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High air pollutions of PM2.5 concentrations have become a serious environmental
problem in China during recent decades, causing significant influences on urban air
quality and human health. In the study, we investigate the variations of the December
PM2.5 in Eastern China and the possible causes during 2000–2020. The empirical
orthogonal function (EOF) analysis is employed to reveal the dominant patterns of
PM2.5 variability in Eastern China. The EOF1 shows a consistent variability in thewhole
of the Eastern China, which reflects a consistent emission pattern in Eastern China in
past two decades. The EOF2 exhibits a North-South dipole pattern, which is closely
tied to the changes of atmospheric circulations. The increase of PM2.5 in the North
Eastern China is mainly related to the decrease of wind speed, the decrease of
boundary layer height and the increase of inversion temperature, while the decrease
of PM2.5 in the South Eastern China is affected by the increase of local precipitation.
Two atmospheric wave trains are identified that affect the dipole distribution of PM2.5

in Eastern China. The southern one is affected by ENSO, and the northern one is
jointly affected by ENSO, sea surface temperature of Labrador Sea and sea ice
concentration near Kara Sea. Finally, we reconstructed a comprehensive
atmospheric external forcing index based on these factors. We find that the
comprehensive index can well reproduce the North-South dipole distribution of
PM2.5 in Eastern China, indicating the plausible effects of the atmospheric external
forcings and the prediction potential for the variations of PM2.5 in Eastern China.
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1 Introduction

In recent decades, particulate pollution featured by high concentrations of PM2.5 (aerosol
particle with aerodynamic diameter less than 2.5 µm) has become a serious environmental
problem in China, exerting great effects on visibility impairment, urban air quality, and human
health (Pui et al., 2014; Li et al., 2015; Li G. et al., 2016; Chen Z. et al., 2020). For example, in
January 2013, a hazardous dense haze covered 1.4 million km2 of China and affected more than
800 million people (Xu et al., 2013). As the most densely populated region in China, the Eastern
China usually experiences the severest particulate pollution in the past decades (Zhang et al.,
2015; Wang and Chen, 2016; Zhang et al., 2020). Therefore, understanding the mechanisms
responsible for the occurrence and variation of particulate pollution in Eastern China is of great
importance on social and scientific development.
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As indicated by previous studies, the high-PM2.5 events in
China are usually associated with local meteorological
conditions such as the changes of East Asian winter monsoon
(EAWM). For example, low-level southerly anomalies associated
with the weakened East Asian winter monsoon (EAWM), higher
humidity, enhanced low-level static stability, and deficient
precipitation are usually conducive to the formation of haze
pollution (Zhang et al., 2014; Li Q. et al., 2016; Gong et al.,
2018; Cheng et al., 2021). The EAWM variability is closely tied
to the changes of large-scale atmospheric circulation, such as
atmospheric teleconnections over mid- and high latitudes of
Northern Hemisphere (e.g., Gong et al., 2019a; 2019b; 2019c).
Apart from the direct atmospheric circulation factors, the
atmospheric external forcings also have great impacts on PM2.5

pollution in Eastern China. It is well known that the El
Niño–Southern Oscillation (ENSO) is the most prominent
atmosphere-ocean coupled climate phenomena in the tropics on
the interannual timescales. It has the strongest impacts on Eastern
China in winter than in other seasons (e.g., Gong et al., 2014; 2015).
Previous studies have shown that ENSOmay have different impacts
on the interannual variations of haze pollution over the
Beijing–Tianjin–Hebei (BTH) in early winter
(November–December) and late winter (January–February)
(Zhao et al., 2022). ENSO can induce the southerly wind
anomaly, which is responsible for more haze days over North
China by generating an anomalous anticyclone over the North
eastern Asia (He et al., 2019; Yu et al., 2020). In addition, He et al.
(2019) found that ENSO had negative influence on the winter haze
days on southern China by inducing the deficient (excessive)
precipitation during La Niña (El Niño) events. Other factors

such as the Arctic Sea Ice (ASI), the Pacific Decadal Oscillation
(PDO), and the Eurasian snowpack may also be conducive to the
variations of the PM2.5 pollution in China (Zhao et al., 2016; Zou
et al., 2017; Yin et al., 2019).

