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The seasonal prediction of sea-ice concentration (SIC), especially sudden loss
events, is always challenging. Weddell Sea SIC experienced two unprecedented
decline events, falling from 2.21% in the austral winter of 2015 to 0.02% in the austral
summer of 2016 and then falling to −2.32% in the austral spring of 2017. This study
proposes several statistical prediction models for Weddell Sea SIC and performs
them for a period that includes the sudden decline events. We identified six potential
oceanic and atmospheric factors at different leading times that relate to the variability
of the Weddell Sea SIC, including the Pacific Decadal Oscillation (PDO), Atlantic
Multidecadal Oscillation (AMO), Niño12 sea surface temperature (SST), Southeastern
Indian Ocean (SEIO) SST, Antarctic sea level pressure (SLP), and Weddell Sea surface
air temperature (SAT). Multiple linear regression models were employed to establish
equations to simulate the variation of Weddell Sea SIC under three groups of climate
factors for 1979–2012. Thesemodels could effectively reproduce the low-frequency
variation of SIC in the Weddell Sea during the simulation period and the high-
frequency values through two kinds of error-correction methods developed in this
study. After applying these error correction methods, the correlation coefficients
(absolute errors) of these models were enhanced (decreased) during the simulation
period. In the prediction period of 2013–2018, the corrected models generally
predicted well the sudden losses of Weddell Sea SIC. The possible primary factors
influencing these sudden losses were the PDO, Niño12 SST, Southern Annular Mode
(SAM), and SAT during 2015–2016 and the AMO, PDO, Niño12 SST, SAM, and SAT
during 2016–2017.
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1 Introduction

The Antarctic, one of the planet’s main heat sinks, retains a crucial place in both the
southern hemisphere and the overall climate system (Mayewski et al., 2009), having profound
effects on atmospheric and oceanic circulation and global energy transport (King and Turner,
1997). Antarctica is covered in ice all year round and is surrounded by sea-ice, which has great
potential to contribute to climate variability and change (Bintanja et al., 2013) and exhibits
strong interannual variability due to the absence of encircling land (King and Turner, 1997). Sea
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ice plays a variety of roles in processes involving radiation, energy, and
mass transfer, including changing the upper ocean’s albedo,
obstructing the exchange of heat and water vapor between the
ocean and atmosphere (Turner et al., 2017), changing ocean
salinity, and influencing the Antarctic bottom waters due to global
ocean circulation (Ohshima et al., 2013; Kitade et al., 2014; Haumann
et al., 2016). It can affect the climate system on various time scales.
Moreover, sea-ice is a crucial component of the Antarctic ecosystem,
providing a habitat for seals, penguins, and krill (Meyer et al., 2017;
Jenouvrier et al., 2021) and is essential to the continent’s
biogeochemical processes.

Since the first satellite observations in 1979, quantitative
descriptions and understanding of sea-ice variability have emerged.
In contrast to the rapid decline of sea-ice in the Arctic (Serreze and
Stroeve, 2015), Antarctic sea-ice extent (SIE) had been on a slow but
significant upward trend with remarkable regionality (Parkinson and
DiGirolamo, 2016; Comiso et al., 2017). The Antarctic SIE continued
to set new records for the highest value in September 2012–2014,
reaching 12.8 million km2 (Turner et al., 2015), which ran counter to
the concept that sea-ice will melt under a global warming scenario; its
failure to do so is known as the “Antarctic paradox” (King, 2014).
However, there has been a noticeable change in recent years. The
Antarctic SIE of nearly all oceans reduced, reaching aminimum record
of 2.07 million km2 in 2017 (Turner and Comiso, 2017; Schlosser et al.,
2018). The SIE in the Weddell Sea has the greatest decline, with a loss
of 1 million km2 since 2013. Nevertheless, this decline was absent from
several areas of the western Ross Sea and the Indian Ocean (Parkinson,
2019; Eayrs et al., 2021). Thereafter, the Antarctic SIE slowly
rebounded (Li et al., 2021).

There have been numerous studies on the origins of the recent
decline of Antarctic sea-ice. In terms of atmospheric circulation,
the northerly wind anomaly induced by pre-austral spring zonal
wave 3 (ZW3) provided a precondition for sea-ice reduction in the
summer of 2016 (Schlosser et al., 2018; Wang et al., 2019), which
has also been confirmed in simulation experiments (Kusahara et al.,
2018). The weakening ZW3 and Southern Annular Mode (SAM) in
negative phase together led to sea-ice reduction, which was
associated with the downward transmission of the
Madden–Julian Oscillation (MJO) and stratospheric polar vortex
anomaly signals (Seo and Son, 2012; Kidston et al., 2015). Frequent
cyclone activity was another reason for the decrease in Weddell Sea
sea-ice (Jones and Simmonds, 1993; Turner et al., 2020). In terms of
the ocean, the El Niño–Southern Oscillation (ENSO) can usually
influence the variability of Antarctic sea-ice through atmospheric
bridges like the Pacific South American (PSA) pattern (Mo and
Paegle, 2001; Kwok and Comiso, 2002; Stuecker et al., 2015;
Stuecker et al., 2017). However, the relationship between ENSO
and Antarctic sea-ice weakened after 2002 (Dou and Zhang, 2022),
and experiments with actual sea surface temperature (SST)
anomalies forcing flat ocean coupled models suggested that the
contribution of El Niño was not significant (Purich and England,
2019); thus, the contribution from ENSO to sea-ice loss would
require additional model validations. The tropical Indian Ocean
played a more important role than the Pacific Ocean, and a strong
negative phase of the Indian Ocean Dipole (IOD) occurring in the
spring of 2016 inspired a ZW3-like circulation anomaly (Meehl
et al., 2019; Purich and England, 2019; Wang et al., 2019). In
addition, the warm spring polar ocean was also conducive to sea-ice
reduction (Lecomte et al., 2017; Meehl et al., 2019). The occurrence

of large interglacial lakes in summer was an important cause of sea-
ice reduction in the Weddell Sea (Swart et al., 2018; Turner et al.,
2020).

