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In this study, we determined whether changes in vegetation net primary
productivity (NPP) can be used to characterize the quality of terrestrial
ecosystems, which is critical for global change and carbon balance. We first
explored the spatial correlation of NPP and its impact on vegetation restoration.
MOD17A3 remote sensing products were used to analyze the temporal and spatial
changes in NPP on the Loess Plateau (LP) over the last two decades (2000–2020).
The resulting spatial autocorrelation indices identified cold and hot spots in the
spatial clustering patterns. The effects of climate change and human activities on
the anomalous clustering of NPPwere assessed using Pearson correlation analysis
and multi-temporal land use land cover data. The results indicate that i)
Temporally, from 2000 to 2020, the NPP of the LP increased significantly by
6.88 gCm−2yr−1 and so did the proportion of revegetated land
area >400 gCm−2yr−1 from 4% to 37%. Spatially, NPP showed an increasing
trend from northwest to southeast. ii) The vegetation NPP on the LP showed a
strong positive global spatial autocorrelation (p< 0.01). The hot and cold regions
were polarized; the cold spots were clustered in the northwest, while the hot spots
in the south and east. The spatial clustering patterns were dominated by high-high
(HH) and low-low (LL) clusters. Abnormal patterns existed mainly in the transition
areas between HH and LL clusters and insignificant regions, which were jointly
affected by human activities and climate change. iii) Precipitation was the
dominant climatic factor (86%) affecting the NPP variation in the LP, with the
annual minimum precipitation showing a significantly positive relationship with
the interannual variability in NPP, while the maximum precipitations greatly
influenced the variation in local spatial anomaly patterns. This suggests that
climatic extremes affect vegetation. Our study helps to facilitate green
ecological management and high-quality development in the LP.
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1 Introduction

Global warming has significantly affected the structure, processes, and functions of
terrestrial ecosystems and regional ecological environment. As an important component of
terrestrial ecosystems, vegetation provides essential materials for humans and plays an
inestimable role in regulating climate change, supporting ecological environments,
maintaining a carbon balance, and developing renewable resources. Vegetation net
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primary productivity (NPP) refers to the amount of organic carbon
fixed by plant photosynthesis (GPP) minus the amount consumed
by its respiration and growth (Goldewijk and Leemans, 1995; Yuan
et al., 2021). NPP is an important index to measure the structure and
function of terrestrial ecosystems and has been used in global and
regional ecological environment monitoring and crop yield
estimation (Wu et al., 2020; Zhang et al., 2022). Increasing
carbon storage capacity may be the most effective way to limit
global warming to 1.5°C. As a major factor in evaluating carbon
sources and sinks, quantitative assessment of the dynamic changes
in NPP not only expand our understanding of the interactions
between climate change and ecosystems but also provides theoretical
support for early realization of “carbon peaking” and “carbon
neutrality” in ecologically fragile areas (Lei et al., 2020).

