). Explore the relationship between slope and soil oxides.
Slope mainly affects rainfall scouring, which is valuable for
studying potential catchment (Figures 5B). Slope aspect refers

to the direction that the slope faces, that is, the direction of the
slope (Pessoa et al., 2016). The slope aspect is divided into
9 categories. The soil composition may have a certain
occurrence relationship with the slope aspect Due to the
combined effect of earth rotation and sunlight (Figures 5C).

The results indicate that (Table 3): 1) The average content of
SiO2 and CaO decreased significantly as the elevation increased;
while the average content of Al2O3, Fe2O3, MgO, and Corg.
showed an obvious upward trend (Mendes et al., 2022; Tobi
et al., 2022); There is no clear linear relationship between the
average content of Na2O and K2O and the elevation, and the
maximum value occurs in the lower elevation range (Poppiel
et al., 2020; Qi et al., 2021). 2) In terms of the relationship
between soil oxide content and slope, the average content of
SiO2 and Fe2O3 shows an obvious upward trend with the
increase of slope; The average content of Al2O3 decreased
firstly and then increased; The average contents of MgO,
Na2O, K2O, and Corg. are almost not affected by the slope;
The average content of CaO shows a decreasing trend
(McLennan et al., 2017). 3) In terms of the relationship
between soil oxide content and slope aspect, the average
content of SiO2 is relatively highest in the northwest
direction, reaching 69.66 g kg-1; The relative highest average
content of Al2O3 is due east, reaching 13.71 g kg-1; The relative
highest average content of Fe2O3 is due north, reaching 3.20 g
kg-1; The relative highest average content of MgO is due east,
reaching 1.41 g kg-1; The average content of CaO is relatively
highest in the direction of due east and southeast, both 0.69 g
kg-1 (Shi X.-Z. et al., 2014); The relatively highest average
content of Na2O is also in the direction of due east and
southeast, reaching 0.37 g kg-1; The relative highest average
content of K2O is also in the direction of due east and southeast,
reaching 3.19 g kg-1; The average content of Corg. has no clear
directivity, and the content is almost 1.60 g kg-1. To sum up,
5 kinds have the highest average content in the direction of due
east, 1 kind of northwest, 1 kind of due north, and 1 kind of non-
directivity among the 8 kinds of soil oxides, indicating that the
due east direction of the study area is the main geomorphic
direction of soil oxide enrichment (Sellitto et al., 2009).

FIGURE 5
Geomorphological of the study area.
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4.2 Response relationship between soil
oxide content and pH

The pH distribution map of the study area was extracted in
order to explore the action mechanism of the above soil oxides
on soil pH (Zabcic et al., 2014) (Figure 6). The pH value ranges
from 3.35 to 13.83, with an average value of 6.22, and the soil is
slightly acidic. It is also found that the distribution of soil pH is
related to many factors such as landform (McLennan et al.,
2017), human activities (Li, 2020), and river courses (Kusuma
et al., 2012).

The covariance of the calculated results of 8 soil oxide
contents and pH values is divided by the standard deviation
to obtain the correlation coefficients of the above 8 calculated
results, that is, the special covariance after standardization in
order to master the relationship between soil pH and oxides
(Zhang et al., 2023). The correlation coefficient is between ±1,
which reflects the correlation of various components since the
range of covariance ranges from positive infinity to negative

TABLE 3 Soil oxide content under different geomorphological.

Geomorphological Grade SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O Corg

