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Land degradation has become one of the major threats throughout the globe,
affecting about 2.6 billion people in more than 100 countries. The highest rate of
land degradation is in Asia, followed by Africa and Europe. Climate change coupled
with anthropogenic activities have accelerated the rate of land degradation in
developing nations. In India, land degradation has affected about 105.48 million
hectares. Thus, modeling and mapping soil loss, and assessing the vulnerability
threat of the active erosional processes in a region are the major challenges from
the land and water conservation aspects. The present study attempted rigorous
modeling to estimate soil loss from the Banas Basin of Rajasthan state, India, using
GIS-integrated Revised Universal Soil Loss Equation (RUSLE) equation. Priority
ranking was computed for different watersheds in terms of the degree of soil loss
from their catchments, so that appropriate conservation measures can be
implemented. The total area of Banas basin (68,207.82 km2) was systematically
separated into 25 watersheds ranging in area from 113.0 to 7626.8 km2. Rainfall
dataset of Indian Meteorological Department for 30 years (1990–2020), FAO
based Soil map for soil characterization, ALOS PALSAR digital elevation model
for topographic assessment, and Sentinal-2 based land use and land cover map
were integrated for modeling and mapping soil erosion/loss risk assessment. The
total annual soil loss in the Banas basin was recorded as 21,766,048.8 tons. The
areas under very low (0–1 t ha-1 year-1), low (1–5 t ha-1 year-1), medium (5–10 t ha-1

year-1), high (10–50 t ha-1 year-1) and extreme (>50 t ha-1 year-1) soil loss categories
were recorded as 24.2, 66.8, 7.3, 0.9, and 0.7%, respectively, whereas the
respective average annual soil loss values were obtained as 0.8, 3.0, 6.0, 23.1,
and 52.0 t ha-1 year-1. The average annual soil loss among different watershedswas
recorded in the range of 1.1–84.9 t ha-1 year-1, being highest (84.9 t ha-1 year-1) in
WS18, followed by WS10 (38.4 t ha-1 year-1), SW25 (34.7 t ha-1 year-1) and WS23
(17.9 t ha-1 year-1), whereas it was lowest for WS8 (1.1 t ha-1 year-1). Thus,
WS18 obtained the highest/top priority rank in terms of the average annual soil
loss (84.9 t ha-1 year-1) to be considered as the first priority for land and water
conservation planning and implementation. The quantitative results of this study
would be useful for implementation of land and water conservation measures in
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the problematic areas of the Banas basin for controlling soil loss through water
erosion.
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1 Introduction

Land and water resources are vital for the sustainable
management of the ecosystem (Prăvălie, 2021). Damage of top
soil can reduce soil fertility leading to threat and food security
(Pal et al., 2021). Land degradation has become one of the serious
threats across the globe in terms of decreasing agricultural
productivity, reducing soil health, depleting groundwater storage,
a capacity loss of reservoirs due to silt inflow, worsening water
quality, poverty and distorting ecological balance (Sur and Chauhan,
2019; Eniyew et al., 2021; Kaur et al., 2022). Globally, around 85% of

degraded land is causing a 17% decline in crop yield (Borrelli et al.,
2020). As per the global climatic projection, disruption in the
hydrological cycle is continuously magnifying the problem of
land degradation (Ahmad et al., 2020), which in turn intensifies
the scale of soil erosion through the water as one of the agent from
30% to 66% (Sharda and Ojasvi, 2016). As per Global Soil
Partnership reports of the Food and Agriculture Organization
(FAO), about 75 billion tons of soil are at high risk of erosion
every year from productive agricultural lands across the globe, which
may result in an estimated financial loss of 400 billion US Dollar per
year (Kayet et al., 2018).

FIGURE 1
Study area map.

TABLE 1 The database used for estimating soil loss using the RUSLE model.

Database Purpose Duration Scale resolution Source

Rainfall Rainfall Erosivity Factor 1990–2020 Station Dataset India Meteorological Department (IMD)

Soil Soil Erodibility Factor 2012 30arc Second Food and Agriculture Organization (FAO)

Elevation Slope Length Steepness Factor 2021 12.5 m ALOS PALSAR (DEM)

LULC Support and Conservation Practices Factor 2021 10 m Sentinal-2A Google Earth Engine
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FIGURE 2
LULC map of the Banas basin.

FIGURE 3
Complete work flow diagram of the adopted methodology.
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Land degradation is a major challenge in Asia, where about
663 Mha of the total area is affected by soil erosion and is highest
when compared to other continents (Rao et al., 2016). In India, the
soil loss is estimated to be 1,559 Mg km-2 year-1 (Reddy, 2003).
About 1,100 Mha of land is affected by rainwater erosion, whereas
about 550 Mha is affected by wind erosion in India (Dubey and
Sharma, 2018; Kumar et al., 2022). Soil erosion accelerated by water
and wind affect the production (≈7.2 million tons) of the staple
crops, which in turn results in a reduction of GDP in the country by
about 1.0%–1.7% (Lal, 2019). This affects the socioeconomic status
of the country negatively (Dubey and Sharma, 2018). Previously,
Reddy (Reddy, 2003) reported a loss of about 74 million tons of key

nutrients in the soil due to soil erosion. From the above facts, it is
clear that the systematic assessment of soil erosion is the key solution
to saving the Earth’s surface from land degradation.

Banas basin drains into Banas river, which is one of the main
tributaries of Chambal. It is located in the South-Eastern part of
Rajasthan state of India. It is one of the most crucial sites because it
falls under five types of climate zones viz. Semi-arid eastern plains,
flood-prone Eastern plains, sub-humid Southern plains, humid
Southern plains, and humid South-Eastern plains (Chahar and
Dhaka, 2013). Banas River remains almost dry in the summer
season, as it is a rain-fed river. Major parts of the Banas River
Basin have low rainfall and high evapotranspiration rate, leading to a
decrease in soil moisture, which affects plant growth ultimately
causing low production of biomass (Pham et al., 2018).