With the rapid development of remote sensing technology,
the estimation of NPP may extend from sample plots to a regional
or global scale. It is possible to evaluate the NPP of terrestrial
ecosystems using field measurements and model validation;
however, the cost of field surveys may be a major limitation.
NPP has been a research hot spot at the regional level (Wu et al.,
2014; Guo et al., 2021). Currently, the CASA model of the light
energy utilization model (parametric model) and the
MOD17A3HGF remote sensing product calculated using the
BIOME-BGC model have been widely used (Wang et al., 2020;
Li et al., 2021; Xiao et al., 2022). Guided by various international
conventions on global climate change, the prohibition of
deforestation has become a legal provision, and productivity
estimates can only be obtained either directly from the field or
via remote sensing data. Although the CASA model has recently
been improved (Zhu et al., 2007; Pei et al., 2018), and the
MOD17A3 HGF data have been refined from 500 m to 250 m,
their reliability warrants improvement. In different natural
environmental conditions in other regions, the application
scope varies, while our understanding of the mechanism
regulating various interactions of NPP remains rudimentary,
thereby hindering parameter regulations (Kolby Smith et al.,
2016). Therefore, there are errors in NPP estimations. A
common method used in ecology and geology is the linear
regression from the regional to pixel-by-pixel scale to reveal
the temporal and spatial changes in vegetation NPP and its
response to climate change. Cui et al. (2018) analyzed the
growth trend in vegetation NPP in China from 1982 to
2011 based on the GLOPEM-CEVSA model, revealing a
growth rate of 5.66 gCm−2(10yr)−1. Previous studies have
combined simple and multiple linear regression models to
explore the spatial-temporal evolution and driving factors of
NPP in national park vegetation restorations (Yang et al.,
2023) and urbanization development (Peng et al., 2016).
Additionally, methods such as partial correlation analysis and
the Mann-Kendall trend test better reveal the spatiotemporal
variation and driving forces in regional NPP (Pan and Dong,
2018; Wei et al., 2022). Classic statistical analysis suggests that
spatiotemporal variation and driving forces of NPP are generally
defined as “first-order effects” (Huang et al., 2013). However,
spatial pattern changes can also be the result of local effects.
Presently, the potential changes and effects of spatial
heterogeneity and spatial autocorrelation of vegetation NPP in
the Loess Plateau (LP) remains unclear. Therefore, to clarify the

spatial pattern in vegetation NPP, we used the first law of
geography with spatial autocorrelation to characterize the
spatial dependence and spatial heterogeneity of vegetation
NPP and explore the convergence and divergence between
spatially adjacent location data, i.e., “second-order effect”
(Huang et al., 2013; Fan and Myint, 2014). This can better
show the spatial variation laws of NPP in different regions.

LP is an important ecological barrier in China, which has one of
the most serious soil erosion areas. Prior to the 1990s, China
controlled soil erosion by constructing terraces and silt dams and
implementing management projects for slopes and small
watersheds. Since 2000, China has initiated large-scale projects
such as the Grain for Green Project (GGP), gully control, and
land reclamation. Thus, the rate of vegetation coverage increased
from 31.6% in 1999 to 65% in 2017. In 2016, China has launched the
first batch of pilot projects for the ecological protection of
mountains, rivers, forests, fields, and lakes. State policies have
continuously promoted the construction of rural revitalization
and ecological civilization projects. Improving the vegetation
coverage of the LP through natural restoration has achieved
remarkable results. Although the Grain for Green Project has
been implemented to alleviate the problems caused by human
activities and natural factors, the local ecological environment
remains very fragile, and problems such as insufficient vegetation
carrying capacity are becoming increasingly prominent (He et al.,
2006; Fu et al., 2011). Vegetation restoration has had several effects
on this ecosystem (Lü et al., 2012; Zhao et al., 2013; Zhang et al.,
2018), and the vegetation NPP of the LP has evident spatial
heterogeneity with interannual variation. Prior to 1990, many
scholars explored the changes in vegetation on LP in historical
periods using pollen data and other technologies (Liu et al., 1996;
Jiang and Ding, 2005). Given the severe soil and water loss, the
correlation between vegetation restoration and soil environment
after afforestation has been investigated using sample plots
(Shangguan and Zheng, 2006). After 2000, remote sensing
methods were used to reveal the changes in vegetation cover in
the LP, and their association with climate and social factors and also
analyze the influencing factors of vegetation change (Chen et al.,
2007). At the plot scale, the interaction and mechanism between
vegetation and soil erosion, soil and water conservation and organic
carbon has attracted attention. The relationship between water and
vegetation has been well demonstrated. How to limit the dry layer of
soil and sustainably manage regional vegetation has become a hot
research topic (Zhang et al., 2016; Ma et al., 2022).

Data on the spatial autocorrelation of vegetation NPP on the LP
are limited. We hypothesize that the vegetation NPP on LP has a
spatial autocorrelation and correlates with natural factors and
human activities. Therefore, we aimed to (1) reveal the temporal
and spatial distribution patterns and NPP variation on the LP from
2000 to 2020, (2) explore the spatial dependence and heterogeneity
of NPP in the LP from 2000 to 2020 by exploiting global and local
autocorrelations, and (3) quantify the impact and contribution of
climatic factors and human activities on NPP using Pearson
correlation analysis and the land use transition matrix. Our
results provide important information to better manage
ecological resources for successful vegetation restoration in
various regions of the LP and can help to facilitate high-quality
development in the LP.

