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Wildfire events in southwestern China resulted in catastrophic loss of property and
human life, and the localized wildfire risks show differentiated trends under global
warming scenarios. In the case of quantitating climate impacts and localizing
wildfire risks, synthesized assessments of wildfire risks of high-incident areas in
southwestern China are established and mapped in this article, constituted by
three essential elements: hazard, vulnerability, and disaster prevention/mitigation
capacity. The hazard group includes vegetation ignitability and fire spreading
related to climate and topography factors. Public and economic characteristic
elements belong to the vulnerability and disaster prevention/mitigation capacity
group based on their functions and influences on wildfire events. Each aspect and
group are rated by the historical wildfire site records and weighted by the entropy
weight method and analytic hierarchy process. Assessments indicate that most
very high wildfire risk girds are distributed in the west of 103°E and the north of
28°N, covering an area of over 26,500 km2, mainly in low-altitude suburban
regions in basins and valleys with high climate hazards. The highly localized
wildfire risk maps specified both stresses of fire prevention/mitigation in each
grid cell and general spatial patterns of wildfire risks, thereby enhancing the
understanding of both current and future patterns of wildfire risks and thus
helping improve suppression and prevention policies.
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1 Introduction

Under the background of global warming, exposure to wildfire is a growing public
health concern worldwide (Flannigan and Harrington, 1988; Flannigan et al., 2000;
Ozturk et al., 2010; Diffenbaugh et al., 2017; Hallema et al., 2018; AghaKouchak et al.,
2020). In southwestern China, frequency, severity, and extent of wildfire events have
increased with the warming and drying trends over this region (Sun et al., 2014). The
population growth and expansion of inhabited areas also amplify the risks and
vulnerabilities to wildfires (Jolly et al., 2015; Gong et al., 2019a; Artés et al., 2019;
Gong et al., 2019b). During 2004–2020, the total burnt areas in the high-wildfire
frequency region of southwestern China increased at a rate of nearly 2 km2 per year
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(Wang et al., 2018), while the annual period of wildfire, referred
to as “fire weather season,” extends, with an earlier beginning
date and a delayed ending date of wildfire events. Growing risks
and vulnerabilities to wildfire result in unprecedented damage
and public health problems in both the southwestern region and
the whole of China.

Recent evidence suggests that the critical inducing factors of
wildfires in southwestern China aim to increase disaster risks
under a changing climate (IPCC, 2012; Ma, 2020; Zhao et al.,
2021). As the most variable and most prominent drivers of
regional wildfires, warmer and dryer weather conditions have
led to more severe fires in recent years (Petoukhov et al., 2018;
Ball et al., 2021). Since the 1970s, the temperature in
southwestern China has been rising at the rate of 0.1°C–0.3°C
per decade, and high-latitude areas have become warmer.
Precipitation reduces at the rate of 9.4 mm per decade, with
an increase in maximum continuous rain-free days, and related
humidity decreases at the rate of 0.4% per decade, especially after
2010 (Ma, 2020; Zhao et al., 2021; Zhao et al., 2022). The increase
in the number of climate extremes, like heat waves and aridity,
also affect wildfire frequency and severity (Gao et al., 2017; Taufik
et al., 2017; Wu et al., 2017).

Risk mappings are effective ways to manage natural disaster
risks (Jaiswal et al., 2002; Pan et al., 2016; Pickell et al., 2017; Shi
and Touge, 2022). Extensive research has shown that wildfire risk
mappings can point out locations where a fire is likely to start and
locations which enable easy fire spreading, thereby providing
precise assessments of wildfire disasters and decisions on
solution methods (Goetz et al., 2006; McKenney et al., 2008;
Hijmans et al., 2010). Previous research on wildfire risk mapping
mainly focuses on topography and vegetation factors (Bessie and
Johnson, 1995; Jaiswal et al., 2002; Gralewicz et al., 2012; Collins
et al., 2013; Salaheddine et al., 2017) but does not consider
climate factors, especially spatial patterns of climate indices, in
much detail.