For effective implementation of land and water conservation
practices in a watershed, the assessment of soil loss through water
erosion and its spatial distribution is significant. In past, numerous
empirical and physical models viz. USLE: universal Soil Loss
Equation (Park et al., 2011), RUSLE: Revised universal Soil Loss
Equation (Tiwari et al., 2000; Ouyang et al., 2010), WEPP:
Watershed Erosion Prediction Project (Beasley et al., 1980),
SWAT: Soil and Water Assessment Tool (Gosain et al., 2009),
ANSWERS: Areal Non-Point Source Watershed Environment
Response Simulation (Angima et al., 2003), European Soil
Erosion Model, Rule Based Expert System, Hybrid Approach,
Sediment Concentration Graph, Renard–Laursenn Model, Unit
Sediment Graph, and Instantaneous Unit Sediment Graph (24)

TABLE 2 C and p factors for different LULC.

LULC C- value p-value

Forest 0.003 0.8

Cropland 0.63 0.5

Built-up 0.09 1.0

Barren/Sparse Vegetation 0.50 1.0

Water Bodies 0.28 1.0

Scrubland 0.001 1.0

Wetland 0.28 1.0

FIGURE 4
Slope map of the study area.
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TABLE 3 LULC status in different watersheds in the study area.

WS Forest Shrubland Grassland Cropland Built-up Barren/sparse
vegetation

Water body Wetland

Area
(ha)

Area
(%)

Area
(ha)

Area
(%)

Area
(ha)

Area
(%)

Area
(ha)

Area
(%)

Area
(ha)

Area
(%)

Area (ha) Area
(%)

Area
(ha)

Area
(%)

Area
(ha)

Area
(%)