Frontiers in Environmental Science frontiersin.org02

Mao and Shangguan 10.3389/fenvs.2023.1134917

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1134917


2 Materials and methods

2.1 Study area

The LP is located in the middle of the Yellow River basin
(33°41′–41°16′N, 100°52′–114°31′E), with a total area of
approximately 6.4 × 105 km2, spanning the provinces of
Gansu, Henan, Inner Mongolia, Ningxia, Qinghai, Shanxi, and
Shaanxi in China (Figure 1). The overall topography of the LP
presents a downward trend of high in the northwest and low in
the southeast. It is located in the semi-humid and semi-arid
regions of China, with typical temperate continental monsoon
climate characteristics. The multi-year average temperature and
precipitation are approximately 8°C and 400 mm, respectively.
The heavy and concentrated rainstorms in summer, coupled with
high evaporation, high sediment content in the water system, and
loose loess soil, cause serious soil erosion. According to the
national classification standard of China, we used the land use
data set of 2000–2020 produced by Zhang et al. (2021), and divide
the land use types of LP into grassland, cultivated, forest, and
unused lands, construction land, and wetland and water areas. In
recent decades, the implementation of restoration projects (such
as the Grain for Green project), rapid urbanization, and global

warming have significantly altered the vegetation cover and land
structure of the LP (Song et al., 2014), impacting the regional
ecological environment.

2.2 Data description and preprocessing

2.2.1 NPP
The NPP data are based on the MODIS satellite-generated

MOD17A3HGF V006 product provided by NASA (https://
lpdaac.usgs.gov/products), which provides annual NPP
information at the 500-m pixel resolution. Annual NPP was
derived from the addition of all 8-day net photosynthesis (PSN)
products (MOD17A2H) for a given year, calculated using the
BIOME-BGC model to derive the global terrestrial vegetation
NPP interannual data. Previous research has verified the
reliability of the MOD17A3 NPP data with the measured data
used in the analysis of the study area (Liu et al., 2018; Li et al.,
2020). We used the MODIS Reprojection Tool (MRT) and ArcGIS
10.8 software to eliminate outliers and invalid values, and uniformly
cropped data from the LP area. Due to the elimination of cloud
pollution, we used the nearest neighbor method to resample a 1 km
dataset in our analysis.

FIGURE 1
Topographic map of the Loess Plateau (LP). Note: the spatial distribution map of land use classification is the vegetation type map of the LP in
2020 with a resolution of 30 m.
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2.2.2 Meteorological data
The meteorological data (1 km × 1 km) were originated from the

LP Sub Center, National Earth System Science Data Center of China
(http://loess.geodata.cn), which generates monthly temperature and
precipitation data for China from 2000 to 2020 busing a Delta spatial
downscaling scheme. The LP region was generated via mask
extraction.

2.2.3 Land use land cover (LULC)
The multi-temporal land use land cover dataset was obtained

from the Institute of Aerospace Information Research, Chinese
Academy of Sciences (https://doi.org/10.5194), which produces
global 30-m land-cover results every 5 years, from 1985 to
2020 on the Google Earth Engine platform using all Landsat
satellite data from 1984 to 2020. The overall accuracy of this
dataset is >80% (Zhang et al., 2021); hence, we used it in this
study. We selected land-cover data from 2000 to 2020 (i.e., 2000,
2005, 2010, 2015, and 2020) for the dynamic study of NPP on LP by
tailoring the data. A field investigation combined with the actual
land types of the LP enabled us to divide the dataset into the seven
categories, with an overall validation accuracy of 96.4% (Table 1).
According to the classification standard of Zhang et al.’s data set and
the actual land types of the LP, we reclassified the land types into
seven types.