The specific objective of this study is to provide a comprehensive
and strict wildfire risk mapping in the areas with exceptionally high
wildfire rates in southwestern China. The basic theoretical
framework of risk assessment applied in this manuscript follows
the natural disaster risk-based zonation method. The analysis of
wildfire hazard refers to the probability distribution assessment of
natural characteristics of the wildfire-formative environment and
inducing factors, and vulnerability refers to the likelihood and
severity of wildfire damage (Flannigan et al., 2000). Prevention/
mitigation capacities represent the ability to avoid and mitigate
possible wildfire damage. The risk of wildfire is the synthesis of
hazard, vulnerability, and prevention/mitigation capacities,
representing the levels of wildfire damage probability of specific
space units. The multi-factor complete analysis method includes the
assessments and interactions of climate and environmental inducing
factors, vulnerabilities, and disaster prevention/mitigation capacities
in this area. The paper is organized as follows: Section 2 provides
method description. Section 3 deals with the factors responsible for
wildfire risks, vulnerability, and disaster prevention. Section
4 describes each factor group’s weighting processing and
mapping results. Section 5 deals with relevant discussion and
conclusion.

2 Data and methods

2.1 Study area

The study area is the wildfire high-incident areas in
southwestern China, at 25.3°N~29°N, 99°E~104°E, covering an
area of 120,440 km2, neighboring the Tibet Plateau. Topographic
features vary from the western mountain plateau to the eastern
valley plain, which stretches over 39 county-level administrative
units. Altitudes decline from west to east, and the highest point is
located in the northeastern part of the study area with an altitude of
5,958 m (Figure 1). Climate data from 36 gauges are applied in this
study, which are evenly distributed in the study area. According to
the climatic regionalization of China, the four dominant climatic
regions over the study area are the southern subtropical sub-humid
zone, the northern and central subtropical humid zones, and the
highland temperate humid-sub-humid zone. Most of the study area
falls in the middle of the Jinsha River valley, featuring four obscure
seasons and clear rainy and dry seasons, abundant sunshine, and
intense evaporation; the annual evaporation in this region reaches
three times the annual precipitation; 92% of the precipitation in this
region falls from June to October, namely, the rainy season.
March–May is the driest period in the year, with an average
relative humidity of less than 40%.

The study area belongs to the southwestern forest zone. The
vegetation in the sunny slope regions is mainly Pinus densata and
Chinese pine (Pinus tabuliformis) while in the shady slope and gorge
regions is theropencedrymions constituted by hemlocks (Tsuga
chinensis), Acer spp., and Betula spp. Subalpine coniferous forests
are also distributed in the high-latitude area.

2.2 Data sources

All the climate models are resolved using a 90 m*90 m digital
elevation model of the study area, which is constructed using the
2000 global version 4 SRTM 90 m digital elevation data downloaded
from the National Tibetan Plateau Data Center.

The observation datasets of daily temperature, precipitation,
wind speed, and relative humidity for the period 1981–2021 are
provided by the Sichuan Climate Center and Yunnan Climate
Center, referring to 36 meteorological stations.

The land cover dataset is obtained from FROM-GLC (Finer
Resolution Observation and Monitoring of Global Land Cover) which
produces the first 30m resolution global land cover maps using Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+)
data (http://data.ess.tsinghua.edu.cn/). The data sets of population density,
settlements and road networks are provided by the Geographic Data
Sharing Infrastructure of Peking University (http://geodata.pku.edu.cn).

2.3 Interpolation

Partial thin plate splines implemented in ANUSPLIN are applied
for smoothing in this study (Hutchinson, 1991; Hutchinson, 1993;
Hutchinson, 1995; Hutchinson, 2004). ANUSPLIN is a suite of
programs that employs a multi-dimensional Laplacian partial thin
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FIGURE 1
Topography and location of the study area.

TABLE 1 Weights assigned to factors and groups for wildfire risk modeling.

Element Group Factor

Hazards (weighting coefficient = 0.725) Climate (weighting coefficient = 0.4601) Ensemble mean of average daily temperature (weighting coefficient =
0.1327)

Annual maximum of daily temperature maximum (weighting coefficient =
0.1549)

Annual minimum of daily temperature minimum (weighting coefficient =
0.1517)

Wind speed (weighting coefficient = 0.1691)

Relative humidity (weighting coefficient = 0.1598)

Annual consecutive precipitation-free days maximum (weighting
coefficient = 0.2319)

Topography (weighting coefficient =
0.2649)

Altitude (weighting coefficient = 0.6964)

Slope (weighting coefficient = 0.215)

Aspect (weighting coefficient = 0.0886)

Vulnerability (weighting coefficient = 0.1684) Vegetation type (weighting coefficient = 0.4228)

Vegetation coverage (weighting coefficient = 0.3383)