However, the above studies mostly concentrated on the haze
pollution in BTH, which experienced the most serious haze
pollution in China due to the high anthropogenic emissions
associated with rapid industrialization and urbanization (Zhang
et al., 2017; Dang and Liao, 2019; Wang et al., 2019). There is little
attention paid to air pollution over the whole of Eastern China. In
addition, most previous works are conducted based on the
atmospheric visibility data. For example, some scholars studied
the air pollution by defining a winter haze days (WHD) index
which is derived from observations of visibility (Wang and Chen,
2016; Mao et al., 2018; He et al., 2019). Other studies calculated the
dry extinction coefficient (DEC) based on the observational
visibility data to objectively describe haze pollution (Guo et al.,
2017; Chen S. et al., 2020; Zhao et al., 2022). Nevertheless, the
researches directly based on PM2.5 concentration data are very
limited due to the deficiency of long-term PM2.5 observation data.
In this study, the new published reconstructed high-quality PM2.5

data are used to study the spatiotemporal variations of PM2.5 in
December over Eastern China and the possible causes.

The rest of this analysis is structured as follows. The data and
methods utilized in the study are described in Section 2. Section 3
demonstrates the spatiotemporal characteristics of PM2.5 in
December over Eastern China. The possible mechanisms
associated with the variations of PM2.5 in Eastern China are also
investigated. Finally, the summary and discussions are provided in
Section 4.

FIGURE 1
(A) Spatial distribution of PM2.5 climatology in Eastern China in December during 2000–2020. (B) Area-mean time series of PM2.5 in Eastern China during
2000–2020.
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2 Data and methods

2.1 Data

In this study, PM2.5 data were obtained from the Tracking Air
Pollution (TAP), which is provided by Tsinghua University (Xiao
et al., 2021a; 2021b; 2022; Geng et al., 2021), with a horizontal
resolution of 0.1 × 0.1 covering the period from 2000 to present.
Monthly atmospheric reanalysis data including the zonal and
meridional winds, the air temperature, the geopotential height
(HGT), the sea level pressure (SLP) and the boundary layer height
(BLH), were obtained from the ERA5 dataset with a horizontal
resolution of 1.0 × 1.0 covering the period from 1959 to present
(Hersbach et al., 2020), which is the latest reanalysis product provided
by the European Centre for Medium-Range Weather Forecasts
(ECMWF). The monthly sea ice concentration (SIC) data was
obtained from the Met Office Hadley Centre, whose horizontal
resolution is 1.0 × 1.0 globally (HadISST, Rayner et al., 2003). The
sea surface temperature (SST) data were obtained from the NOAA

Extended Reconstructed SST (ERSST) dataset, version 5 (Huang et al.,
2017). The monthly precipitation data was obtained from the Global
Precipitation Climatology Project (GPCP), which was gridded by 2.5 ×
2.5 in latitude and longitude (Adler et al., 2003). In the study, we focus
on the period from 2000 to 2020, which is covered by the TAP dataset
and is overlapped among other datasets.

2.2 Methods

Our study focuses on December because haze pollution in winter
especially in December over Eastern China is usually the most serious,
and the influencing mechanisms might be different between
December and other months. The empirical orthogonal function
(EOF) method is used in the study, and its significance test is
estimated by the North test (Hirsch et al., 1982), which can
determine whether the EOF mode can be significantly separated
from other modes. In order to examine the atmospheric Rossby
wave pathway, the horizontal wave activity flux (or T-N flux) is

FIGURE 2
(A) The first EOF spatial pattern of PM2.5 over Eastern China in December, (B) the PC1 corresponding to (A) EOF1. (C,D) As in (A, B), but for EOF2 and PC2,
respectively.
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applied that was derived from the conservation of wave-activity
momentum defined by Takaya and Nakamura (2001). The
meridional and zonal components of the T-N wave activity flux
can be written as:
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where ψ is the geostrophic stream function which is defined as Φ⁄ f (Φ
and f is the seasonal mean geopotential height anomaly and Coriolis
parameter, respectively); U and V represent the mean zonal and

meridional climatological winds, respectively; and |U| is the
magnitude of the mean horizontal winds. The overbars represent
the basic states and primes represent perturbations.