2.3 Methods

The fishing net (10 km × 10 km) was created using the processed
NPP data, following which the NPP of each matrix unit was assigned
using the partitioned table. Finally, the global spatial autocorrelation
test was performed in ArcGIS on the NPP data of the LP from
2000 to 2020. If the results showed a significant global correlation,
then a local spatial autocorrelation analysis was performed.

2.3.1 Global spatial autocorrelation
The global Moran’s I index and high/low clustering (Getis-Ord

General G) characterized whether the NPP of the LP from 2000 to
2020 had clustered or outliers in space (Swetnam et al., 2015; Cheniti
et al., 2021). The formula for calculating the global Moran’s I index is
as follows:

I � ∑n
i�1∑n

j ≠ iwij xi − �x( ) xj − �x( ){ }
S2∑n

i�1∑n
j ≠ iwij

, (1)

S2 � ∑
i
xi − �x( )2/n, (2)

where n is the total number of observation elements, xi and xj are

the pixel values of NPP at positions i and j (i ≠ j), �x � (∑n

i
xi)/n, i

is a variance, andwij is a symmetric spatial weight matrix element; if
i is adjacent to j, then wij is 1, otherwise wij is 0.

To test the significance of the spatial autocorrelation
relationship, the standardized statistic Z value was introduced.
The calculation formula of Z is:

Z � I − E I( )( )							
VAR I( )√ , E I( ) � − 1

n − 1( ), (3)

where E(I) is the expected value of I (compared with Moran’s I index),
VAR(I) is the variance of the variable I, VAR(I) � E(I2) − E(I)2.
Moran’s I index is generally between −1 and 1. AMoran’s I index and Z
value greater than 0 and significant (with a p-value within the given
significance level) indicates a positive spatial correlation. Therefore,
similar observations (high or low) tend to be spatially clustered.
When the values are equal to 0, the values are independent and
randomly distributed.

The General G and its expected value E(G) and Z-score are
calculated as follows:

G � ∑n
i�1∑n

j�1wijxixj( )∑n
i�1∑n

j ≠ ixixj
, ,

Z � G − E G( ){ }								
VAR G( )√ . (4)

If General G is greater than E(G), and the Z-score is positive,
then the high NPP values will cluster within the region. If General G
is less than E(G), and the Z-score is negative, then the low NPP
values will tend to cluster.

2.3.2 Local spatial autocorrelation
To explore whether the high and/or low local spatial

observations were concentrated, we used the Hot Spot
Analysis (Getis-Ord Gi*) and Anselin Local Moran’s I tools in
ArcGIS 10.8 to perform a local spatial autocorrelation analysis.
Getis-Ord Gi* identified statistically significant hot and cold

TABLE 1 Classification of the land use land cover (LULC) dataset used in this
study.

Primary classes Sub-classes

Cropland Rainfed cropland

Herbaceous cover

Irrigated cropland

Forest Open evergreen broadleaved forest

Closed evergreen broadleaved forest

Open deciduous broadleaved forest (0.15 < fc < 0.4)

Closed deciduous broadleaved forest (fc > 0.4)

Open evergreen needle-leaved forest (0.15 < fc < 0.4)

Closed evergreen needle-leaved forest (fc > 0.4)

Closed deciduous needle-leaved forest (fc > 0.4)

Shrubland

Deciduous shrubland

Unused land Bare areas

Unconsolidated bare areas

Permanent ice and snow

Sparse vegetation (fc < 0.15)

Grassland Grassland

Wetlands Wetlands

Impervious surfaces Impervious surfaces

Water Waterbody
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spots (Getis and Ord, 2010). Anselin Local Moran’s I identified
spatial clusters of features with high or low values, as well as
spatial outliers (Anselin, 1995; Liu K. et al., 2022).