Population density (weighting coefficient = 0.0648)

Distance from habitats and settlements (weighting coefficient = 0.1742)

Prevention/mitigation capacity (weighting coefficient =
0.1066)

Distance from roads (weighting coefficient = 0.3889)

Distance from waterbodies (weighting coefficient = 0.6111)
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plate smoothing spline method. The equation of the theoretical statistic
model is listed as follows:

Zi � f xi( ) + bTyi + ei i � 1,/,N( ), (1)
where Zi is the dependent variable at i point of the specified

space, f (xi) is the unascertained smooth function of xi, xi is the
independent variable, yi is the p-dimensional independent
concomitant variable, b is the p-dimensional coefficient of yi,
and ei is the random error.

In Eq. 1, the function of f (xi) and coefficient b are estimated by
the least square method:

∑N
i�1

zi − f xi( ) − bTyi
wi

[ ]2

+ ρJm f( ), (2)

where Jm(f ) is the roughness measure function of f (xi),
defined as the m-order partial derivative of function f , namely,
the order of spline (roughness) function. ρ is the positive
smoothing parameter.

2.4 Weighting functions

The entropy weight method estimates the weighting coefficient
based on the variability of indices. For a specified index, the less the
information entropy (Ej) it holds, the higher the variability, the
information it carries, its significance in synthesized evaluation, and
vice versa. The entropy weight method is applied in the following
manner:

If there are n factors and m indices, the orthogonal matrix is

X �
x11, x12,/, x1m
x21, x22,/, x2m
..
. ..

.
1 ..

.

xn1, xn2,/, xnm

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (3)

If Z is the standardized matrix (3), then

Zij � xij������∑n
i�1x

2
ij

√ . (4)

FIGURE 2
Spatial pattern of climate hazard factors in historical baseline (1981–2020) over high wildfire incident area of southwestern China. (A) Ensemble
means of daily temperature average. (B) Annual maximum of daily temperature maximum. (C) Annual minimum of daily humidity. (D) Wind speed. (E)
Relative humidity. (F) Annual consecutive precipitation-free days maximum.
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If P is the probability matrix, then

Pij � Z̃ij∑n
i�1Z̃ij

. (5)

The information entropy of index j is

ej � − 1
ln n

∑n
i�1
pij ln pij( ) j � 1, 2,/,m( ). (6)

dj is defined as the information utility and given as

dj � 1 − ej (7a)

Then, the entropy weight Wjof index j is

Wj � dj∑m
j�1dj

. (7b)

2.5 Weighting coefficients

The synthesized wildfire risk mapping over the study area
integrates weighted elements of hazard, vulnerability, and
prevention/mitigation capacity. Each aspect is sub-superposed
by weighted factors. The entropy weight method is applied
when there is a linear correlation between a factor and the
related risk element. Otherwise, an analytic hierarchy process is
employed. Once the weighting results pass the consistency check,
all the factors are rated on a scale of 1–5 except the factor of
vegetation type (rated on a scale of 1–4). The weighting coefficients
of chosen factors and risk mapping elements are listed in Table 1.

The weighting result indicates that the dominant factors are
altitude and annual consecutive precipitation-free days maximum,
followed by relative humidity, wind speed, and vegetation coverage.
The factor rating of altitude reflects both human activities and

FIGURE 3
Spatial pattern of topography hazard factors over the high-wildfire incident area in southwestern China. (A) Slope. (B) Aspect.

TABLE 2 Classifications of altitudes.

Altitude/m Frequency of fire site records Proportion of fire site records/% Risk level

956–1,356 63 29.03 4

1,356–1,776 66 30.41 5

1,776–2,196 39 17.97 3

2,196–2,576 31 14.29 2

2,576–3,048 18 8.3 1
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vegetation inflammability. Factors that point to vegetation
desiccation and wildfire spreading also play essential roles in risk
mapping. Prevention/mitigation capacity holds the lowest weight
due to its uncertainty and high dependency on public infrastructures
in actual situations.