3 Results

Figure 1A presents the spatial distribution of PM2.5 climatology in
Eastern China in December during 2000–2020. There are evident
regional differences of the climatology, and the PM2.5 concentration
was the highest in North China Plain (NCP) with more than 100 μg/m3

concentration. Figure 1B shows the time series of the area-mean PM2.5

concentration in Eastern China. It is clear that the PM2.5 concentration is

FIGURE 3
Anomalies for (A)wind speed at 925 hPa (WSD925), (B) boundary layer height (BLH), (C) vertical differences of air temperature between 850 and 925 hPa
(T_invers), (D) precipitation (PRE) obtained by regression upon the normalized PC2. Stippling regions indicate the significance at the 90% confidence level.
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featured by remarkable interannual variations, reaching a peak (70.9 μg/
m3) in 2007, and decreased significantly since 2013. Such a decrease of
PM2.5 concentration may attribute to the Clean Air Action and the Blue
Sky Protection Campaigns in China (Zhang et al., 2019). Figure 2 shows
the first two EOF modes of the PM2.5 concentration in Eastern China.
These two modes can be significantly separated from each other via the
North Test. The first EOF pattern, explaining 59.05% of the total variance,
indicates the consistent spatial characteristics of PM2.5 in the whole of
Eastern China. The highest PM2.5 is located in the NCP, indicating that
the PM2.5 variability in this region is the largest. Figure 2B shows the
normalized principal component (PC1) time series corresponding to
EOF1, and the correlation coefficient of PC1 with the area-averaged
PM2.5 time series (Figure 1B) is 0.98, exceeding the 99% confidence level.

Therefore, EOF1 mainly shows a consistent spatial variability of PM2.5 in
Eastern China, and reflects the consistent anthropogenic emission in the
whole region. The second EOF pattern and its time series are shown in
Figures 2C, D, and the percentage contributions of PC2 to the total
variance is 13.82%. EOF2 presents a North-South dipole pattern of PM2.5

in the Eastern China (Figure 2C), and it reflects the opposite variability
characteristics of PM2.5 in the North and South of Eastern China, which
may be related to different impacts of large-scale atmospheric circulations
on the North Eastern and South Eastern China.

In order to study the influence of atmospheric circulation on PM2.5 in
Eastern China, we primarily focus on the EOF2 pattern with the North-
South dipole distribution in the following analysis. Figure 3 presents the
regression patterns of atmospheric circulation onto the normalized PC2.

FIGURE 4
As in Figure 3, but for (A) sea level pressure (SLP, shading) and 850-hPa winds (UV850, vectors), (B) geopotential height at 500 hPa (HGT500). Stippling
regions indicate the significance at the 90% confidence level.
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Significant anomalies of local meteorological conditions associated with
the positive phase of PC2 can be observed in the Eastern China. The
positive PM2.5 concentrations in the North China are associated with the
weakened surface wind speed, the decreased boundary layer height
(BLH), and the increased inversion of air temperature (Figures
3A–C). The weak wind speed and the decreased BLH suppress the

horizontal and vertical dispersion of the pollutants (Han et al., 2017;
Wang et al., 2018). Temperature inversion in the lower troposphere
usually increases the atmospheric stability and suppresses the vertical
diffusion of pollutant, which finally results in more-than-normal PM2.5

pollution accumulated in the North Eastern China. In contrast, in the
South Eastern China, the increased precipitation is conducive to PM2.5

FIGURE 5
As in Figure 3, but for (A) geopotential height at 250hpa (HGT250, shading) and corresponding wave activity flux (WAF250, vectors), (B) sea surface
temperature (SST). Stippling regions indicate the significance at the 90% confidence level.