Numerical model simulations are also useful methods for
enhancing our understanding of sea-ice. Its interaction with the
ocean and atmosphere provides the physical basis for simulating
and predicting sea-ice variation. The predictability of Arctic sea-ice
on various time scales in different seasons has been extensively
explored (Guemas et al., 2016; Mohammadi-Aragh et al., 2018;
Cruz-García et al., 2019). In addition, statistical models have been
used to predict sea-ice variation. Wang et al. (2018) compared the
weekly prediction effects of the Markov chain model and vector
autoregressive model on sea-ice in the Arctic. Yuan et al. (2016)
established the Markov chain model at a seasonal to intra-seasonal
scale. Machine learning, particularly deep learning, has also been
recently used to predict sea-ice variation to tackle non-linear
interaction issues (Kim et al., 2020; Liu et al., 2021a). Liu et al.
(2021b) trained convolutional long short-term memory
(ConvLSTM) networks to predict SIC at weather to sub-seasonal
scales in the Barents Sea. Whereas the prediction of Antarctic sea-ice
has only recently received widespread international attention, it has
received relatively little research. Chen and Yuan (2004) built Markov
chain models to provide one of the first explorations of seasonal
predictions of sea-ice variation in the Antarctic. Holland et al. (2013)
evaluated the initial-value predictability of Antarctic sea-ice in the
Community Climate SystemModel 3. Coupled climate models are also
major tools for simulating sea-ice evolution. Hosking et al. (2013) used
the CMIP5 model to conduct a preliminary assessment of SIE
prediction. Polvani and Smith (2013) used this model to
demonstrate how natural variability contributes to Antarctic sea-ice
change more than anthropogenic factors. Shu et al. (2020) employed
CMIP5 and CMIP6 models to reproduce the seasonal changes of SIE,
although their simulation ability was limited.

The loss of the Weddell Sea SIC was the largest contributor to
total Antarctic sea-ice reduction since 2015, accounting for 34%,
with the negative anomaly continuing until 2020. This study aims
to investigate the variation of Weddell Sea SIC and the following
questions. Are the atmospheric and oceanic factors prior to the
variation of Weddell Sea SIC? Can the models established by those
potential predictors simulate the variation of Weddell Sea SIC
during past decades? Can those seasonal prediction models predict
the sudden decrease of Weddell Sea SIC in recent years? Which
potential predictors are the main contributing factors to the sudden
decrease of Weddell Sea SIC? With these questions in mind, we
identified six potential influence factors of the variation of Weddell
Sea SIC, established three seasonal prediction models of Weddell
Sea SIC according to multiple linear regression equations,
performed prediction during the period 2013–2018, and
explored the main contributions and influences of factors in the
decline of Weddell Sea SIC. The paper is organized as follows: the
methods and datasets are described in Section 2. The declines of
SIC in the Weddell Sea are shown in Section 3. The potential
oceanic and atmospheric predictors are identified in Section 4.
Three seasonal prediction models are established in Section 5, and
two error correction methods are developed in Section 6. The
predictions of sudden losses of Weddell Sea SIC are shown in
Section 7. The possible causes of recent sudden losses of Weddell
Sea SIC are revealed in Section 8, and summary and discussion are
given in Section 9.

Frontiers in Environmental Science frontiersin.org02

Zhao et al. 10.3389/fenvs.2023.1135165

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1135165


2 Data and methods

2.1 Data

Four types of datasets and three indices were used in this study.
The sea-ice data were obtained from the National Snow and Ice Data
Center (NSIDC), which provided a Climate Data Record (CDR) of
sea-ice concentration from Passive Microwave Data version 3 (Peng
et al., 2013; Meier et al., 2017). This work only focused on the southern
hemisphere and built 168 seasonal samples based on monthly merged
SIC datasets from 1978 to 2020 on a 25 km × 25 km grid (https://nsidc.
org/data/g02202/versions/3).

The second dataset was themonthly median Hadley Centre Sea Ice
and Sea Surface Temperature data set (HadISST) from the Met Office
Marine Data Bank with 1 × 1° resolution from 1975 to 2018 (Rayner,
2003) (https://www.metoffice.gov.uk/hadobs/hadisst). In addition,
this study used a Hadley Centre and the fifth Climatic Research
Unit at the University of East Anglia temperature (HadCRUT5)
gridded dataset of global historical surface air temperature (SAT)
monthly anomalies relative to the reference period of 1961–1990
(Morice et al., 2021). The dataset was on a 5° grid from 1975 to
2018 and was a collaborative production of the Met Office Hadley
Centre and the Climatic Research Unit at the University of East Anglia
(https://www.metoffice.gov.uk/hadobs/hadcrut5).

The fourth dataset was the fifth-generation ECMWF reanalysis
(ERA5) mean sea level pressure (SLP) dataset produced by the
European Centre for Medium-Range Weather Forecasts (ECMWF)
(Hersbach et al., 2020). We took monthly data from the
1975–2018 range on a 1 × 1° grid (https://cds.climate.copernicus.eu).

We also used the Pacific Decadal Oscillation (PDO) index, Atlantic
Multidecadal Oscillation (AMO) index, and Niño12 SST index for
1975–2018. The PDO is defined as the leading mode of monthly SST
anomalies in the North Pacific poleward of 20°N (Mantua et al., 1997). Its
positive (negative) phase manifests positive (negative) SST anomalies in
the eastern North Pacific and negative (positive) SST anomalies in the
central and western North Pacific. The AMO is identified as the large-
scale multidecadal fluctuations of the detrend low-pass filtered average
SST anomalies in the NorthAtlantic Ocean typically over 0–80°N (Enfield
et al., 2001). The Niño12 SST index is also one of the indices used to
monitor SST anomalies averaged across a given region in the tropical
Pacific. It usually represents El Niño conditions in coastal South America
(0–10°S, 80°–90°W).

This paper employed the austral seasonal mean variables averaged
from monthly data and divided per year into austral spring (previous
September–October–November, SON), summer (previous
December–current January–February, DJF), autumn (current
March–April–May, MAM), and winter (current June–July–August,
JJA). The analyses of this paper were based on the austral seasons.

2.2 Method

Multiple linear regression refers to a statistical technique that is used
to predict the outcome of a variable based on the value of two or more
variables (Xiao et al., 2021). Linear regression attempts to establish the
relationship between the variables along a straight line. This study used a
multiple linear regression model to simulate and predict the SIC anomaly
in the Weddell Sea. The multiple linear regression equation is as follows.

~Y � b0 + b1X1 + b2X2 +/ + bpXp, (1)
where ~Y is the predicted value of the dependent variable, b0 is the
intercept, X1 through Xp are independent variables or predictors, b1
through bp are the regression coefficients for X1 through Xp, and
respectively represent the change in Y relative to a one-unit change
in X. The significance of the equation can be judged by the
magnitude of the variance test or the complex correlation
coefficient. If significant, the equation is considered statistically
significant, and the independent variable X has an effect on the
dependent variable Y. A t-test is used to check the significance of
individual regression coefficients.