WS1 176.72 0.04 11412.53 2.54 9651.05 2.15 388863.96 86.64 9725.16 2.17 20875.46 4.65 6202.21 1.38 1938.19 0.43

WS2 319.23 0.13 4634.56 1.85 21918.67 8.76 207768.45 83.03 5677.76 2.27 8773.17 3.51 1145.81 0.46 0.00 0.00

WS3 940.59 0.32 3990.39 1.37 28884.76 9.94 218924.45 75.30 30036.27 10.33 7690.06 2.65 262.23 0.09 0.00 0.00

WS4 9405.93 1.63 25464.42 4.41 105055.69 18.18 405600.82 70.19 17854.17 3.09 12353.12 2.14 1636.06 0.28 473.15 0.08

WS5 5677.76 1.61 8168.91 2.32 29203.99 8.28 286145.50 81.15 8014.99 2.27 10483.34 2.97 4349.53 1.23 575.76 0.16

WS6 513.05 0.20 2109.21 0.82 29243.89 11.42 211445.31 82.55 4281.12 1.67 7165.61 2.80 1390.94 0.54 0.00 0.00

WS7 1408.04 0.44 8721.86 2.75 48426.29 15.30 227543.71 71.87 6869.18 2.17 17449.43 5.51 6190.81 1.96 0.00 0.00

WS8 5763.27 0.94 43352.79 7.06 148072.15 24.10 361854.69 58.91 14832.87 2.41 33935.46 5.52 6458.74 1.05 17.10 0.00

WS9 2553.85 1.53 9098.10 5.43 30840.05 18.42 108031.39 64.53 3351.93 2.00 9166.51 5.48 4378.03 2.62 0.00 0.00

WS10 381.94 2.32 524.45 3.18 507.35 3.08 8670.56 52.59 108.31 0.66 256.53 1.56 6036.90 36.62 0.00 0.00

WS11 10722.76 3.55 38079.77 12.61 43837.34 14.52 173713.28 57.53 4395.13 1.46 26598.83 8.81 4606.06 1.53 0.00 0.00

WS12 9417.33 6.82 17227.10 12.47 12854.77 9.30 86335.04 62.48 1596.16 1.16 8402.63 6.08 2109.21 1.53 228.02 0.17

WS13 3249.32 1.41 19558.63 8.48 76074.02 32.99 108515.93 47.05 8049.20 3.49 12706.56 5.51 2474.04 1.07 0.00 0.00

WS14 19131.09 3.98 65647.69 13.65 152490.08 31.71 200933.47 41.79 13778.26 2.87 21206.10 4.41 7650.16 1.59 0.00 0.00

WS15 38062.66 4.99 46784.53 6.13 159507.48 20.91 464863.88 60.95 27750.34 3.64 19051.28 2.50 6663.96 0.87 0.00 0.00

WS16 2941.49 1.35 9109.50 4.18 76376.15 35.06 118184.09 54.25 4685.86 2.15 5626.46 2.58 917.79 0.42 0.00 0.00

WS17 2069.30 3.94 2496.85 4.75 2331.53 4.44 36147.28 68.81 986.20 1.88 7883.88 15.01 615.66 1.17 0.00 0.00

WS18 1647.46 14.57 0.00 0.00 0.00 0.00 7764.17 68.68 165.32 1.46 1128.71 9.98 598.56 5.30 0.00 0.00

WS19 9252.02 4.78 4936.69 2.55 44817.83 23.17 109245.61 56.47 11275.72 5.83 9998.79 5.17 3933.39 2.03 0.00 0.00

WS20 13345.02 3.83 6065.40 1.74 46904.24 13.45 261866.80 75.07 5558.05 1.59 8374.13 2.40 6720.96 1.93 5.70 0.00

WS21 8425.43 2.32 16907.87 4.65 60665.40 16.68 246697.60 67.83 8505.24 2.34 14582.04 4.01 7923.78 2.18 5.70 0.00

WS22 5016.50 2.73 13447.63 7.33 36774.34 20.04 115818.36 63.11 1972.40 1.07 7861.08 4.28 2639.36 1.44 0.00 0.00

WS23 467.45 1.31 3329.13 9.36 10973.59 30.85 18367.22 51.64 467.45 1.31 1408.04 3.96 552.95 1.55 0.00 0.00

WS24 1607.56 0.99 2257.42 1.39 11566.44 7.12 135656.32 83.47 3927.69 2.42 4543.35 2.80 2964.29 1.82 0.00 0.00

WS25 7159.91 15.57 7302.42 15.88 9177.91 19.96 16406.22 35.69 290.73 0.63 4839.78 10.53 438.94 0.95 359.14 0.78
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have been used for predicting soil loss through water erosion. The
empirical models significantly reduce the inputs, and therefore
commonly applied for predicting soil loss through water erosion.
Whereas, the physical models use non-linear partial differential
equations for representing several hydrological processes and
involve huge input data (Abdelwahab et al., 2018). Within the
above-mentioned models for predicting soil loss through water
erosion, RUSLE is the most widely applied empirical model for
assessing soil erosion rate/loss. This model computes the soil loss in
relation to the prevailing climatic conditions and several features of a
watershed (Boufala et al., 2020).

Several authors have tested the performance of RUSLE with other
models (Tiwari et al., 2000;Mondal et al., 2016; Chen et al., 2019; Safwan
et al., 2021). Tiwari et al. (Tiwari et al., 2000) reported statistically similar
results of soil loss using RUSLE and WEPP models. While comparing
the performance of the USLE, RUSLE, andWEPPmodels, Ubierna et al.
(Tiwari et al., 2000) reported soil loss estimates of the RUSLEmodel very
close to the actual data. Recently, Safwan et al. (Safwan et al., 2021) also
confirmed a good agreement in the soil loss results of RUSLE with the
WEPP model. While testing the performance of USLE, RUSLE, and
modified Morgan-Morgan-Finney (MMF) models, Mondal et al.
(Mondal et al., 2016) also reported the soil loss data of the RUSLE
model in close agreement with the actual data. Later on, Abdelwahab
et al. (Abdelwahab et al., 2018) reported the soil loss results of RUSLE
quite closer to that obtained using SWAT and Agricultural non-point
source pollution (AGNPS). Similarly, Boufala et al. (Boufala et al., 2020)
confirmed a close agreement in the soil loss results of RUSLE and SWAT

models. Thus, it can be said that the RUSLE model, which is as good as
WEPP and SWAT models should be integrated with the GIS platform
for precise estimation of soil loss. This would be a time-and labor-
efficient approach to estimating erosion rate or soil loss from a large area.

Nowadays, remote-sensing and geographic information systems
(GIS) are being widely applied for identifying areas susceptible to
water erosion and estimating soil erosion. A hydrological model
when jointly used with remote sensing and GIS techniques offers
great potential in identifying the erosion-prone hotspots, spatial
spread of erosion, and estimating soil loss. Remote sensing and GIS
applications have made it possible to estimate erosion from a large
expanse in a smaller period of time. A digital elevationmodel (DEM)
is useful for extracting the topographical features viz. Slope, flow
direction, flow accumulation, and drainage networking of a
watershed for assessing the soil loss through water erosion
(Mondal et al., 2016). The Remote Sensing and GIS-coupled
application of RUSLE is a cost-effective and can be applied over
a large area with improved consistency.

RUSLE when combined with GIS, helps to identify the erosion-
prone hotspots, predict the cell-by-cell soil erosion/loss, and prioritize
the sub-watersheds in a big watershed in relation to the amount of soil
loss from their catchments (Chen et al., 2019). The integrated
applications of RUSLE with the GIS platform have already been
made in past (Renard et al., 1991; Sharma, 2010; Ranzi et al., 2012;
Wijesundara et al., 2018; Thapa, 2020). While estimating soil erosion
through the integration of RUSLE with the GIS platform, Farhan et al.
(Farhan et al., 2014) reported about 31.2% area of the WadiKufranja

FIGURE 5
R factor map of the study basin.
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watershed in Jordan was under severe erosion. Similarly, using RUSLE
and GIS jointly, Marondedze and Schütt (Marondedze and Schütt,
2020) reported about 40% of the Epworth district of Zimbabwe is under
severe soil erosion. Recently, Amellah and Morabiti (Amellah and El
Morabiti, 2021) also used RUSLE jointly with remote sensing and GIS
for identifying erosion-prone zones and estimating the soil loss in the
OuedLaou basin, Morocco. Using RUSLE and the GIS platform jointly,
Srinivasan et al. (Srinivasan et al., 2021) reported about 8.9, 55.0, and
35.0% of areas under severe, medium, and low erosion risk, respectively,
in Deccan Plateau, India. Pal and Chakrabortty (2019a); Pal and
Chakrabortty (2019b) reported a strong correlation between amount
of actual soil loss on ground and estimated soil loss by RUSLE.

Banas River has a length of about 512 km. It is the most important
river, as it is one of the major natural water supply sources of arid
Rajasthan. It provides water to the entire forest land of Rajasthan,
therefore often referred to as “Van ki Asha” by local people. The soil loss
through water erosion from the upstream ends of a watershed may
adversely affect the storage capacities of the water bodies (dams or
reservoirs) located in the downstream areas in relation to silt inflow or
sedimentation. Thus, it becomes imperative to assess the soil loss from a
watershed for implementation of appropriate land and water
conservation measures starting from the area/watershed of the
highest priority rank. However, no effort has been made in past to
estimate the soil loss from the Banas basin and identify the most water-
erosion-affected zones. Thus, the present studywas undertakenwith the
objectives 1) to estimate the soil loss from twenty-five watersheds of

Banas Basin (comprising fourteen districts) in Rajasthan state, 2) to
study the spatial distribution of soil erosion/loss, and 3) to perform
prioritization of the watersheds for implementing land and water
conservation practices starting from areas with higher priority in
terms of soil erosion/loss.