FIGURE 6
As in Figure 5A, but for Nino-3.4 index. Stippling regions indicate the significance at the 90% confidence level.

Frontiers in Environmental Science frontiersin.org06

Bai et al. 10.3389/fenvs.2023.1134940

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1134940


dispersion by wet deposition (Figure 3D). Although BLH decreased
slightly and temperature inversion increased over South Eastern China
(Figures 3B, C), these meteorological variables are unfavorable for haze
pollution over South Eastern China compared with precipitation (He
et al., 2019). Hence, these results indicate that the local meteorological
conditions favorable for the variations of PM2.5 pollution are completely
different in the South Eastern China and in the North Eastern China.

The spatial patterns of atmospheric circulation anomalies related
to the PC2 show an equivalent barotropic structure from the lower
troposphere to the upper troposphere (Figures 4, 5). The 850-hPa
wind presents a strong anticyclonic anomaly over the North Eastern
China, accompanied with a prominent southerly anomaly over the

East China (Figure 4). The southerly anomalies reduce the
climatological mean northerly (Supplementary Figure S9), and
result in the decreased surface wind speed (Figure 3A) and
suppress the horizontal dispersion of the pollutants, thus causing
more serious PM2.5 pollution in the North Eastern China. Figure 5A
shows the results of 250-hPa geopotential height and T-N wave flux
regressed onto the normalized PC2 index during 2000–2020. An
atmospheric wave train is evidently observed extending from the
Atlantic to the Eurasia. When the wave train arrives the Eastern
Europe, it splits into two branches. The north wave train passes
through the Ural Mountains arriving at the North Eastern China,
while the South wave train propagates through the northern Indian

FIGURE 7
Anomalies for (A)wind speed at 925 hPa (WSD925), (B) boundary layer height (BLH), (C) vertical differences of air temperature between 850 and 925 hPa
(T_invers), (D), precipitation (PRE) obtained by regression upon normalized Nino-3.4 index. Stippling regions in (A–D) indicate the significance at the 90%
confidence level.
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FIGURE 8
Regression maps of (A) SST in the North Atlantic in December and (B) sea ice concentration (SIC) in November onto the PC2 time series after removing
ENSO signal. Stippling regions indicate the significance at the 90% confidence level.

FIGURE 9
As in Figure 6, but for (A) LSI index and (B) KSI index, respectively. Stippling regions indicate the significance at the 90% confidence level.
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toward the Eastern China. These two wave trains converge in Eastern
China, and are in favor of the formation of an anticyclone in the North
and a weak cyclone in the South of Eastern China, respectively,
consistent with the North-South dipole pattern of the PM2.5

concentrations (Figure 2C).
In order to explore the formation mechanism of the North wave train

and the South wave train, the simultaneous sea surface temperature (SST)
are further regressed onto the normalized PC2 index during 2000–2020
(Figure 5B). It is clear that there are obvious SST anomalies (SSTAs) in the
central and eastern equatorial Pacific, presenting the most significantly
positive SSTAs similar to ENSO. It indicates that the ENSO may have the
possibility to affect the dipole distribution of PM2.5 concentration in
Eastern China. In order to investigate the possible effects of ENSO, the
Niño-3.4 index is calculated as the area-mean SSTAs over 5°S-5°N, 120°-
170°W. The correlation coefficient between the Niño-3.4 index and the
PC2 was 0.52 above the 95% significance level. It indicates that ENSO can
explain about 27.0% of the total variance of the PC2. Figure 6 displays the
geopotential height and wave activity fluxes at 250-hPa obtained by
regression upon the Niño-3.4 index. It should be noted that the
regression results of the South wave train are similar with that
regressed by the normalized PC2 (Figure 5A), but the North wave
train is weaker compared with PC2 regressed ones. The results indicate
that ENSO contribute greatly to the formation of the South wave train, and
can also partly lead to the formation of the North wave train. Actually,
according to previous studies, ENSO may induce a wave train that splits