In addition, the jackknife method (Efron, 1979) was used to
check the stability of the prediction model. The jackknife is based
on the following steps. During the fitting period, the entire time
series excludes one group of data at a time, and the regression
model is rebuilt with the remaining data. The statistical indicators
such as the complex correlation coefficient (R2), the coefficient of
complex determination after adjustment for degrees of freedom
(Radj

2), the F-test value, and the significance level (p-value) are
calculated (Huang, 2004). Then, a group of data is excluded year
by year, and the aforementioned steps are repeated to obtain
multiple sets of statistical indicators. If the statistical indicators
are close to the results of the original regression model, including
all years of the fitting period, and the range of variation is
minimal, the regression model is stable and reliable (Liu et al.,
2013).

The significance tests of the correlation coefficient in this work
were all calculated based on the effective degrees of freedom (Pyper
and Peterman, 1998).

Neff ≈
N

1 + 2∑N
k�1

N − k

N
r1 k( )r2 k( )

,
(2)

where N is the number of samples and k represents the time lag value.
r1 and r2 are the autocorrelation coefficient with lagging k of two
sequences. If not stated, all two-sided t-tests in this study were based
on the effective degrees of freedom.

This study evaluated the model performance by following three
accuracy metrics: the anomaly correlation coefficient (ACC), root-
mean-square error (RMSE), and mean absolute error (MAE). The
ACC is a skill score metric to assess the similarity quality of the
prediction model, and its value is between −1 and 1. The RMSE is used
to measure the deviation of the predicted value from the observed
value. The MAE can accurately depict the actual situation of the
prediction error (Kim et al., 2020). The calculation formulas are as
follows.

ACC

� ∑ predicted SIC − predicted SIC( ) observed SIC − observed SIC( )�����������������������������∑ predicted SIC − predicted SIC( )2√ ����������������������������∑ observed SIC − observed SIC( )2.√
(3)

RMSE �
��������������������������������
1
N

∑N
i�1

predicted SICi − observed SICi( )2√√
. (4)

MAE � 1
N

∑N
i�1

predicted SICi − observed SICi

∣∣∣∣ ∣∣∣∣ . (5)
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FIGURE 1
Trend of Antarctic SIC during 2014–2020 (unit: % per season). The bold dots denote statistically significant change at 95% confidence level.

FIGURE 2
Time series of Weddell Sea averaged SIC anomaly 1979–2020 (unit: %). The blue line represents the averaged seasonal anomaly, and the red line denotes
the nine-season running average of the SIC anomaly.
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3 Declines of Weddell Sea SIC in recent
years

The trend of Antarctic SIC from 2014 to 2020 is shown in Figure 1.
It can be seen that the most significant fall was on the eastern edge of
multi-year ice in the western and in southeast corner of the Weddell
Sea, where the downward trend in most areas surpassed 0.006% per
season, and the maximal domain significantly exceeded 0.012% per
season. Other regions with declining tendencies were along the outer
edge of East Antarctica and in the northern Bellingshausen and
Amundsen Seas. While increased SIC was located in the southern
Bellingshausen and Amundsen Seas and part of the Indian Ocean near
Antarctica, the increasing trends in all regions failed to pass the
significance test. Therefore, we focused on the changes of SIC over
the Weddell Sea and chose the region of 60°–80°S and 60°W–0° as the
research domain in this study.

As shown in Figure 2, the time series of Weddell Sea SIC had
risen insignificantly throughout the past four decades. SIC in the
Weddell Sea declined in the 1980s and increased until the mid-
1990s and then underwent another temporary fall for about 5 years.
At the beginning of the 21st century, it began to gradually increase
again and reached a record-breaking peak value of 2.42% in 2014.
However, there were two significant sharp declines of the Weddell
Sea SIC anomaly after 2014, as the anomaly dropped from 2.21% in
the austral winter of 2015% to 0.02% in the austral summer of
2016 and from 0.42% in the austral autumn of 2016% to −2.32% the
next spring. The positive anomaly first dropped close to zero and
then dropped to a negative value, reaching the lowest on record for
SIC in the Weddell Sea before rebounding after 2018. It had

recovered to positive by 2020. SIC in the Weddell Sea had
significant periods of one to two decades based on the wavelet
analysis (not shown), which were similar to that of PDO. Therefore,
we suspected that the PDO and even the global ocean might be
potential factors affecting the change of sea-ice. In other words,
Weddell Sea SIC experienced an unprecedented reduction from
2015 to 2018 and contributed the most in the following overall
significant decline in Antarctic sea-ice in the spring of 2016
(Turner et al., 2017). Therefore, the variation of the
Weddell Sea SIC is the key to understanding the variation of
Antarctic SIC.

The spatial evolution of the SIC anomaly in the Weddell Sea in the
austral summer from 2015 to 2018 is shown in Figure 3. The SIC
anomaly in the summer of 2015 was positive, exceeding 0.3% mainly
in the northwest and southeast Weddell Sea (Figure 3A). There was no
discernible changing trend in the western multi-year ice region. The
SIC anomaly thence decreased in 2016. Only the northeastern and
southeastern parts of the Weddell Sea still exhibited positive
anomalies, but the extent was much reduced (Figure 3B). The SIC
anomaly in the northwestern Weddell Sea was negative but was only
around 0.15%. The SIC anomaly in the eastern boundary of the multi-
year ice in the western Weddell Sea remained positive in the summer
of 2017. After the second dip, the SIC anomaly in the other regions was
negative, except in the western Weddell Sea; those in the northwest
and southeast reached −0.3% (Figure 3C). Thereafter, the SIC anomaly
began to recover and increased at a slower rate; the positive anomaly
center was more than 0.25% in the northwest, but the negative
anomalies still remained in the large area of the east, while the
largest anomaly was observed in the southeast in 2018 (Figure 3D).