2.6 Synthesized risk assessment model

According to the forming and spreading conditions of wildfire
and hazard criticality assessment methodology, the synthesized
assessment model is comprised of three main modules
representing the core of the wildfire risk assessment: the
hazard (comprising the climate group and topology group),
vulnerability, and prevention modules. The modules and each
element inside are composed based on the integrated weight
linear method. The synthesized wildfire risk assessment model of
southwestern China is listed as follows (all of the elements are
normalized):

Hazard module: H = 0.4601*(0.1327* ensemble mean of daily
temperature average + 0.1549* annual maximum of daily
temperature maximum + 0.1517* annual minimum of daily
temperature minimum + 0.1691* wind speed − 0.1598* relative
humidity + 0.2319* annual consecutive precipitation-free days
maximum) + 0.2649*(0.6964* altitude + 0.215* slope + 0.0886*
aspect).

Vulnerability module: V = 0.4228* vegetation type + 0.3383*
vegetation coverage + 0.0648* population density.

Prevention/mitigation capacity module: p = 0.1742* distance
from habitats and settlements + 0.3889* distance from roads +
0.6111* distance from waterbodies.

The synthesized risk assessment model: Risk = 0.725*H +
0.1684*V – 0.1066*P.

3 Factors applied in the risk assessment

3.1 Wildfire hazard criticalities

3.1.1 Climate
The literature on wildfires has highlighted several climate-

inducing factors: temperature, wind speed, relative humidity, and
precipitation (Sun et al., 2014; Jolly et al., 2015; Pan et al., 2016;
Pickell et al., 2017). All of these factors act on vegetation water
content and ignition points. Wildfires are easy to start and spread
in a high-temperature dry environment and vice versa. This study
divides temperature factors into an ensemble mean of the daily
average, annual maximum, and annual minimum. A significant
advantage of this division is ensuring complete consideration of
the effects of extreme temperature spatial patterns of wildfires.
With the rapid increase in extreme precipitation events in this
area, annual consecutive precipitation-free days maximum

TABLE 4 Classifications of aspects.

Aspect Frequency of fire site records Proportion of fire site records/% Risk level

Flat 0 0 1

North 11 5.07 2

Northeast 19 8.76 3

East 17 7.83 3

Southeast 15 6.91 2

South 41 18.89 5

Southwest 40 18.43 5

West 43 19.82 5

Northwest 31 14.29 4

TABLE 3 Classifications of slopes.

Slope/° Frequency Proportion of fire site records/% Risk level

0–11 59 27.19 4

11–22 65 29.95 5

22–33 53 24.42 3

33–44 32 14.75 2

44–54 8 3.69 1
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characterize the status of vegetation moisture content better than
a single index of precipitation amount. The wind speed affects
both combustible contents and wildfire spread by expediting
evaporation and airflow. The aforementioned three factors are
positive indices. Wildfire risks increase with an increase in the

three factors. The relative humidity factor is an exception. With
the increase in relative humidity, the moisture of vegetation
increases, and ignitability declines after that.

All the aforementioned climate factors in a historical baseline
of 1981–2020 are interpolated to the study area at a resolution of

FIGURE 4
Spatial pattern of vulnerability factors over the high-wildfire incident area in southwestern China. (A) Vegetation type. (B) Vegetation coverage. (C)
Population density. (D) Distance from habitats and settlements.
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100 m*100 m using partial thin plate smoothing splines, as
implemented in ANUSPLIN (Hutchinson, 1991; Hutchinson,
2004). These temperature maps show that the southern part

of the study area experiences the highest ensemble mean of
annual average temperature, especially in the belting river
valley area. By comparison, the low-temperature area is
mainly distributed in high-altitude localities. It is worth
noting that in the northeastern part of the study area, the
variations arising between the ensemble means of annual
minimum and maximum are relatively less than those arising
in the other factors (Figures 2A–C).

Annual consecutive precipitation-free day maximum of rain
gauge records in the study area ranges from 7.8 to 37.6 d/a, with
the highest exceeding 26.9 d/a in the southwestern part andwest valley
of the study area. Meanwhile, the lowest annual consecutive
precipitation-free day maximum, i.e., less than 13.4 d/a, is
recorded in the northeastern and eastern mountain areas (Figure 2D).

The ensemble mean of average daily wind speed records ranges
from 1.0 to 9.1 m/s. Wind speed greater than 8.2 m/s is reported in
the northern and central parts of the study area, which decreases
toward the periphery. The lowest wind speed, i.e., less than 3.4 m/s,
mainly occurs in the outer ring of the study area. The spatial pattern
of wind speed is distinctly different from other climate factors
(Figure 2E).