2 Materials and methods

2.1 Brief description of the study area

The Banas River Basin is located between 24° and 27° N latitude
and 73°–77° E longitude in the East South-Central region of
Rajasthan (Mundetia et al., 2018; Sharma et al., 2018). Banas
River is also colloquially named “Van Ki Asha”. The Banas River
is seasonal and often remains dry in the summer months. It has a
tropical type of climate. The average maximum and minimum
temperature in summer are 40°C and 25.8°C, respectively,
whereas in winter the maximum and minimum values are
22°C and 8.3°C, respectively (Everard et al., 2018). The Banas
River Basin receives an average annual rainfall of 637 mm
compared to all India’s average of 1,100 mm. The humidity level
reaches the level of 90% during the monsoon month. It is a major
tributary of the Chambal River, which is also a tributary of the Ganga
River. The total catchment area (Figure 1) of Banas River Basin is
68207.82 km2and the river has a length of about 512 km and flows

FIGURE 6
K factor map of the study basin.
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entirely within Rajasthan. The Banas River Basin covers 14 districts
namely Sikar, Jaipur, Ajmer, Nagaur, Rajsamand, Chittaurgarh,
Bundi, Sawai Madhopur, Bhilwara, Dausa, Udaipur, Tonk,
Neemuch, and Karauli (Dubey et al., 2015).

2.2 Watershed delineation

The Banas basin of Rajasthan state was demarcated into
25 watersheds by defining their outlet points (pour points) at
appropriate places.

2.3 Data collection

The station rainfall data for the 31 years (1990–2020) of the
study region was obtained from the Indian Meteorological
Department (IMD) for computing rainfall erosivity index/factor.
Soil data of 30 arcs second resolution for the year 2012 of FAO was
used for computing soil erodibility index/factor. For the
computation of the slope length-steepness factor (LS), the
elevation data of 12.5 m-spatial resolution for the year 2021 was
used. For the computation of support/conservation practices factor
p), LULC data of 10 m spatial resolution using Sentinal-2A Google
Earth Engine for the year 2021 was used as mentioned in Table 1.

2.3.1 Land use land cover (LULC) of banas basin
Sentinal-2A based Google Earth Engine product of 10m-spatial

resolution was used for LULC analysis of the Banas basin. The LULC of
the study area was categorized into eight classes viz. Forest, shrubland,
grassland, cropland, built-up, barren/sparse vegetation, waterbody, and
wetland. The LULC classified map was produced by a deep learning
model trained using over 5 billion hand-labeled Sentinel-2 pixels,
sampled from over 20,000 sites distributed across all major biomes of
the world. The underlying deep learning model was supported by
information on 6 bands of Sentinel-2 surface reflectance data: visible
blue, green, red, near-infrared, and two shortwave infrared bands (Du
et al., 2021). Figure 2 shows the LULC map of the Banas basin. This
region has prominent seven classes which distinctly show that the area is
an agriculturally dominant area with one big city (Jaipur) in the North
and a few small cities in the Southern part. The region is covered by small
patches of forest land in the Eastern part. Shrubland is a major class
covering apart from agriculture in the region. The spread of scrubland in
the region proves that the land is not very fertile and therefore not suitable
for cultivation and prone to water and wind erosion.

2.3.2 Slope of the basin
Soil erosion/loss is greatly affected by the slope in relation to its

direct impact on the hydrological response of the watershed. For a better
understanding of the causes of erosion, soil loss, and risk analysis, the
topographical data of the watershed is required (Everard et al., 2018). In

FIGURE 7
LS factor map of the study basin.
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the present study, the ALOS PALSAR digital elevationmodel (DEM) of
12.5 m-spatial resolution was used for generating the slope map of the
Banas basin in GIS software (Arc GIS Pro 2.8.7).

2.3.3 Estimating parameters of revised universal
Soil Loss Equation (RUSLE)

RUSLE is a widely applied empirical model for estimating the
average annual soil loss or erosion rate (Sujatha and Sridhar, 2021).
Collected datasets were assembled using various datamining techniques
coupled with machine learning algorithms to generate thematic layers
which served as the input for the RUSLE model (Ruidas et al., 2021;
Ruidas et al., 2022a; Ruidas et al., 2022b; Ruidas et al., 2022c; Jaydhar
et al., 2022). This model incorporates five factors related to rainfall/
precipitation, soil/land, topography/landscape, LULC, and conservation
practices. Mathematically, RUSLE is expressed as:

A � R.K.LS.C.P (1)

where, A = average annual soil loss (t.ha-1 year-1), R = rainfall
erosivity index/factor (MJ.mm.ha-1. h-1 year-1), K = soil erodibility
index/factor (t.ha.h.MJ-1 mm-1), LS = slope length and steepness
factor (−), C = crop/cover management factor (−), and p = support
and conservation practices factor (−).

2.3.4 Rainfall erosivity index/factor (R)
This parameter designates the capability/erosive power of

raindrops to detach soil due to high impact force or kinetic

energy (Nampak et al., 2018). It has been recognized as the
foremost power accountable for higher soil erosion rate/soil loss
(Fenta et al., 2016). Here, the mean annual rainfall of 31 years
(1990–2020) was utilized for computing R-value using the equation

R � 79.0 + 0.363P (2)
Where, p = mean annual rainfall (mm).