FIGURE 3
Anomaly of Weddell Sea SIC in austral summer of 2015 (A), 2016 (B), 2017 (C), and 2018 (D) based on the climatology of 1979–2020 (unit: %).
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4 Potential oceanic and atmospheric
predictors

We calculated the Pearson correlation coefficients between the
SST, SLP, and SAT variables at different leading times and Weddell
Sea SIC and selected the correlation maps shown in Figure 4 with
maximal significant grids. The significant correlation between
Weddell Sea SIC and ten-season ahead SST was mainly distributed
in the 20°N poleward of the Pacific Ocean, showing negative
correlations along the western coast of North America and positive
correlations in the region from the Sea of Japan to the central North
Pacific. This pattern was similar to that of the PDO negative phase.

There were also insignificant positive and significant negative
correlations in the South Pacific and East Pacific, respectively. The
distribution of correlation in the Pacific Ocean seemingly assembled
the negative phase of the Interdecadal Pacific Oscillation (IPO). We
also calculated the correlation coefficients between the Weddell Sea
SIC and simultaneous and ten-season leading IPO, respectively. The
former was insignificant while the latter was less than with PDO. In
addition, the correlation between SST in the South Pacific Ocean and
the mid-East Pacific Ocean and the Weddell Sea SIC was insignificant
(Figure 4A). Therefore, the PDO (IPO) was (not) identified as a
potential predictor of Weddell Sea SIC. The convective heating
anomalies caused by the SST anomaly in the Pacific Ocean have

FIGURE 4
Correlation coefficients betweenWeddell Sea SIC and SST (A–D), SLP (E) and SAT (F) at different leading times. The leading times are indicated on the left
of each panel. The key oceanic regions related to the Weddell Sea SIC shown in the black boxes. The stippling in all the panels denotes the 95% confidence
level based on the two-sided student t-test.
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contributed to the Amundsen Sea Low and the development of sea-ice
through the abnormal Rossby wave response (Meehl et al., 2016).
There were also significantly negative correlations along the western
coast of northern South America, with the maximal value exceeding
0.25 (Figure 4B). This region (82°–98°W, 10°–18°S) was quite close to
the Niño12 region, so we calculated the correlation coefficient between
them with the 168 samples. It was 0.79 and indicated their intimate
relationship. Accordingly, we selected the SST anomaly in this area as
a new index as the deputy of the well-known Niño12 SST, which can
represent the role of ENSO to some extent. On one hand, ENSO can
excite an anomalous Rossby wave response in the mid-high latitudes
of the southern hemisphere to affect the intensity of the Amundsen Sea
Low. The resulting meridian anomaly in the southern hemisphere can
influence the dynamic transport and the heat flux between atmosphere
and ocean, thus changing the distribution of sea-ice in the Antarctic
(Liu et al., 2002; Purich and England, 2019). On the other hand, ENSO
can also influence Antarctic sea-ice by affecting the Peruvian cold
current and other ocean processes. In the Indian Ocean, there was a
significantly positive correlation in the southeastern Indian Ocean and
to the south of Australia (Figure 4C). Since the Indian Ocean Dipole
(IOD) has contributed to the decline of sea-ice in Antarctic (Wang
et al., 2019), we also calculated the correlation between Weddell Sea
SIC and the IOD mode index (Saji et al., 1999), which was not
significant. Therefore, the SST anomaly in this area (110°–140°E,
35°–45°S) was considered a potential influencing factor and defined
as the Southeastern Indian Ocean (SEIO) SST. The tropical convection
over the Indian Ocean can excite the abnormal Rossby wave following
the waveguide of the high-latitude westerly jet eastward across the
Southern Ocean. The Rossby wave contributes to increased
cyclone–anticyclone anomalies in the southwestern and
southeastern South America and the ZW3 anomaly pattern and
thus changes the variability of sea-ice (Wang et al., 2019).
Furthermore, Weddell Sea SIC was closely related to North
Atlantic SST. There were positive correlations in the northern and
tropical North Atlantic Ocean, with significant maximal correlation in
the former exceeding 0.3 and insignificant correlation in the latter
(Figure 4D). Such spatial patterns of correlation in the Atlantic Ocean
were similar to those of AMO. Xiao et al. (2014) chose the SST
anomaly in the northernmost and southernmost parts of the North
Atlantic Ocean as a new index, which was highly correlated with the
AMO index; this new index essentially represented the variation of the
AMO. Therefore, the sum of half of the SST anomalies in these two
regions (55°–15°W, 50°–62°N and 50°–20°W, 5°–20°N) was defined as a
new index to represent the AMO variation in this study. The warming
SST associated with the AMO can reduce the surface level pressure of
the Amundsen Sea Low and result in the redistribution of dipole-like
sea-ice between the Ross Sea and the
Amundsen–Bellingshausen–Weddell Sea and the warmer Antarctic
Peninsula (Li et al., 2014). In summary, according to the analysis of
global SST anomalies, the PDO, AMO, Niño12, and SEIO SSTs,
associated with the Weddell Sea SIC variation, were identified as
potential oceanic predictors of Weddell Sea SIC.

In addition, we also took into account the contribution of
atmospheric predictors from the relationship between SLP and
Weddell Sea SIC. There was a positive correlation around
Antarctica (Figure 4E), indicating that Weddell Sea SIC tended to
increase when SLP in Antarctica was positive. The Southern Annular
Mode is the zonal pressure difference between the 40°S and 65°S
latitudes, and its negative phase corresponds to higher SLP anomalies

over the Antarctic and lower ones along the belt of 30°–50°S latitude
(Nan and Li, 2003). The correlation pattern in Figure 4E assembled the
negative phase of SAM, especially in high latitudes. The correlation
between Antarctic SLP (65°–85°S) and the SAM index was −0.82,
exceeding the 99.9% confidence level, suggesting that the Antarctic
SLP anomaly could represent the variation of the negative SAM index.
The correlation coefficient between the SAM index at the three-season
leading time and Weddell Sea SIC was −0.14, which was smaller than
that between SLP and SIC of 0.24. Therefore, we used the negative
Antarctic SLP anomaly to represent the SAM index in this study, and
we considered the new SAM index as a potential influencing factor of
Weddell Sea SIC. The negative phase of SAM can weaken the near-
surface circumpolar west wind and produce a positive wind stress curl
and southward Ekman transport. The warmer surface water is
transported south and results in increased SST (Meehl et al., 2019).
There was significant negative correlation between SIC and the
simultaneous SAT over the Weddell Sea, which indicated that the
higher the SAT, the less Weddell Sea SIC there is (Figure 4F). The
simultaneous Weddell Sea SAT cannot be used as a predictor of
Weddell Sea SIC. If the reliable Weddell Sea SAT is used a dependent
variable in the prediction model of Weddell Sea SIC, it is helpful to
learn the maximal improvement of the prediction model under the
situation of a perfect prediction of Weddell Sea SAT. Consequently,
the Weddell Sea SAT was considered a simultaneous influencing
factor of Weddell Sea SIC. The increased air temperature inhibits
the development of sea-ice. Therefore, we identified the PDO, AMO,
Nino12 and SEIO SSTs, SAM, and SAT as potential predictors of
Weddell Sea SIC.