According to previous research, a wildfire is likely to occur when
the relative humidity is below 65% (Pan et al., 2016). Relative
humidity below 65% occurs in over 69.4% of the study area.
Unlike the spatial patterns of temperature, the relative humidity
of the study area decreases from west to east in general. Particularly,
in the southwestern part, the low relative humidity occurs in low-
altitude areas with intensive drainage networks abnormally
(Figure 2F).

TABLE 5 Classifications of distance from habitats and settlements.

Distance from habitats
and settlements (m)

Proportion of fire
site records (%)

Vulnerability
level

<1,500 45.35 4

1,500–3,000 47.21 5

3,000–4,500 6.28 3

4,500–6,000 0.93 2

>6,000 0.23 1

TABLE 6 Classifications of distance from roads.

Distance from roads (m) Prevention/mitigation capacity
level

<500 5

500–1,000 4

1,000–1,500 3

1,500–2,000 2

>2,000 1

FIGURE 5
Spatial pattern of wildfire prevention/mitigation capacity factors over the high-wildfire incident area in southwestern China. (A)Distance from roads.
(B) Distance from waterbodies.
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3.1.2 Topography
Since the relationship between topographical factors and

wildfire risks is non-linear, in this study, the wildfire risk
levels of altitude, slope degrees, and aspects are grouped based
on the study area’s 2017–2021 historical wildfire records, the
spatial patterns of topographical factors can be seen in Figure 3.
Detailed classifications of altitude, slope degrees, and aspects are
listed in Tables 2–4.

3.2 Vulnerability

3.2.1 Vegetation types
According to the inflammability of different vegetation types

(Dimitrakopoulos and Papaioannou, 2001; Hall et al., 2010;
Corona et al., 2014), the study area is divided into grasslands,
bushlands, forests, and other underlying surfaces, and the
vulnerabilities of each type decrease in turn. Forests stretch over
57.54% of the study area and account for the most significant
proportion. Grasslands hold the highest vulnerability level,
accounting for 25.63% of the study area (Figure 4A).

3.2.2 Vegetation coverage
The vegetation proportion raster dataset is constituted by the

vegetation coverage of each 100 m*100 m grid (Figure 4B). The
vegetation coverage in the northeastern part is relatively higher than
that in other parts. The distribution illustrates the urbanization rate
of the study area as well. The details with low vegetation coverage
often refer to urbanized regions.

3.2.3 Population exposure
With the densification of the population, the vulnerability to

wildfires increases. The distribution of population density is in
accordance with urbanization rates. The lowest population density

TABLE 7 Classifications of distance from waterbodies.

Distance from
waterbodies (m)

Prevention/mitigation capacity
level

<500 5

500–1,000 5

1,000–1,500 4

1,500–2,000 3

2,000–2,500 2

2,500–3,000 1

>3,000 1

FIGURE 6
Spatial pattern of climate hazards.
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occurs in the northeastern part of the study area, with a population
density of less than 54 people/km2. By comparison, the economic
center located in the southern study area has a population density of
over 1,000 people/km2 (Figure 4C).

3.2.4 Distance from habitats and settlements
Human activities of habitation and culture can lead to accidental

wildfires (Moreira et al., 2012). Meanwhile, the losses of wildfire
disasters tend to increase with the distances from habitats and
settlements. Wildfires rarely break out or spread very close (e.g.,
within a distance of 500 m) to habitats and colonies because of the
cautious fire use and the rapid putting out. Hence, the correlation
between vulnerability and distances from habitats and settlements is
non-linear. Based on previous research, wildfire disasters most
frequently occur between 1,500 and 3,000 m, followed by a space
of less than 1,500 m. No wildfire records are found beyond 9,000 m
from habitats and settlements (Figure 4D). The vulnerability levels
of distances from habitats and settlements are listed in Table 5.

3.3 Wildfire prevention/mitigation capacity

3.3.1 Distance from roads
Distance from roads is the index that refers to both wildfire

proneness and mitigation capacities. On the one hand, frequent
human activities near roads induce accidental fire opportunities.
On the other hand, emergency departments can monitor wildfires

near roads at the preliminary stage, and fire engines and other fire
control equipment can rapidly respond to fire alarms. As a factor of
wildfire prevention/mitigation capacities, the effect of distances of
2 km from roads could be neglected. In this study, the county-level
road networks and distances from roads are considered the
practical parts of wildfire prevention/mitigation capacity due to
the applicabilities of firefighting infrastructures. The prevention/
mitigation capacity levels of distances from roads are listed in
Table 6, and the spatial patterns are shown in Figure 5A.