2.3.5 Soil erodibility index/factor (K)
This index (K value) designates the susceptibility of soil to get erode

(Das et al., 2021). It is mainly dependent on the land/soil features, the
texture of the soil, organic matter content, and unsaturated hydraulic
conductivity. Normally, it varies from 0.0 to 1.0. For the present study,
the K value was obtained using the FAO soil map. The soil data of the
study site was obtained from a digital soil map of the world published by
FAO using GIS software. The textural class of the soil, structural code
(S), and permeability (p) were obtained from the soil texture triangle of
USDA. As reported by Das et al. (Sujatha and Sridhar, 2021), the K
value was obtained using the equation given below:

K � 2.8 × 10−7 × 12 − OM( ) × M1.14 + 4.3 × 10−3 × S − 2( )
+ 3.3 × 10−3 × P − 3( ) (3)
M � % silt +% veryfinesand( ) × 100 −% clay( ) (4)

Where, K = soil erodibility factor (t.ha.h.MJ-1.mm-1), M = particle size
parameter (−), OM = organic matter (%), S =soil structure code (1 for
very fine granular, 2 for fine granular, 3 for medium and coarse

FIGURE 8
C factor map of the study basin.
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granular, and 4 for blocky, platy or massive), and p = profile
permeability class (1 for rapid, 2 for moderate to rapid, 3 for
moderate, 4 for slow to moderate, 5 for slow and 6 for very slow).

2.3.6 Slope length steepness factor (LS)
This is a combined factor for indicating the joint effect of slope

length (L) and slope steepness (S) on soil erosion rate/soil loss (Amsalu
and Mengaw, 2014). The LS factor was appraised using the “flow
accumulation” raster, which contains data on the cumulative number
of pixels contributing to flow into a specific cell. The flow direction
matrix was used for obtaining the flow accumulation matrix. The “flow
directionmatrix” governs the natural drainage direction/path for all cells
in a DEM. On the basis of the low accumulation matrix, the size of each
pixel and pixel slope, and LS factor were computed using a raster
calculator inGIS based environment. The equation for computing the LS
factor as reported by Panagos et al. (Panagos et al., 2015) is given below:

LS � flowaccumulation × cell size/22.13( )
0.20

× 0.0065 × slope2 + 0.045 × slope + 0.065( ) (5)
Where, flow accumulation = accumulate dup-slope contributing
area for a given cell, cell size = size of a grid cell (i.e., 12.5 m × 12.5 m
in the present case), and slope = cell slope (%).

2.3.7 Cover/crop management factor (C)
This parameter governs the effect of LULC on soil erosion rate

or soil loss in relation to the kinetic energy and impact of raindrops

on land/soil surface (Sujatha and Sridhar, 2018). The crop/plant
cover on the ground/land surface prevents splash/raindrop erosion
through a reduction in raindrop impact force. It is dependent on
plant type, stage of growth, and extent of land use cover. The C-value
varies from 0.0 to 1.0. The higher C-value (nearly 1.0) designates a
higher vulnerability of the soil to erosion (Ganasri and Ramesh,
2016). Here, the C-value was allocated as per the type of land use as
given in Table 2 (USDA, 1972; Marondedze and Schütt, 2020). The
map of the C-factor was created by reclassifying the LULC map.

2.3.8 Support and conservation practices factor (P)
This parameter (p) shows the effect of different conservation

practices such as contouring, strip cropping, and bunding on soil
erosion/loss rate. It is termed as a ratio of soil loss from a piece of
land under a particular support/conservation practice to the
equivalent soil loss with no support/conservation practice.
The p-value varies from 0.0 to 1.0, being highest for up and
down cultivation. The databases used to formulate input files
for the RUSLE model are presented in Table 1. The p-value in
the present case was allotted on the basis of land use types
(Table 2).

2.3.9 Soil loss (A)
Considering the appraised factors of RUSLE as different layers in

the map calculator, the average soil loss was estimated on annual
basis, along with its dispersal in the region under consideration. For

FIGURE 9
p factor map of the study basin.
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the factors R, K, C, and p, the raster layers were created in 10 m ×
10 m resolution, whereas, for the LS factor, it was in 12.5 m × 12.5 m
resolution. Further, the DEM was resampled into 10 m × 10 m
resolution using the “bilinear method” for creating the LS map for
carrying out the perfect overlay analysis. The average annual soil loss
was estimated using pixel-based information of all the factors of the
RUSLE model for each pixel having a spatial resolution of 10 m ×
10 m. For developing erosion severity map of the study area, the
assessed soil loss was characterized as very low (0.0–1.0 t ha-1 year-1),
low (1.0–5.0 t ha-1 year-1), medium (5.0–10.0 t ha-1 year-1), high
(10.0–50.0 t ha-1 year-1) and extreme (>50.0 t ha-1 year-1). This
classification was adopted by Pham et al. (Pham et al., 2018).

Figure 3 demonstrates the complete methodology adopted for the
implementation of the present study.

2.4 Prioritization of watersheds

After the estimation of the soil loss, a priority ranking of all
25 sub-watersheds was done for identifying the highly erosion/soil
loss-affected area. The watersheds having the highest and lowest
values of average annual soil loss were designated with highest and
lowest ranks, respectively for implementation of land and water
conservation measures.

TABLE 4 The area under different severity classes (very low, low, medium, high, and extreme) of soil loss.