Figure 5 depicts the leading–lagged correlation coefficients
between Weddell Sea SIC and the aforementioned six potential
predictors. It was found that both SEIO and Niño12 SSTs led the
changes of Weddell Sea SIC by five seasons, AMO by eleven, PDO by
ten, and SAM by three seasons—all of which had passed a two-sided
t-test with the 95% confidence level. The most significant correlation
coefficient was between SAT and SIC in the same period. The
influence of ocean factors (such as PDO, AMO, SEIO, and
Niño12 SSTs) on Weddell Sea SIC was ahead of these of
atmospheric factors for at least more than 1 year. This might be
explained by the ocean’s slow motion and long-term memory
compared to relatively quick atmospheric changes. Only the
atmosphere above Antarctica and the global oceans in both the
northern and southern hemisphere potentially influenced the
variation of the Weddell Sea SIC. The leading times of the ocean
variables in the southern hemisphere (Niño12 and SEIO SSTs) were
five seasons, which were shorter than the leading times of the ocean
factors in the northern hemisphere (PDO and AMO) of ten seasons.
The relationships between oceanic and atmospheric factors at different
leading times and Weddell Sea SIC were significant. These leading
oceanic and atmospheric factors could be used to predict the
variability of Weddell Sea SIC in advance.

5 Establishing seasonal prediction
models

This section employed the aforementioned six factors at individual
leading times to establish the seasonal prediction equations ofWeddell
Sea SIC based on the multiple linear regression models. We first used
data sets in the fitting period 1979–2012 to build models to simulate

Frontiers in Environmental Science frontiersin.org07

Zhao et al. 10.3389/fenvs.2023.1135165

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1135165


variations of Weddell Sea SIC and then examined the performance of
the model during the predicting period 2013–2018.

In order to explore the contributions of atmospheric and oceanic
predictors to changes in the Weddell Sea SIC, we divided the
aforementioned six predictors into three groups (Table 1 to explore
the independent influence of the oceanic factors (including the PDO,
AMO, SEIO, and Niño12 SSTs), the combined effects of the
aforementioned oceanic factors and SAM, and the joint effects of
oceanic factors, SAM, and Weddell Sea SAT. The third group of
potential influencing factors (including the leading PDO, AMO, SAM,
SEIO, and Niño12 SSTs and simultaneous Weddell Sea SAT) can help
us understand the best simulation we can achieve with the precise
prediction of Weddell Sea SAT. According to the three groups of
potential influencing factors, three equations were established based
on the multiple linear regression models:

S̃ICi � 0.05 − 0.05 p PDOi−10 − 0.22 p Ni~no12i−5
+0.16 p SEIOi−5 + 0.07 p AMOi−11.

(6)

S̃ICi � 0.03 − 0.03 p PDOi−10 − 0.20 p Ni~no12i−5 + 0.17 p SEIOi−5
+0.07 p AMOi−11 + 0.20 p SAMi−3.

(7)
S̃ICi � 0.02 − 0.06 p PDOi−10 − 0.17 p Ni~no12i−5 + 0.21 p SEIOi−5

+0.08 p AMOi−11 + 0.24 p SAMi−3 − 0.31 p SATi.

(8)
These predictionmodels aimed to investigate the contribution of only

leading oceanic factors (Eq. (6)), joint contributions of leading oceanic

factors and SAM (Eq. 7), joint contributions of leading oceanic factors,
SAM, and a perfect prediction of simultaneous Weddell Sea SAT (Eq. 8)
to the variations in Weddell Sea SIC. The Radj

2 of the three models were
respectively 0.117, 0.177, and 0.319. All these prediction models were
credible and reasonable because they were statistically significant after
F-testing at the 99.9% confidence level. Furthermore, the stabilities of Eqs
(6)–(8) were examined by the jackknife method, with the results of Eq. (8)
shown in Table 2. The R2 of the equation with all predictors was 0.349, the
Radj

2 was 0.319, and the F-test value was 11.537, which passed the
significance test at the 99.9% confidence level (p < 0.001). The average
R2, Radj

2, and F-test value by jackknife were, respectively, 0.349, 0.319, and
11.461: close to the original values of Eq. (8). The relative deviation of the
average R2 by the jackknife method was 0.06%, with a variation range
of−5.3%–6%, and the Radj

2 was 0.07%, with a range of−6.2%–6.7%within
the bounds of reason. Therefore, both the F- and jackknife tests supported
the high stability of these three seasonal prediction models.

Figure 6 shows the simulated and observed variations and
observed running mean of Weddell Sea SIC. All three prediction
models generally reproduced low-frequency variability, although they
were smaller extreme values of Weddell Sea SIC. The correlation
coefficients between observed (seven-season running mean) Weddell
Sea SIC and simulations by the models with factors in Groups 1, 2, and
3 were 0.38, 0.46, and 0.59 (0.50, 0.44, and 0.38) respectively. All the
correlation coefficients passed the significant test at the 99%
confidence level, suggesting that these models had generally
effectively simulated the variation of Weddell Sea SIC during

FIGURE 5
Leading–lagged correlation coefficients between Weddell Sea SIC and various climate predictors listed on the right of the panel. Positive abscissa value
indicates that the predictor is ahead of Weddell Sea SIC, and negative value indicates that the factor lags behind Weddell Sea SIC. Themaximum correlation is
identified by a vertical line of corresponding color. The black dashed lines denote correlation coefficients passed the two-sided t-test with the 95% confidence
level using the effective degrees of freedom.

TABLE 1 Three groups of six predictors for the seasonal prediction models.

Group no. Predictors

Group 1 SST (PDO, AMO, SEIO, and Niño12 SSTs)

Group 2 SST (PDO, AMO, SEIO, and Niño12 SSTs), SAM

Group 3 SST (PDO, AMO, SEIO, and Niño12 SSTs), SAM, Weddell
Sea SAT

TABLE 2 Statistical parameters for the model including SST, SAM, and SAT and
the test results of the jackknife method.