3.3.2 Distance from waterbodies
As the source of the fire water system, the location and

availability of natural waterbodies are important elements of
wildfire prevention/mitigation capacity. The availability of a
natural waterbody declines as the distance between fire points
and the waterbody increases. The prevention/mitigation capacity
levels of distance from waterbodies are listed in Table 7, and the
spatial patterns are shown in Figure 5B.

4 Results

4.1 Hazard criticalities

The element of hazard manifests both ignition possibility and
wildfire spreading. High and very high climate hazard areas are
mainly located west of 103°E, with belts distributed along valleys and

FIGURE 7
Spatial pattern of topography hazards.
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basins, accounting for 45.81% of the study area. Universal features of
high and very high climate hazard areas are relatively high
temperatures, low relative humidity, and long consecutive
precipitation-free days. Very low and low climate hazard areas
fall in the northeastern study area, east of 103°E, between 27 and
29°N, accounting for 30.44% of the study area. These areas have
relatively high relative humidity, low wind speed, and short
consecutive precipitation-free days. Moderate climate hazard
areas mainly fall in suburban areas and regions with a relatively
low level of development, relatively high temperatures, long
consecutive precipitation-free days but low wind speed, and high
relative humidity (Figure 6).

Distributions of topography hazards are relatively scattered.
Areas with above-moderate-level topography hazards mainly
occur in canyons and cliffy mountain regions. Altitudes and
slope degrees of these areas are easy for ignition and wildfire
spreading, accounting for 47.93% of the study area. Very low
topography hazard areas, with belts distributed mainly in valleys
with gentle slopes and relatively low altitudes, account for
12.01% of the study area. The exception is the northwestern
end of the study area. Although the terrain of this area is
eminently steep, the altitude here is overly high for wildfires,
making low topography hazards dominant here. Significantly,
most very low topography hazard areas have coincided with very

high-climate hazard areas except the northeastern corner of the
study area (Figure 7).

4.2 Vulnerability

Grids with high vulnerability levels dominate the entire classified
vulnerability distribution, accounting for 57.64% of the study area due
to the high vegetation coverage. Divided by the line of 102°E, very high-
vulnerability areas in the eastern part are vast stretches, while in the
western region, they are more scattered since the habitats and
settlements are more concentrated, and the vegetation type of
grasslands (with the highest vulnerability level) hold a significant
proportion in these regions. Low- and very low-vulnerability areas
mainly occur in urban areas and waterbodies, with scarce vegetation
coverage and the most inferior vulnerability level surfaces, accounting
for 19.86% of the study area. Areas with themoderate vulnerability level
account for only 5.48% of the study area, formed in different ways:
divided by the lines of 102°E and 27°N, moderate vulnerability areas in
the eastern and southern parts are formed by relatively low vegetation
coverage and vegetation ignitability, under the background of dense
population and habitats/settlements, while in the western and northern
parts, vegetation coverage and ignitability are relatively high, but
population and habitat/settlement density are relatively low (Figure 8).

FIGURE 8
Spatial pattern of vulnerability.
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4.3 Wildfire prevention/mitigation capacity

Prevention/mitigation capacity is a negative factor in wildfire risk
mapping. With the increasing prevention/mitigation capacity, wildfire
risks decline. Grids with very high prevention/mitigation levels mainly
occur at the intersection of road networks andwaterbody surroundings,
accounting for 11.53% of the study area. High and moderate
prevention/mitigation capacity grids, accounting for 21.57% and
18.09% of the study area, respectively, are areas alongside roads but
far away fromwaterbodies. Themost significant proportion held by low
prevention/mitigation capacity grids is 25.16%, which mainly occurs in
areas with inaccessible waterbody surroundings. Very low prevention/
mitigation capacity grids occur in deep forests and upper mountain
areas far away from fire water systems. Once these regions get ignited, it
is hard to rescue. In general, the prevention/mitigation capacity of the
study area is higher in the east of 102°E and the south of 27°N. These
two lines can be regarded as the demarcations of wildfire risk mapping
over the study area (Figure 9).