Watershed Very low Low Medium High Extreme Total area

Area Area Area Area Area ha

ha % ha % ha % ha % ha %

WS1 28450.0 1.7 381941.5 8.4 35134.6 7.0 1185.4 1.9 2133.8 4.4 448845.3

WS2 25842.1 1.6 210530.1 4.6 13391.2 2.7 474.2 0.8 0.0 0.0 250237.7

WS3 31057.9 1.9 228785.6 5.0 29225.7 5.8 1659.6 2.7 0.0 0.0 290728.8

WS4 100523.4 6.1 421060.3 9.2 51755.1 10.3 2845.0 4.6 1659.6 3.4 577843.4

WS5 39830.0 2.4 291612.7 6.4 16435.4 3.3 1659.6 2.7 3082.1 6.3 352619.8

WS6 53343.8 3.2 195356.8 4.3 5551.9 1.1 1659.6 2.7 237.1 0.5 256149.1

WS7 67331.7 4.1 218116.8 4.8 26656.2 5.3 4504.6 7.2 0.0 0.0 316609.3

WS8 215034.7 13.0 353491.5 7.8 40070.8 8.0 5452.9 8.7 237.1 0.5 614287.1

WS9 38170.4 2.3 110243.8 2.4 12367.3 2.5 1422.5 2.3 5215.8 10.7 167419.9

WS10 5452.9 0.3 4741.7 0.1 1312.7 0.3 4978.8 8.0 0.0 0.0 16486.0

WS11 92699.6 5.6 175678.9 3.9 29544.2 5.9 3319.2 5.3 711.3 1.5 301953.2

WS12 36036.7 2.2 84638.8 1.9 13464.4 2.7 0.0 0.0 4030.4 8.3 138170.3

WS13 102657.2 6.2 107635.9 2.4 17252.6 3.4 2133.8 3.4 948.3 2.0 230627.7

WS14 238743.1 14.4 202706.4 4.4 34408.6 6.9 3793.3 6.1 1185.4 2.4 480836.9

WS15 238268.9 14.4 469899.5 10.3 47877.4 9.6 3793.3 6.1 2845.0 5.9 762684.1

WS16 94596.3 5.7 114511.3 2.5 8022.5 1.6 0.0 0.0 711.3 1.5 217841.3

WS17 5927.1 0.4 37222.1 0.8 9144.4 1.8 0.0 0.0 237.1 0.5 52530.7

WS18 2133.8 0.1 6875.4 0.2 1346.7 0.3 0.0 0.0 948.3 2.0 11304.2

WS19 55951.7 3.4 110006.7 2.4 24419.5 4.9 0.0 0.0 3082.1 6.3 193460.0

WS20 59982.1 3.6 265059.3 5.8 15026.7 3.0 1659.6 2.7 7112.5 14.6 348840.3

WS21 51684.2 3.1 264111.0 5.8 25394.9 5.1 12802.5 20.5 9720.4 20.0 363713.1

WS22 15884.6 1.0 128499.3 2.8 29662.5 5.9 6164.2 9.9 3319.2 6.8 183529.7

WS23 14225.0 0.9 20152.1 0.4 951.6 0.2 0.0 0.0 237.1 0.5 35565.8

WS24 15410.4 0.9 137271.3 3.0 6759.2 1.4 2845.0 4.6 237.1 0.5 162523.1

WS25 24419.6 1.5 15410.4 0.3 5433.8 1.1 0.0 0.0 711.3 1.5 45975.0

Total 1653657.3 100.0 4555559.3 100.0 500610.0 100.0 62353.0 100.0 48602.1 100.0 6820781.7
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3 Results and discussion

3.1 Land use land cover (LULC) of the study
area

The study area is mainly occupied by cropland (66.35%), three
major crops (wheat, barley, and maize) are grown over this region
(Dubey and Sharma, 2018) followed by grassland (17.54%), shrub land
(5.43%), barren/sparse vegetation (4.14%), built-up (2.85%), forest
(2.34%), water body (1.30%) and wetland (0.05%). The area under
cropland varies from 35.69% to 86.64%, being the lowest and highest in
WS25 and WS1, respectively. The area under grassland ranges from

0.0% to 35.06%, being the lowest and highest in WS18 and WS16,
respectively. The area under shrubland varies from 0.0% to 15.88%,
being the lowest and highest shares in WS18 and WS25, respectively.
The area under barren/Sparsh vegetation ranges from 1.56% to 15.01%,
being the lowest and highest inWS10 andWS17, respectively. The area
under built-up varies from 0.63% to 10.33%, being the lowest and
highest in WS25 and WS3, respectively. The area under forest varies
from 0.04% to 15.57%, being the lowest and highest inWS1 andWS25,
respectively. The area under water bodies varies from 0.09% to 36.62%,
being lowest and highest in WS3 and SW10, respectively. The area
under wetland varies from 0.0% to 0.78%, being highest in WS25. The
area under different LULCs is given in Table 3.

TABLE 5 Average annual soil loss under different severity classes in Banas basin.

Soil loss
category

Average annual soil loss
(t.ha-1. year-1) interval

Area
(ha)

Area
(%)

Total annual soil
loss (t. year-1)

Average annual soil
loss (t.ha-1.year-1)

Total annual
soil loss (%)

Very Low 0–1 1653657.3 24.2 1261427.6 0.8 5.8

Low 1–5 4555559.3 66.8 13547258.3 3.0 62.2

Medium 5–10 500610.0 7.3 2993754.3 6.0 13.8

High 10–50 62353.0 0.9 1437416.5 23.1 6.6

Extreme >50 48602.1 0.7 2526192.2 52.0 11.6

Total 6820781.7 100.0 21766048.8 84.7 100.0

FIGURE 10
Soil loss map of the basin.
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3.2 Watershed slope

The slope of the Banas basin varied from <2 to 90% as indicated
in Figure 4. The greater slopes of watersheds in this basin make this
region highly susceptible to soil loss in relation to the generation of
speedy runoff, resulting in severe water erosion with minimum
scope for groundwater recharge. The Aravalli axis divides this region
into two-halves; therefore, the region exhibits a sharp change from
steep land to a flat river plain.