Model Jackknife Deviation

R2 0.349 0.349 (0.332–0.371) 0.06% (−5.3%–6%)

Radj
2 0.319 0.319 (0.300–0.342) 0.07% (−6.2%–6.7%)

F 11.537 11.461 (10.588–12.605)

P 2.61e-10 3.67e-10
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1979–2012. The correlation coefficient between the observed seven-
season running mean Weddell Sea SIC and the simulations with only
oceanic factors (Eq. (6)) was the smallest and decreased after
atmospheric factors contained in the prediction models (Eq.(7); (8).
These facts implied that the simulation ability of the prediction models
on the low frequency ofWeddell Sea SIC decreased after consideration
of the high-frequency atmospheric signals. Similarly, the simulations
of Weddell Sea SIC were improved in the prediction models (Eq.(7);
(8) by adding the atmospheric factors, suggesting better simulation
ability on the low frequency of Weddell Sea SIC in the prediction
model with only leading oceanic factors. This considered that the
correlation coefficients between the simulated Weddell Sea SIC and
the low-frequency (seven-season running mean) observed one decline
after employing the atmospheric factors, that is, the improvements of
the correlation coefficients between observed and simulated Weddell
Sea SIC in Eqs.(7); (8) resulted from the better performance of these
predictor models on high-frequency variability after using the
atmospheric factors. Furthermore, the RMSE (MAE) of the three
models were 0.75 (83.48), 0.72 (80.20), and 0.65 (71.39) (Table 3.
These results imply that the declines of the errors resulted from better
simulation of high-frequency variation of Weddell Sea SIC after
adding the atmospheric factors, which supported the
aforementioned conclusion. Compared with the curves of those
observed, simulated Weddell Sea SIC was close to it during the
periods 1980–1993 and 1996–2000 and showed a relatively large

difference with that observed in 1987, 1993–1995, and 2002.
Generally, simulated Weddell Sea SIC effectively reproduced the
observed low-frequency variation. However, the simulated high-
frequency variation of Weddell Sea SIC was not good for the low-
frequency one during 1979–2012. Therefore, it is necessary to modify
the models in order to improve the simulation results because there are
system errors between the simulations and the observations.

6 Error correction methods for the
prediction models

We first analyzed the characteristics of errors in the whole fitting
period. As shown in Figure 7, the errors were generally positive
(negative) when the observations were positive (negative). The in-
phase rate of the errors and observations was 81.6%. The errors
were negative during 1981–1991 and 1996–2002 and positive during
1993–1995 and 2003–2012. The values of the errors were generally half
of the observations since 2003. During the fitting period, the ratio of the
errors to the observations was about 0.27, so the observed values were
about 1.37 times those of simulated ones. Therefore, we developed a
method to correct the high-frequency simulation, shown in Eq. (9). This
error correction method enhanced the simulated Weddell Sea SIC
anomaly in which the absolute values of the simulations were greater
than or equal to 0.63 with 1.37 times amplification, with the others kept

FIGURE 6
Weddell Sea SIC anomaly observation, seven-season running average of observation, and simulation by multivariate linear regression equations using
three groups of predictors shown in Formulas 6, 7, and 8 in fitting period (unit: %). ACCs of those three models are indicated on the panel’s left.

TABLE 3 Evaluations of simulated and corrected Weddell Sea SIC anomaly in the whole fitting period (1979–2012).

Simulation Error correction 1 by Eq. 9

ACC RMSE MAE ACC RMSE MAE

SST 0.38 0.75 83.48 0.43 0.73 80.59

SST + SAM 0.46 0.72 80.20 0.50 0.71 76.50

SST + SAM + SAT 0.59 0.65 71.39 0.60 0.65 71.07
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unchanged. We tried to set the threshold values to 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, and 0.9 to find the changes of ACC, RMSE, and MAE. The
threshold values were 0.63, corresponding to the maximal improvement
of the aforementioned evaluating indicator. Therefore, we chose
threshold values of 0.63 in Eq. (9).

S̃ICcorrection1 � S̃IC, S̃IC| |< 0.63
1.37 p S̃IC, S̃IC| |≥ 0.63.

{ (9)

The simulatedWeddell Sea SIC anomalies were improved after the
aforementioned error correction method for 1981, 1983, 1996, 1999,
2003, 2008, and 2012, which could be found visually. The ACC, RMSE,
and MAE of the three prediction models were shown in the right part
of Table 3. By the correction in Eq. (9), the ACCs of these three models
all increased from 0.38, 0.46, and 0.59 to 0.43, 0.50, and 0.60,
respectively. The RMSEs and MAEs all decreased, except the
RMSE of the prediction model under the SST, SAM, and SAT,
which remained unchanged. These results suggested that this error
correction method effectively improved these three prediction models.
Therefore, considering only extreme values corrected by Eq. (9), the
improvements of the corrected prediction models resulted from the
decline errors of the extreme values.

Furthermore, considering that the observed Weddell Sea SIC
anomalies were almost positive and the positive errors between the
observed and simulated Weddell Sea SIC anomalies by the model with
all factors were approximately half of the observations during 2003–2012,
we developed the second method to correct the models in Eq. (10):

S̃ICcorrection2 � S̃IC, S̃IC| |< 0.1
1.869 p S̃IC, S̃IC| |≥ 0.1.

{ (10)

The ratio of the errors to the observations was about 0.365, so the
second error correctionmethod was to enhance the simulatedWeddell
Sea SIC anomaly 1.869 times when the absolute values of the
simulations were greater than or equal to 0.1 and to keep the
others unchanged. The in-phase rate of the errors and observations

was 87.5% larger than that during the whole fitting period. The ACC of
the model with the factors in Group 1 increased from 0.29 to 0.31,
while the other two in Groups 2 and 3 remained 0.65 and 0.64 (Table 4.
The RMSEs and MAEs all decreased. These results suggested that this
error correction method was also effective for improving the models.
As shown in Figure 7, the second correctedWeddell Sea SIC anomalies
were larger than the first and reproduced the positive observations
better, such as in 2003, 2005, 2008, and 2010. In comparison, the
second error correction method shown in Eq. (10) was better for
enhancing the simulated extreme values during 2003–2012. The
period 2003–2012 was adjacent to the predicting period. The
rhythm of the errors might persist in the prediction period of
2013–2018. Therefore, this correction method was used in the next
section’s prediction period.