The Getis-Ord Gi* is as follows:

Gi* �
∑n

j�1wijxj − �X∑n
j�1wij( )

S

																													
n∑n

j�1wij
2 − ∑n

j�1wijxj( )2[ ]/ n − 1( )
√ , (5)

�X � ∑n
j�1xj( )
n

, (6)

S �
														
n∑n

j�1xj( )
n

− �X( )2
√

, (7)

where xi is the same as the Formula (1), and theGi* statistic uses the
z-score. For statistically significant values, positive and highest
z-score indicates that the areas with high NPP are more closely
clustered (hot spots). Conversely, a negative and low z-score means
that the areas with low NPP are more tightly clustered (cold spots).
The Anselin Local Moran’s I statistic is defined as:

Ii �
xi − �x( )∑n

j�1,j ≠ iwij xi − �x( )[ ]
Si2

, (8)

Si
2 � ∑n

j�1,j ≠ iwij( )
n − 1( ) − �X2. (9)

The standardized statistic for the Anselin Local Moran’s I
statistical test is similar to the global Moran’s I index and
distinguishes statistically significant clusters of high values (HH),
clusters of low values (LL), outliers (HL) where high values are
mostly surrounded by low values, and outliers (LH) where low
values are mostly surrounded by high values.

2.3.3 Pearson correlation analysis
Pearson correlation analysis is used to determine the linear

correlation between multiple variables and ranges from −1 to 1
(Gbagir et al., 2022). The MATLAB R2021 software generated the
codes to analyze the pixel-by-pixel correlations between NPP

temperature and NPP rainfall, as well as the regional
contribution of temperature and rainfall to NPP. The correlations
were combined with spatial autocorrelations to analyze the spatial
anomalous changes in vegetation NPP. The correlation coefficient
rxy is calculated as follows:

rxy � ∑n
i�1 xi − �X( ) yi − �Y( )[ ]{ }																					∑n
i�1 xi − �X( )2∑n

i�1 yi − �Y( )√ , (10)

where, n is the number of years in the monitoring period
(n � 21, i � 1, 2,/, 21), xi is NPP of the 1 km raster data in
different years, �X is the average of 21 years of NPP raster data, yi is
the raster data of temperature or precipitation in different years, and yi

is the raster data of the annual average rainfall or temperature.

3 Results

3.1 Temporal and spatial distribution pattern
of NPP in the Loess Plateau

The annual mean value of vegetation NPP on the LP from
2000 to 2020 followed a fluctuating upward trend (p < 0.05),
with a growth rate of 6.88 gCm−2yr−1. The increases prior to
2010 (3.61%) were more pronounced than those after (1.75%).
The multi-year average NPP was 298.59 gCm−2yr−1. The total
volume of NPP increased from 127.12 Tg (in 2000) to 212 Tg (in
2020), with an annual growth rate of 4.05 Tg/yr. The mean NPP
varied in different years, with 2002 being the lowest at only
201.64 gCm−2yr−1, while the highest was in 2018. Before 2012,
the average annual NPP of the LP was lower than the multi-year
average; however, in 2012, it increased sharply to
338.13 gCm−2yr−1 (Figure 2).

Three obvious mutation periods were more intense than
other years, namely 2001 to 2002, 2011 to 2012, and 2017 to
2018. The average annual NPP of each province in the LP from
2000 to 2020 is listed in Table 2. Henan Province had the highest
average annual NPP (391.57 gCm−2yr−1) and the largest growth
rate (+11.60 gCm−2yr−1), followed by Shaanxi, Shanxi, Gansu,
Ningxia, Inner Mongolia, and Qinghai (with a growth rate of
5.10 gCm−2yr−1). The NPP of each province showed rapid
growth from 2000 to 2020, and the time points of NPP
mutation in the LP, aligned with the implementation of the
Grain for Green project in 1999. All provinces actively
responded to the Grain for Green project with rapid
vegetation restoration on the LP, achieving remarkable results.

The inter-annual NPP of the LP presented a spatial
distribution pattern of low in the northwest and high in the
southeast. The areas with the highest NPP were situated
primarily in the central and southeast LP (Figure 3).
Approximately 16%–55% of the total area had an average
annual NPP below 200 gCm−2yr−1, which decreased annually,
but the regional annual average NPP did not vary and remained
at 200–400 gCm−2yr−1. The proportion of NPP with an average
of 400–600 gCm−2yr−1 varied significantly between years,
encompassing only 4% in 2000 compared with the 37% in
2020, demonstrating significant improvements over time
(Figure 4).