Elevation (m) <200 71.57 12.70 3.03 1.21 0.71 0.38 3.12 1.48

200–400 70.25 13.20 3.14 1.27 0.66 0.37 3.44 1.41

400–600 69.76 13.38 3.23 1.38 0.67 0.37 3.15 1.52

600–800 68.52 13.84 3.29 1.45 0.67 0.36 3.27 1.53

800–1,000 67.13 14.35 3.35 1.55 0.68 0.35 3.12 1.72

>1,000 65.87 14.83 3.67 1.70 0.67 0.37 3.24 1.77

Slope (°) 0.00–5.54 69.18 13.60 3.13 1.39 0.69 0.36 3.13 1.59

5.54–9.91 69.11 13.62 3.17 1.39 0.68 0.36 3.16 1.60

9.91–14.29 69.19 13.59 3.18 1.39 0.68 0.36 3.17 1.59

14.30–18.66 69.32 13.54 3.20 1.38 0.67 0.36 3.18 1.59

18.67–23.32 69.41 13.51 3.21 1.37 0.67 0.36 3.18 1.60

23.33–28.57 69.49 13.48 3.22 1.37 0.66 0.36 3.18 1.60

28.58–34.99 69.46 13.49 3.24 1.37 0.65 0.36 3.17 1.61

35.00–43.73 69.21 13.58 3.28 1.39 0.64 0.36 3.18 1.62

43.74–74.35 68.81 13.73 3.31 1.41 0.62 0.36 3.17 1.64

Aspect Flat 69.40 13.51 3.15 1.37 0.68 0.36 3.13 1.59

Due north 69.38 13.52 3.20 1.37 0.67 0.36 3.16 1.60

North east 69.05 13.64 3.18 1.40 0.68 0.36 3.18 1.60

Due east 68.87 13.71 3.18 1.41 0.69 0.37 3.19 1.60

South east 68.96 13.68 3.18 1.40 0.69 0.37 3.19 1.59

Due south 69.16 13.60 3.18 1.39 0.68 0.36 3.16 1.59

South west 69.37 13.52 3.17 1.37 0.67 0.36 3.14 1.60

Due west 69.58 13.44 3.17 1.36 0.66 0.36 3.13 1.60

North west 69.66 13.41 3.19 1.35 0.66 0.36 3.14 1.60

All contents in the table are mean contents, in g kg-1.

FIGURE 6
pH distribution map of study area.
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infinity (Li X. et al., 2022) (Figure 7). The results indicated that,
1) the most closely related component to soil pH was Fe2O3, with
a positive correlation coefficient of 0.49. The correlation
coefficients of other soil oxides were lower than the absolute
value of 0.40; 2) In terms of correlation of eight soil oxides, the
negative correlation between SiO2 and Al2O3 reached 0.91, the
negative correlation between SiO2 and MgO reached 0.91, and
the positive correlation between Al2O3 and MgO reached 0.95,
making them the three soil oxides with the highest correlation; 3)
The soil oxides closely related to the content of Corg. are SiO2,
Al2O3 and MgO, and their absolute correlation coefficients
exceed 0.50, indicating the occurrence form of soil carbon
element, which exists in the form of combination with silicate;
4) The correlation coefficients of CaO, Na2O, K2O and other soil
oxides are very low, especially CaO compared with other soil
oxides. All the correlation coefficients are close to 0, indicating
that these soil oxides are highly independent, and the content is
independent of other soil oxides (Richter et al., 2009; Shi X. et al.,
2014; Sahwan et al., 2021; Saidi et al., 2022).

5 Conclusion

In this paper, by measuring the content of 8 main oxides in
421 soil samples and the corresponding soil pH value (Zabcic
et al., 2014), with the support of hyperspectral satellite data
(Steinberg et al., 2016; Poppiel et al., 2020), four spectral
transformation methods (Gu et al., 2019; Huang et al., 2021;
Zhao et al., 2022), five spectral feature extraction algorithms
(Heller Pearlshtien and Ben-Dor, 2020; Huang et al., 2021), and
three spectral band combination methods (Ben-Dor et al., 2006;
Li, 2020) were studied to extract the content information in the
whole region. A comprehensive technical method system suitable
for satellite hyperspectral soil composition retrieval was
established, and the quantitative extraction of key soil
components was realized (Leone, 2000; Rathod et al., 2016).
The accuracy of the model is verified, and the method is
proved to be efficient and reliable taking the determination
coefficient R2 and root mean square error RMSE as indicators
(Mezned et al., 2018). It saves time, labor and labor, and has a

high economy compared with the traditional assay and
interpolation methods (Marghany, 2021).

The research proves that different soil oxides have different
applicable spectral transformation, spectral characteristics and
band combination methods, so separate modeling is required.
The content of soil oxides in the whole area was calculated on this
basis, and the distribution law was obtained according to the
distribution law (Zhang et al., 2023). The elevation, slope, aspect,
and pH value are selected to deduce the relationship between soil
oxide content and the environment in order to further grasp the
determining factors of content distribution, and the extent to
which each soil component is affected by the environment and
whether it determines the soil acidity and alkalinity are
concluded (Zhao et al., 2019). The above achievements
confirm the previous conclusions on soil composition (Dong
et al., 2011), acidity and alkalinity (Zabcic et al., 2014),
remediation (Li, 2020), water and soil loss (Lin et al., 2013),
and content reduction mechanism (Mendes et al., 2022), and play
a good demonstration role in the further application of new
technologies in this field (Zhao et al., 2019; Marghany M., 2022).
In a word, with the gradual promotion of satellite hyperspectral
data, research in related fields will become one of the mainstream
directions of digital soil research for a long time in the future.
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