into two branches in Eurasia or cause a strong wave train to spread from
mid-high latitudes to eastern China (Sun et al., 2019; An et al., 2022). Ma
et al. (2022) pointed out that ENSO can induce significant precipitation
anomalies in the eastern Indian Ocean/western Pacific through the double
Walker circulation, which in turn affects the atmospheric circulations and
results in a wave train similar to the South wave train in the upper
troposphere. However, ENSO may indirectly have an effect on the North
wave train because ENSO can affect the SST over the remote North
Atlantic through the effects of atmospheric bridge, which in turn spreads
its influences on the East Asian climate. Hence, to confirm the effects of
ENSO on the PM2.5 in Eastern China, Figure 7 shows the local
meteorological elements associated with the Niño-3.4 index, which
displays a large resemblance to those in Figure 3. For example, the
decreased wind speed and the BLH and the increased inversion
temperature emerge in the North of Eastern China. The increased
precipitation anomalies occur in the South of Eastern China. The
results suggest that ENSO can affect the dipole distribution of PM2.5 in
Eastern China by affecting the atmospheric wave train. The North wave
train may also be affected by other atmospheric external forcing signals
other than ENSObecause of the weaker North wave train related to ENSO.

In order to study the influence of other atmospheric external forcing
signals rather than ENSO on the North wave train, we use the partial
regression method to eliminate the ENSO signal from the PC2, the SST
and the SIC fields. Figure 8A displays anomalies of simultaneous SST
obtained by regression upon the normalized PC2 after removing the ENSO

FIGURE 10
(A) Time series of reconstructed index (REC) based onmultiple climate factors (red line) and PC2 (blue line) during 2000–2020. (B) Anomalies of SLP and
850-hPa winds (UV850) obtained by regression upon the REC. (C, D) As in (B), but for HGT and WAF at 250hPa, and PM2.5 in Eastern China, respectively.
Stippling regions in (B, D) indicate the significance at the 90% confidence level.
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signals. It is clear that there are still significant cold SSTAs in the Labrador
Sea of the North Atlantic. Hence, we further define the Labrador Sea SST
index (LSI) as the spatially weighted SST anomalies over theNorthAtlantic
(50°–62°N, 60°–47°W). Figure 9A shows the regression patterns of the
geopotential height and wave activity fluxes at 250-hPa upon the LSI. A
Northwave train that originates from theAtlantic and propagates eastward
toward the Eastern China can be clearly foundwhen the Labrador SSTwas
warm. Similarly; Figure 8B shows the regression patterns of November SIC
upon the normalized PC2 after eliminating ENSO signals. It is found that
there is a significant sea ice reduction anomaly near the Kara Sea. As a
result, the Kara Sea ice index (KSI) is then defined as the spatially weighted
SIC over 78°–85°N and 90°–114°E. The 250-hPa geopotential height and
T-N wave flux associated with the decreased KSI (Figure 9B) present a
similar North wave train propagating toward North of the Eastern China.
These results indicate that besides ENSO, the Labrador Sea SST and
precedingKara Sea ice can also affect the formation of theNorthwave train
and may contribute to the variations of PM2.5 in Eastern China. This is
consistent with the previous studies (Ma et al., 2021).