FIGURE 2
Annual trend in the net primary productivity variation on the
Loess Plateau from 2000 to 2020.
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Our results also indicated that before 2002, there were almost no
areas with an average NPP above 600 gCm−2yr−1, which has
gradually increased over the past 20 years. Therefore, the
implementation of ecological construction projects (such as the
project of grain for green project) has improved the vegetation
on the LP and the ecological environment has achieved remarkable
results.

The land cover variations impacted the terrestrial ecosystem
structure. The variations in NPP of different vegetation types from
2000 to 2020 are illustrated in Figure 5. The mean NPP values of
different vegetation types (from high to low) were: forest
(447.87 gCm−2yr−1) > cropland (317.20 gCm−2yr−1) >
impervious surface (301.61 gCm−2yr−1) > grassland
(256.81 gCm−2yr−1) > water (197.79 gCm−2yr−1) > wetlands
(162.56 gCm−2yr−1) > unused land (194 gCm−2yr−1). All types
showed a significant increasing trend from 2000 to 2020. Among
them, the annual average NPP of the forest was much higher than
that of other land types, indicating that the forest ecosystem is a large
carbon sink (Figure 5). Moreover, there were significant
discrepancies in the total annual NPP among different vegetation
types. The annual total NPP of cropland, forest, and grassland
increased rapidly above 40 TgC, while the total NPP of unused

land was much higher than that of the remaining land, which
suggests the carbon sequestration potential of unused land is
enormous.

3.2 Spatial autocorrelation analysis

3.2.1 Global autocorrelation variations of NPP
Global spatial autocorrelations explore the spatial

agglomeration characteristics of carbon sequestration of
vegetation NPP on the LP. As listed in Table 3, we calculated
the global Moran’s I index, General G, and their z-scores,
expectation values, variance, and p-value of NPP from 2000 to
2020. The annual global Moran’s I index varied from 0.95 to 0.97,
and the Moran’s I index of the multi-year average NPP was 0.961,
extremely close to 1. At the same time, the Z-score of each year
was positive and above 106 (Z(I) > 2.58), indicating that the NPP
of the LP in 2000–2020 showed a very significant agglomeration
effect on the interannual spatial distribution and had a strong
positive spatial correlation (p< 0.01). Correspondingly, the
annual General G was greater than E(G) (p-value <0.001), and
Z(d) was also much higher than 2.58 [P(G) < 0.01], which

TABLE 2 Annual average net primary productivity of each province in the Loess Plateau from 2000 to 2020 (gCm−2yr−1).