4.4 Synthesized risk mapping

Synthesized risk mapping in this study (Figure 10) reflects the
probability of ignition, spreading, and rescue of wildfire: the climate
hazard and topography hazard factors influence the inflammability of

vegetation and spreading possibility. Vulnerability factors that describe
the case of wildfire-inducing damage, combined with the ability of
wildfire rescue, constitute the synthesized wildfire risk mapping over
the high-incidence area of southwestern China. Most very high wildfire
risk girds are distributed in the west of 103°E and the north of 28°N and
intensively distributed in 101°E~102.5°E, 28°N~26°N. Broad similarities
of very high-risk grids are urban area surroundings with relatively
frequent human activities and high climate hazard levels, basins and
valleys with altitudes between 1,500 and 3,000m, high vegetation
coverage, and areas away from waterbodies and road networks. Very
high-risk grids account for 22.05% of the study area, covering over
26,500 km2. There are 14 county-level regions with a very high wildfire
risk area proportion of over 50% inside their administrative boundaries.
High- and moderate-risk grids dominate the study area, accounting for
28.56%and 26.83%, respectively, covering a total area of over 66,600 km2.
Broad similarities between high- and moderate-risk grids are high–very
high climate hazards and under-moderate topography hazards, whereas
the difference is high andmoderate grids at the west of 102.5°E under the
background of above-moderate vulnerabilities and under-moderate
prevention/mitigation capacities.

Nonetheless, in the eastern part, the reverse applies. Low- and very
low-risk grids are mainly concentrated in the east part of 102°E, with
minorities located in a small area between 100°E~100.5°E and
27°N~28°N, mainly for high mountain regions and waterbodies. The
sum of low- and very low-risk grids accounts for 22.57% of the study

FIGURE 9
Spatial pattern of wildfire prevention/mitigation capacity.
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area, covering an area of 27,000 km2. Low- and very low-risk areas
mainly occur in urban areas with low vegetation and dense public fire
prevention infrastructures or humid regions in the northeastern study
area. The risk mapping results are in general accordance with the
climate regionalization. Areas with wildfire risks above moderate are
mainly distributed in the southern subtropical sub-humid zone, while
regions with risks below moderate occur in the northern and central
subtropical humid zones. The northwestern end of the study area is
located at the junction of the highland temperate humid zone and the
highland temperate sub-humid zone. The contradictory vulnerability
factors, namely, a large number of high ignitability grassland stretches
and tiny population exposure, make this region unique over the
study area.

5 Discussion and conclusion

Most previous studies of wildfire risk mapping emphasize
topography factors, and climate factors are ignored or applied in
low-resolution ways, thereby failing to notice some important details
of wildfire risks. One instance is, in previous studies, the northwestern
end of the study area (ranging from 28°N to 29°N and 100.5°E to
101.5°E) is classified as a low-fire risk area due to its low temperature.
When the elevation model-related climate factors are applied, high-
and very high-risk regions distributed in the belting ravines are

revealed, which coincides with the actual wildfire records. Another
fact is that with climate change and increasing precipitation extremes,
the ensemble mean of annual precipitation accumulation, which is
applied in most previous studies, is insufficient to characterize the
humidity of vegetation solitarily. Our study suggests that the annual
precipitation accumulation and annual consecutive precipitation-free
day maximum are increasing, with a trend of expanded wildfire scales
over the study area in recent years. The relationship between
precipitation factors and wildfire needs advanced research.

The potential changes in climate hazards are the most critical and
predictable factor among all the risk factors. The analysis of climate
factors indicates that wind speed and relative humidity decline due to
the changes in underlying surfaces under the background of large-scale
urbanization. Meanwhile, the synchronous increase in precipitation
accumulation and consecutive precipitation-free days points to more
intense precipitations and longer dry seasons. Increasing human
activities, combined with warming and drying climate conditions,
uplift the frequency of wildfires. Nonetheless, wind speed declines
limit wildfire spreading, explaining the synchronous increments in
occurrences and reductions in scales of wildfire events in actual records.

The wildfire mapping result suggests that the hotspots of wildfire
are mainly distributed in the area ranging 101°E~102.5°E and
26°N~28.5°N and stretch over 14 county-level administration units.
The highly localized wildfire risk maps specified fire prevention/
mitigation stresses in each grid cell and general spatial patterns of

FIGURE 10
Spatial pattern of synthesized risk assessment.
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wildfire risks. With the skyrocketing expansion of population and
urbanization in southwestern China, policymakers should take
changing climate hazards, localized vulnerabilities, and socio-
economic characteristics into full consideration to manage wildfire
risks and make tendentious construction policies of transportation
systems and fire water systems toward existing and potential wildfire
hotspots under the background of global warming.
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