7 Predictions of sudden losses of
Weddell Sea SIC

The observations, predictions, and corrections for the Weddell
Sea SIC anomaly in the prediction period are shown in Figure 8.
The observed Weddell Sea SIC anomalies experienced a phase
reversal from positive to negative over 2015–2017, which
contained two sudden loss events. The first decrease of
observed Weddell Sea SIC anomaly was from the peak of the
austral autumn of 2015 to the average state in the austral summer
of 2016, and the second decline was from the austral autumn of
2016 to the following spring. The predictions of these three models
all generally reproduced the phase reversal and captured the low-
frequency variability of the Weddell Sea SIC anomaly similar to
the fitting period. But all the models failed to predict the time of
phase reversal. The zero value of the predicted Weddell Sea SIC
anomaly by the model with oceanic predictors in Group 1 lagged
the observed one by two seasons and the other two by the models

FIGURE 7
Observation, simulation by the model with Group 3 factors, and two corrections of Weddell Sea SIC anomaly in fitting period (unit: %).
Correction1 represents the first error correction method shown in Eq. 9, and Correction2 represents the second method from Eq. 10. The blue and red
histograms represent the positive and negative errors, respectively, between observation and simulation of SIC. The abscissa denotes the calendar year.
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in Groups 2 and 3 led it by one season. The observed Weddell Sea
SIC anomaly reached a peak value of 2.42% in the austral summer
of 2014 and a maximum value of 2.21% in the autumn of 2015, but
the amplitudes of predictions by all models were smaller and
lagged the observations by one season. The observed minimum
value of the Weddell Sea SIC anomaly was −2.32% in the austral
spring of 2017. The predicted minimum value of the Weddell Sea
SIC anomaly by the models with all factors was −1.19%
synchronously and those by the other two models both were
smaller and lagged the observations by one season. The models
captured the extreme value in 2014, but it was smaller than the
observation. The models reproduced the extreme value in
2015 and the subsequent decline and had a good performance
of the recordable minimum value in 2017. The prediction ability
weakened after 2018, which might be related to the length of the
predictive validity. The ACCs of the three models were,
respectively, 0.71, 0.68, and 0.79—shown in the left of
Table 5—which all exceeded the significance test at a 99%
confidence level. The RMSEs (MAEs) were, respectively, 1.05
(17.53), 1.07 (17.97), and 0.91 (15.63). Among all these models,
that with all factors was the best model with oceanic factors, and
SAM was worse than the one with only oceanic factors. These

results indicated that Weddell Sea SAT was indispensable and
could help effectively predict the sudden loss of Weddell Sea SIC
during 2016–2017. As for the predicted Weddell Sea SIC anomaly
by the model with all factors, the first decrease took one season
from the peak value 1.03% in the austral winter of 2015, and the
second decline took three seasons from the austral summer of
2016. In general, the predicted first decline of Weddell Sea SIC by
the model with all factors was faster than was observed, although
lagging those observed by one season. The second decline was
slower and led that observed by one season. The observed and
predicted Weddell Sea SIC anomaly by all models both recovered
to near the average state in austral autumn of 2017.

By the error correction method according to Eq. (10), the predicted
Weddell Sea SIC anomalies were improved and reproduced the high-
frequency variability of the observations, such as the peak values in the
austral autumn of 2014 and the winter of 2015 and the minimum value in
the spring of 2017. The predictedWeddell Sea SIC anomaly by the model
with all factors was −2.21% in the spring of 2017 and almost perfectly
predicted the variability. As shown in Table 5, the ACCs all remained
unchanged and the RMSEs and theMAEs decreased after correcting. The
correction models all could better predict the variability of Weddell Sea
SIC. Compared with the first error correction method in Eq. (9), the

TABLE 4 Evaluations of simulated and corrected Weddell Sea SIC anomaly during 2003–2012.

Simulation Error correction 2 by Eq. 10

ACC RMSE MAE ACC RMSE MAE

SST 0.29 0.80 26.41 0.31 0.69 25.38

SST + SAM 0.65 0.70 22.78 0.65 0.62 19.25

SST + SAM + SAT 0.64 0.70 22.31 0.64 0.65 19.84

FIGURE 8
Observed, predicted, and corrected Weddell Sea SIC anomaly in prediction period (unit: %). The predicted Weddell Sea SIC anomaly refers to these
predictions according to Eqs. 6–8, and the corrected ones represent the correction of Weddell Sea SIC anomaly according to Eq. 10. The colorful solid lines
represent the predictions, and the dashed lines represent the corrections. The abscissa denotes the austral seasons.
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second in Eq. (10) showed more effective improvement in the predicting
period. Therefore, the sudden losses of Weddell Sea SIC during
2015–2017 were significantly improved by the second error correction
method.

8 Possible causes of recent sudden
losses of Weddell Sea SIC

A new regime shift occurred in 2013/14 (Xiao and Ren, 2023), which
preceded the sudden losses of Weddell Sea SIC and might have influenced
it. However, the PDO could not capture this regime shift. To better
represent the signals of regime shift in the 2013/14 North Pacific SST, we
employed the average of SST anomalies over the northern North Pacific
(180°E−130°W, 50°–60°N), the eastern North Pacific (120°–135°W,
20°–50°N), and the northern Tropical Middle and East Pacific
(110°–170°W, 10°–20°N) (according to Figure 1 of their study) to
represent the PDO index in Figure 9. We also used the averaged SST
anomalies to represent the PDO index in the prediction and correction
models. The coefficient, ACC, RMSE, and MAE of the prediction models
were very similar (not shown). Therefore, it was reasonable that the
averaged SST anomalies in the North Pacific were used to indicate the
PDO index in this section.