Year Henan Shaanxi Shanxi Gansu Qinghai Ningxia Inner Mongolia

2000 320.42 228.24 276.56 215.11 252.84 122.88 111.82

2001 281.25 221.75 229.47 238.26 270.01 134.42 101.29

2002 317.77 293.96 277.45 301.17 303.83 179.85 143.15

2003 402.07 316.04 333.88 288.42 293.88 181.09 153.17

2004 419.64 323.01 349.29 290.74 285.99 179.73 158.93

2005 365.51 300.65 303.10 296.23 302.84 156.06 128.13

2006 400.08 317.67 327.60 290.50 304.47 158.59 135.79

2007 374.77 315.27 301.30 303.58 324.43 172.11 144.22

2008 397.02 344.23 357.23 328.79 323.41 170.00 154.30

2009 387.30 345.69 342.54 311.01 321.94 172.80 152.16

2010 384.23 366.80 334.74 329.26 332.21 201.29 147.30

2011 359.81 346.13 341.58 303.46 309.21 181.71 136.08

2012 436.90 404.03 396.57 365.32 315.07 229.35 196.28

2013 370.08 407.89 392.81 385.80 341.97 224.63 183.65

2014 370.86 401.49 386.14 377.79 316.25 236.59 179.20

2015 452.12 410.42 377.65 372.73 302.86 209.22 165.26

2016 424.77 407.33 426.40 357.69 341.23 221.98 204.56

2017 411.21 393.01 376.62 356.51 321.38 215.23 177.82

2018 487.61 448.47 429.72 423.61 355.85 255.01 201.51

2019 384.19 410.11 381.09 412.45 358.75 251.88 205.03

2020 475.10 420.87 420.78 399.85 339.85 226.78 178.95

Mean 391.57 353.50 350.62 330.88 315.16 194.34 159.93
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indicated that the overall spatial distribution pattern of NPP in
the study area had high clustering. The global autocorrelation did
not reveal the specific clustering pattern at the fine scale;
therefore, the local Moran’s I was needed to further identify
the spatial clustering pattern of NPP.

3.2.2 Hot spot analysis and local autocorrelation
of NPP

The hot spot analysis tool identified the statistically
significant hot and cold areas of NPP in the LP. The hot and

FIGURE 3
Spatial distribution of vegetation net primary productivity on the Loess Plateau from 2000 to 2020.

FIGURE 4
Ratio of the average annual area of net primary productivity in the
Loess Plateau from 2000 to 2020.

FIGURE 5
Distribution of mean net primary productivity for different land
cover types.
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cold spot areas were polarized. The cold spots were mainly
distributed in the northwest of Ningxia, Inner Mongolia
(Ordos and Bayannur), and Gansu (Lanzhou and Baiyin),
while the hot spots were distributed in the southern and
eastern regions, mainly covering Gansu (Tianshui, Pingliang,
Qingyang), central Shaanxi, and Henan (Sanmenxia, Luoyang).

From 2000 to 2020, the overall distribution pattern of the
cold spot areas did not vary, but the area containing an NPP
with a 99% confidence level gradually expanded and
incorporated Ordos City, Inner Mongolia. In addition, the
cold spot area of the Yulin City started to gradually
disappear in 2009, while the cities of Bayannur and
Shizuishan changed from insignificant to cold spot areas.
There were also local anomalies in Lanzhou’s NPP in 2007,
2018, and 2019 (Figure 6).

The cold spot area (at the 99% confidence level) showed an
increasing trend and its proportion increased to 15%. The cold
spot area gradually decreased at 95% and 90% confidence levels.
However, the insignificant areas remained dominant,
accounting for 41%–50%. Conversely, the hot spot areas were
stable at the 99%, 95%, and 90% confidence levels, accounting
for approximately 11%, 8.5%, and 5.4%, respectively, indicating

that the hot spot areas were transferred into different spatial
locations. For instance, the NPP in the south of the hot spot area
gradually expanded from 2000 to 2020, from Tianshui, Baoji,
and Xi’an to Xianyang, Pingliang, and Yan’an. Other hot spots
were sporadically distributed in Shanxi and Henan Province,
and the high NPP pattern in the eastern region (Changzhi,
Jincheng, Jinzhong City) almost disappeared in 2002, 2007,
2010, and 2019. Generally, the hot spots of NPP in the
eastern region are likely to continue to shrink.

To further identify the specific clustering patterns of hot and
cold areas, clustering and outlier analyses were performed. The
NPP had spatial heterogeneity in the spatial distribution and the
inter-annual local spatial pattern was dominated by the HH and
LL clustering patterns; the clustering model of the multi-year
average vegetation NPP was similar to each year (Figure 7). HH
was mainly distributed in southeastern Gansu, southern
Shaanxi, and central Henan (which encompasses 16%–22% of
the area of the LP). The LL was concentrated in the Inner
Mongolia Autonomous Region, northern Ningxia,
northwestern Gansu, and northeastern Shaanxi (23%–30%).
The gray areas were insignificant, accounting for 50%–60%,
revealing no spatial autocorrelation patterns (Figure 7).

TABLE 3 Global autocorrelation of net primary productivity in the Loess Plateau from 2000 to 2020.