3.3 Parameters of RUSLE

The R-value varied in the range of 147.41–443.85 MJ.mm.ha-1.h-
1 year-1 in the Banas basin. Figure 5 shows themap indicating the low
to high values of R with different colors. The red and dark blue colors
indicate the lowest and highest R values, respectively. The erosivity
rate is high in the eastern part than in the western part of the basin
due to the high rainfall amount in the eastern part. Studies report
that the north-eastern part of the Banas River Basin shows high
potential evapotranspiration, therefore erosivity is higher due to less
of soil moisture in the soil, while the rest of the area shows low
potential evapotranspiration rate indicating less erosivity in the
region (Kalyan et al., 2021). The K-factor varied in the range of
011–0.15 t.ha.h.MJ-1.mm-1 as indicated in Figure 6. The maximum
area of the basin was dominated by K-value in the range of

0.12–0.13 t.ha.h.MJ-1.mm-1, followed by 0.13–0.15 t.ha.h.MJ-1.mm-

1 and 0.11–0.12 t.ha.h.MJ-1.mm-1. The LS factor varied from <0.06 to
56.76%. The major part of the basin is dominated by and LS-value of
56.31%–56.76%, followed by 55.87%–56.31%, 54.31%–55.87%, and
0.06%–54.31%. Figure 7 shows the LS-factor map of the basin. LS-
factor helps to identify the places with a sudden change in slope,
which are more prone to erosion as a result of the accelerated motion
of the river channels in this region. Earlier studies have also reported
presence of tectonic sub-blocks in the region from hypsometric
analysis of this basin showing horst-graben structures (Sinha-Roy,
2002), therefore it is clear that water erosion is active in this region
due to unstable slope. The C-factor of the basin varied from 0.001 to
0.629. The basin is dominated by C-value in the range of
0.280–0.629, followed by 0.001–0.003, 0.090–0.280, and
0.003–0.090. Figure 8 shows the C-factor map of the basin. The
C-value is directly proportional to the LULC spread over the region.
Therefore, the major land cover spread has two distinct ranges of
C-factor as 0.280–0.680, which represents the agricultural area, and
0.001 or 0.003 is the area covered by shrub or barren land. The
P-factor varied from 0.5 to 1.0, indicating the non-applicability of
the conservation strategies in the basin for soil management. The
basin is dominated with a p-value of 0.5, followed by 0.8–1.0 and
0.5–0.8. The entire arable land falls under p-value 0.5 as forest land
and built-up, and scrub. Shrubland falls under the p-value of 0.8–1.0.
The p-value ranging from 0.5 to 0.8 is almost insignificant in the
region. Figure 9 shows the P-factor map of the basin.

FIGURE 11
Priority ranking of the watershed in relation to the severity of soil loss from their catchments.
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3.4 Area under different soil loss categories

The areas under different severity classes (very low, low, medium,
high, and extreme) of soil loss are reported in Table 4. The area under the
very low category of soil loss was recorded in the range of 0.1%–14.4%,
being lowest (2,134 ha) and highest (238,743 ha) in WS18 and WS14,
respectively. Under the low soil loss category, the area varied from 0.1%
to 10.3%, being lowest (4,742 ha) and highest (469,900 ha) inWS10 and
WS15, respectively. The area under the medium soil loss category varied
in the range of 0.2%–10.3%, being lowest (952 ha) and highest
(51,755 ha) in WS23 and WS4, respectively. Under the high soil loss
category, the area varied in the range of 0.0%–20.5%, being lowest
(0.0 ha) and highest (12,803 ha) in WS12 and WS21, respectively. The

area under the extreme soil loss category varied from 0.0% to 20.0%,
being lowest (0.0 ha) and highest (9,720 ha) in WS7 and WS21,
respectively. Irrespective of the different soil loss categories, the area
under soil loss was recorded in the range of 0.2%–11.2%, being lowest
(16,486 ha) and highest (762,684 ha) in WS10 and WS15, respectively.

3.5 Soil loss and priority ranking of
watersheds

The total area under very low, low, medium, high, and extreme
soil loss categories was recorded as 24.2, 66.8, 7.3, 0.9, and 0.7%, being
the lowest and highest under extreme and low soil loss categories,

TABLE 6 Soil loss under different severity classes and priority ranking of watersheds in terms of average annual soil loss.

Watershed Very
low (0–1)

Low
(1–5)

Medium
(5–10)

High
(10–50)

Extreme
(>50)

Total annual
soil loss
(t.year-1)

Total
area (ha)

Total soil
(t.ha-

1.year-1)

Priority
rank

Soil loss (t.year-1)