The above analysis shows that the ENSO, the Labrador Sea SST and
the Kara Sea ice all can affect the dipole pattern of PM2.5 in Eastern China.
To comprehensively characterize the effect of these atmospheric external
forcing signals on the dipole structure of the PM2.5 concentrations in
Eastern China, we define a reconstructed index (REC), REC= (r1* Niño-
3.4 + r2*LSI + r3*KSI)/(|r1|+|r2|+|r3|), where r1, r2, and r3 are the
correlation coefficients of Niño-3.4, LSI, and KSI with the PC2 (Niño-
3.4, LSI, andKSI are independent of each other). Figure 10A shows that the
correlation coefficient between the REC and PC2 can reach 0.72 exceeding
the 99% significance test; Figures 10B, C show the anomalous patterns of
the sea level pressure, 850-hPa wind, 250-hPa geopotential height and T-N
wave flux regressed upon the normalized REC index during 2000–2020.
During the positive phase of the REC index, an anticyclonic circulation and
the southerly anomaly are significant in the North China (Figure 10B). In
addition, the North and South wave trains regressed by the REC index
(Figure 10C) are also similar to those onto the PC2 index (Figure 4A;
Figure 5A). These atmospheric circulations facilitate the PM2.5 anomalies
in Eastern China to present a North-South dipoles pattern. Hence, the
reconstruction index defined in the study can better explain the
EOF2 pattern of the PM2.5 in Eastern China, and may provide the
prediction potential for the PM2.5 in Eastern China in December.

4 Conclusion and discussions

In this study, we used the latest PM2.5 data provided by Tsinghua
University to study the temporal-spatial distribution and mechanism of
PM2.5 over Eastern China in December. Our study found that during
2000–2020, the PM2.5 climatology in Eastern China displays significant
regional differences, with themaximum values located in theNorth China
Plain. The area-mean PM2.5 index in Eastern China presents obvious
interannual variations, and also experiences a significantly decadal decline
after 2013, which may be closely related to national emission reduction
policy in recent years. Then, an EOF method is used to investigate the
leading temporal and spatial modes of the PM2.5 in Eastern China. Two
significant and separated EOF modes are obtained. The EOF1 shows a
consistent variability in the whole of the Eastern China, and explains
about 59.05% of the total variance. The correlation coefficient between the
PC1 and the original area-mean PM2.5 index is 0.98, indicating that the
first pattern mainly reveals the emission trend of PM2.5 in Eastern China.
The EOF2 presents a North-South dipole pattern in Eastern China, which

reflects the opposite influence of atmospheric circulations on PM2.5 in the
North and South of Eastern China.

To explore the formation mechanism of the North-South dipole
pattern in Eastern China, the atmospheric variables, sea surface
temperature, and sea ice are regressed upon the normalized PC2 index.
Results show that the increase of PM2.5 concentrations in the North of
Eastern China is related to the decrease of surface wind speed, the decrease
of boundary layer height and the increase of inversion temperature. In
contrast, the decrease of PM2.5 concentrations in the South of Eastern
China is associated with the increase of precipitation. There are two
atmospheric wave trains in the upper troposphere affecting the North-
South dipole pattern of PM2.5 concentrations in Eastern China. The North
wave train induces an anticyclone formed in the North China, and the
South wave train induces a cyclone in the South China. The South wave
train is mainly affected by the precipitation anomaly in the eastern Indian
Ocean/western Pacific through a double Walker circulation induced by
ENSO, which is helpful to the formation of the South wave train (Ma et al.,
2022). The North wave train is jointly affected by ENSO, the sea surface
temperature over the Labrador Sea and the preceding sea ice over the Kara
Sea. In order to comprehensively characterize the influence of atmospheric
external forcing signals on the South and North wave trains, we use the
Niño-3.4, LSI, KSI index to define a reconstructed index, The correlation
coefficient between the REC and PC2 can reach 0.72, exceeding the 99%
confidence level. In addition, the regression patterns of the atmospheric
circulations and PM2.5 concentrations onto the normalized REC index
present a large similarity to those regressed onto the PC2 index. We
perform a parallel analysis using atmospheric circulation data from JRA-55
and SST data from HadISST in the period 2000–2020. The results are
basically consistent with those based on ERA5 and ERSST data
(Supplementary Figures S1S8). Hence, it suggests that the variations of
the dipole pattern of PM2.5 in Eastern China can be attributed to these
atmospheric external forcing signals, which may provide some prediction
potential. However, there is no particularly in-depth analysis of the sources
of each external signal, which deserves a further study in the future.
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