Figure 9 shows the difference in the Weddell Sea SIC anomaly in the
austral summer between the neighboring years and the potential factors at
individual leading times before it. The difference in the SIC anomaly
between 2015 and 2014 showed a negative anomaly of 0.5%. The PDO,
AMO, Niño12, and SEIO SST anomalies also reduced, while the SAM and
Weddell Sea SAT anomalies increased. Considering the positive and
negative relationships between them and Weddell Sea SIC, this
suggested that the AMO, SEIO SST, and SAT made positive
contributions to the decrease of the Weddell Sea SIC anomaly.
Regarding the difference between 2016 and 2015, the Weddell Sea SIC
anomaly sharply reduced by up to 1.9, and the PDO, AMO, Niño12, and
SEIO SSTs and Weddell Sea SAT anomalies increased while the SAM
anomaly decreased. These facts implied that the positive contributions of
decliningWeddell Sea SIC in 2016 were from the PDO, Niño12 SST, SAM,
and SAT and that the negative contributions were from the other factors.
The PDO anomaly had the largest positive change. In terms of the
difference between 2017 and 2016, the Weddell Sea SIC anomaly
decreased by 1.5%. The AMO, PDO, Niño12 SST, SAM, and Weddell
Sea SAT showed positive contributions from decreasedWeddell Sea SIC in
2017. However, the SEIO SST provided a negative contribution. According
to the aforementioned findings, the main factors influencing the sudden
losses ofWeddell Sea SIC in 2016 (2017)were the PDO,Niño12 SST, SAM,
and SAT (AMO, PDO, Niño12 SST, SAM, SAT). The SAT was the

FIGURE 9
Changes ofWeddell Sea SIC in austral summer and the predictors at corresponding lead time of 2015–2017 comparedwith their values over the previous
year. For example, the symbol “2015minus 2014” of SIC indicates the difference ofWeddell Sea SIC between 2015 and 2014. The symbol “2015minus 2014” of
AMO indicates the difference of the AMO index at the season leading 11 seasons of 2015 summer and that of 2014. White diagonal markers indicate positive
contributions.

TABLE 5 Evaluations of predicted and corrected Weddell Sea SIC anomaly in the prediction period (2013–2018).

Prediction Error correction 2 by Eq. 10

ACC RMSE MAE ACC RMSE MAE

SST 0.71 1.05 17.53 0.71 0.94 16.25

SST + SAM 0.68 1.07 17.97 0.68 0.96 16.16

SST + SAM + SAT 0.79 0.91 15.63 0.79 0.80 13.52
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consistently positive contributor during 2015–2017. The PDO,
Niño12 SST, SAM, and SAT were the common factors which positively
contributed to the two sudden losses ofWeddell Sea SIC in 2016 and 2017.
The AMO contributed negatively to the sudden loss of Weddell Sea SIC in
2016 but made a stronger positive contribution in 2017.

9 Conclusion and discussion

This study focused on recent sudden declines of SIC in the
Weddell Sea. We noted that sea-ice in the Antarctic has reduced in
recent years and that theWeddell Sea was the primary area of this. The
Weddell Sea SIC anomaly was in a long-term increasing trend, but
after reaching peak in 2014, it was on a record-breaking downward
trend, falling from 2.21% to −2.32%. The Weddell Sea SIC anomaly
was positive until 2014 and then almost entirely negative in 2017.

We explored the potential contributions of the leading
atmospheric and oceanic factors to these losses in Weddell Sea sea-
ice. Six potential influencing factors were identified by calculating the
leading–lagged correlation coefficients. The AMO ledWeddell Sea SIC
by eleven seasons, the PDO by ten, the Niño12 and SEIO SSTs by five,
the SAM by three seasons, and the SAT over the Weddell Sea most
significantly correlated with the SIC simultaneously.

These six factors were divided into three groups to establish the
multiple linear regression models during the fitting period 1979–2012.
The groups of potential predictors aimed to explore the effects of the
leading oceanic factors (including the PDO, AMO, SEIO, and
Niño12 SSTs), the combination of the aforementioned leading oceanic
and an atmospheric factor (SAM), and a leading oceanic factor, SAM, and
simultaneous Weddell Sea SAT. These three groups of potential factors
were employed to establish each prediction model for 1979–2012, which
exceeded the 99.9% confidence level of F- and jackknife tests. All these
three prediction models effectively reproduced the low-frequency
variation of the Weddell Sea SIC anomaly. We developed two error
correction methods to improve the simulated extreme values of Weddell
Sea SIC. The ACC, RMSE, and MAE were obviously improved after
correcting. The second error correction method had better performance
in improving the models’ accuracy.

We examined the predicted Weddell Sea SIC anomaly during the
prediction period 2013–2018. The three models captured the phase
reversal and low-frequency variability of Weddell Sea SIC anomalies.
The models all predicted the sudden losses of sea-ice in the Weddell
Sea, and the model with all factors had the best performance. The
predicted Weddell Sea SIC anomalies were improved through the
second error correction method, with the ACCs remaining unchanged
and the RMSEs and the MAEs decreasing.

The models captured the variability of Weddell Sea SIC anomalies,
especially after correction, and the six factors we selected had an
important influence on the losses ofWeddell Sea SIC. The AMO, SEIO
SST, and SAT made positive contributions to the decline of the
Weddell Sea SIC anomaly during 2014–2015. In 2015–2016, the
positive contributions were from the PDO, Niño12 SST, SAM, and
SAT. In 2016–2017, all the factors except the SEIO SST had a jointly
positive influence on the decline of Weddell Sea SIC. The Weddell Sea
SAT was the most primary factor and positive contributor.

The Weddell Sea SIC anomaly increased in the early 1990s and
reached the maximum value of 1.07% in the austral winter of 1995. It
then experienced a rapid and sharp decline, approaching the climatic
average of −0.03% in the austral summer of 1996 and a low value

of −1.81% in the austral spring of 1996. When Weddell Sea SIC
decreased dramatically, the PDO and SAT increased, the Niño12 SST
was almost unchanged, and the AMO, SEIO SST, and SAM decreased.
Considering the positive and negative relationships between them and
Weddell Sea SIC, it suggested that all factors except Nino12 SST made
positive contributions to the decrease of Weddell Sea SIC.

The two error correction methods used in this study statistically
enhanced the high values of predictions in the prediction period based
on the characteristics of errors in the fitting period. There are many
other effective post-processing methods to revise the results produced
by the prediction models, such as machine learning. Using other
efficient post-processing methods may result in higher accuracy.

Sudden recent decreases of sea-ice in theWeddell Sea and even the
entire Antarctic occurred after a hiatus in global warming. It is not yet
known whether there is a clear connection between the two events or
only a coincidence. The link between the changes in sea-ice and in the
global climate system still needs to be explored.

Moreover, although these factors can predict the losses of
Weddell Sea SIC to some extent, we still do not understand that
how they affect sea-ice, at which time scale, whether they are
influenced directly or indirectly by other factors, or how long
the effects would last. More discussion and analysis is needed
regarding the interactions between sea-ice and predictors. In
addition to the six predictors selected in this study, there may
be further related factors in the internal climate system and
external factors that play an important role in Antarctic sea-ice
decrease. These considerations merit further and deeper research.
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