WS1 51468.0 2541100.0 85350.2 112500.0 93645.6 2884063.8 448845.3 6.4 6

WS2 12268.0 333000.0 17450.2 93105.0 48744.6 504567.8 250237.7 2.0 20

WS3 66668.0 399700.0 83150.2 61105.0 42644.6 653267.8 290728.8 2.2 17

WS4 76368.0 1301458.3 129850.2 69405.0 49344.6 1626426.0 577843.4 2.8 16

WS5 54968.0 387500.0 117750.2 49005.0 58844.6 668067.8 352619.8 1.9 21

WS6 12368.0 287800.0 81500.0 68205.0 108944.6 558817.6 256149.1 2.2 18

WS7 40768.0 347100.0 59250.2 14205.0 51444.6 512767.8 316609.3 1.6 22

WS8 35868.0 401200.0 98600.7 69305.0 62844.6 667818.3 614287.1 1.1 25

WS9 28068.0 409300.0 135450.2 46805.0 52544.6 672167.8 167419.9 4.0 10

WS10 50868.0 353300.0 52750.2 78500.0 98244.6 633662.8 16486.0 38.4 2

WS11 25968.0 395600.0 77350.2 45131.5 71744.6 615794.2 301953.2 2.0 19

WS12 32668.0 437800.0 49450.2 58605.0 39744.6 618267.8 138170.3 4.5 8

WS13 20268.0 401200.0 88650.2 99705.0 124920.6 734743.8 230627.7 3.2 13

WS14 35268.0 419700.0 92350.2 20705.0 173244.6 741267.8 480836.9 1.5 23

WS15 51468.0 450000.0 161550.2 63105.0 138244.6 864367.8 762684.1 1.1 24

WS16 23968.0 368300.0 92000.0 93005.0 136244.6 713517.6 217841.3 3.3 11

WS17 95281.8 209400.0 82100.0 14305.0 142544.6 543631.4 52530.7 10.3 5

WS18 27668.0 390700.0 350650.2 9205.0 181244.6 959467.8 11304.2 84.9 1

WS19 28268.0 401900.0 116450.2 62000.0 199044.6 807662.8 193460.0 4.2 9

WS20 75768.0 481100.0 185050.2 60200.0 200044.6 1002162.8 348840.3 2.87 14

WS21 95681.8 525500.0 318450.2 69000.0 35244.5 1043876.5 363713.1 2.87 15

WS22 95768.0 514500.0 287350.2 58900.0 30644.6 987162.8 183529.7 5.4 7

WS23 98268.0 241600.0 114250.2 40200.0 143744.6 638062.8 35565.8 17.9 4

WS24 25668.0 320400.0 26250.2 23105.0 122744.6 518167.8 162523.1 3.2 12

WS25 99768.0 1228100.0 90750.2 58105.0 119544.6 1596267.8 45975.0 34.7 3

Total 1261427.6 13547258.3 2993754.3 1437416.5 2526192.2 21766048.8 6820781.7 244.8
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respectively. The total soil loss was computed as 5.8% (1261427.6 t
year-1), 62.2% (13547258.3 t year-1), 13.8% (2993754.3 t year-1), 6.6%
(1437416.5 t.year-1) and 11.6% (2526192.2 t year-1) under very low,
low, medium, high and extreme soil loss categories (Table 5), being
lowest and highest under very low and low soil loss categories. The
average annual soil loss under five respective defined categories was
obtained as 0.8, 3.0, 6.0, 23.1, and 52.0 t ha-1.year-1, being lowest and
highest under very low and extreme soil loss categories, respectively.
Figure 10 shows the soil loss under different severity categories. The
soil loss under the very low soil loss category was recorded in the range
of 1.0%–7.9%, being lowest (12,268 t year-1) and highest in WS2
(99,768 t year-1) and WS25, respectively. Under the low category,
the soil loss was computed as 1.5%–18.8%, being lowest
(209,400 t year-1) and highest (2,541,100 t year-1) in WS17 and
WS1, respectively. In the medium category, the soil loss ranged
from 0.6% to 11.7%, being lowest (17,450 t. year-1) and highest
(350,650 t year-1) in WS2 and WS18, respectively. Similarly, under
the high category, the soil loss was computed in the range of 0.6%–
7.8%, being lowest (9,205 t year-1) and highest (112,500 t year-1) in
WS18 andWS1, respectively. Under the extreme category, the soil loss
was computed in the range of 1.2%–7.9%, being lowest (30,645 t year-
1) and highest (199,045 t year-1) in WS22 and WS19, respectively.
Irrespective of the different soil loss categories, the total soil loss varied
in the range of 2.4%–13.3%, being lowest (512,768 t year-1) and
highest (2,884,064 t year-1) in WS7 and WS1, respectively. The
average annual soil loss varied from 0.4% to 34.7%, being lowest
(1.1 t ha-1 year-1) and highest (84.9 t ha-1 year-1) in WS8 and WS18,
respectively. The average annual soil loss among different watersheds
was recorded in the range of 1.1–84.9 t ha-1 year-1. It was recorded to
be highest (84.9 t ha-1.year-1), followed by WS10 (38.4 t ha-1 year-1),
SW25 (34.7 t ha-1 year-1) andWS23 (17.9 t ha-1.year-1), whereas lowest
was recorded in WS8 (1.1 t ha-1 year-1), WS18 obtained the highest/
top priority rank in terms of the average annual soil loss (84.9 t ha-1

year-1) to be considered for land and water conservation planning and
implementation (Figure 11). Table 4 demonstrates the area under
different severity classes of soil loss. The soil loss under different
severity classes and priority ranking of watersheds in terms of average
annual soil loss is presented in Table 6.

4 Conclusion

Application of the RUSLE model integrated with the GIS
environment proved to be the easiest approach for computing
soil loss through sheet and rill erosion and predicting erosion risk
zones in the Banas basin. The remote sensing and GIS coupled use of
the RUSLE model predicted the average annual soil loss of about 0.8,
3.0, 6.0, 23.1, and 52.0 t ha-1year-1 under the soil loss categories of
very low (0–1 t ha-1 year-1), low (1–5 t ha-1 year-1), medium
(5–10 t ha-1 year-1), high (10–50 t ha-1 year-1) and extreme
(>50 t ha-1 year-1), respectively. The soil loss was recorded to be
highest (84.9 t ha-1 year-1) in WS18 (1st rank), because this region is
the junction point where the Aravalli hills take a steep slope and
divides the flow of Banas river in two major directions towards the
East andWest, followed byWS10 (38.4 t ha-1 year-1), which is located
in the semi-arid part of the basin and prone to high erosion, as it is
the fringe area where the climatic and anthropogenic units change

abruptly, SW25 (34.7 t ha-1 year-1) which is a region affected by the
high inflow of the Banas river in the Eastern part and WS23
(17.9 t ha-1 year-1), whereas it was lowest (25th rank) for WS8
(1.1 t ha-1 year-1), which is located in a stable region without
much interference of the river, climate and anthropogenic
activities. The total annual soil loss from the basin was recorded
as 21766048.8 tons. About 24.2, 66.8, 7.3, 0.9, and 0.7% area of the
Banas basin fall under very low, low, medium, high, and extreme soil
loss categories, respectively. This study opens the eyes of researchers
working in the domain of land and water management. It is strongly
recommended to carry out studies pertaining to the estimation of
soil loss through gully erosion using high-resolution datasets to
understand micro level impacts because this increases rate of land
degradation and also affects dams or reservoirs located on the
catchments, which further impacts the socio-economic life of the
people in the region. Most erosion-affected watersheds of the basin
in relation to priority ranking should be considered for land and
water conservation planning and implementation. The output of the
present study would be useful to policymakers, land use planners,
and decision-makers in planning and implementing land and water
conservation measures in the problematic areas/watersheds of the
Banas basin for controlling soil loss through water erosion.
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