Year Moran’s I Z (I) p-value General G E(G) Z(d) P(G)

2000 0.953 106.837 <0.01 0.000192 0.000153 102.359 <0.01

2001 0.947 106.215 <0.01 0.000191 0.000153 101.847 <0.01

2002 0.950 106.530 <0.01 0.000183 0.000153 100.919 <0.01

2003 0.952 106.826 <0.01 0.000186 0.000153 101.643 <0.01

2004 0.957 107.323 <0.01 0.000185 0.000153 102.026 <0.01

2005 0.962 107.857 <0.01 0.000191 0.000153 103.292 <0.01

2006 0.962 107.942 <0.01 0.000191 0.000153 103.363 <0.01

2007 0.958 107.494 <0.01 0.000186 0.000153 102.333 <0.01

2008 0.962 107.934 <0.01 0.000187 0.000153 102.755 <0.01

2009 0.958 107.414 <0.01 0.000186 0.000153 102.258 <0.01

2010 0.962 107.900 <0.01 0.000185 0.000153 102.483 <0.01

2011 0.960 107.715 <0.01 0.000187 0.000153 102.662 <0.01

2012 0.962 107.922 <0.01 0.000179 0.000153 101.458 <0.01

2013 0.964 108.144 <0.01 0.000183 0.000153 102.397 <0.01

2014 0.956 107.178 <0.01 0.000180 0.000153 100.874 <0.01

2015 0.965 108.285 <0.01 0.000188 0.000153 103.265 <0.01

2016 0.956 107.211 <0.01 0.000178 0.000153 100.616 <0.01

2017 0.959 107.519 <0.01 0.000179 0.000153 101.104 <0.01

2018 0.969 108.638 <0.01 0.000179 0.000153 101.932 <0.01

2019 0.954 107.056 <0.01 0.000176 0.000153 99.730 <0.01

2020 0.970 108.742 <0.01 0.000182 0.000153 102.760 <0.01

Mean 0.961 107.373 <0.01 0.000184 0.000153 101.424 <0.01
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3.3 Climatic factors affecting vegetationNPP
changes

To further explore the spatial-temporal variations and spatial
anomalous clustering changes in vegetation NPP, we analyzed
the responses of precipitation and temperature to
vegetation NPP.

There was a positive correlation between NPP and precipitation
in 94.09% of the LP, with only approximately 5.91% of the region
revealing a negative correlation (Figure 8). A total of 58.92% of the
regions had a significant positive correlation, mainly in Inner
Mongolia, Ningxia and Shaanxi, southern Gansu and western
Shanxi, and 35.17% of the regions showed significant irrelevance.
Conversely, 5.90% of the regions showed no significant negative
correlation, these areas were concentrated in Xi’an, southeastern
Baoji in Shaanxi, and Sanmenxia and Luoyang in Henan, there were
almost no significant negative correlations.

Compared with the variations in response to precipitation,
the temperature influences on vegetation NPP in the LP were not
obvious over many years. In terms of spatial distribution, 76.99%
of the regions showed a positive correlation, while 23.01%
showed a negative correlation. There were almost no

significant positive or negative correlations in the LP, as
demonstrated in Figure 9.

In the study area, 73.73% of the regions showed an insignificant
positive correlation, mainly in the southeast of Gansu Province,
Ningxia, and Shanxi Province. Conversely, 22.86% of the region
showed an insignificant negative correlation, in Yan ‘an, Xianyang,
and Xi ‘an in the Shaanxi Province (Figure 9). The results indicate
the impact of temperature rise on vegetation NPP has not had
significant effects.

To further quantitatively explore the contributing factors to the
vegetation NPP on the LP, we used correlation analyses. We
compared the p-values of the correlation coefficients of
precipitation and temperature; the least significant correlation
coefficient was extracted as the highest value correlation
coefficient (Figure 10). The two climatic factors (temperature and
precipitation) on the LP and the highest significant NPP correlation
revealed significant correlations in 48.96% of the regions, mainly in
the northwest and northeastern Shanxi, with no significance in the
southeast LP. A total of 48.96% of the NPP on LP was significantly
influenced by temperature and precipitation, mainly in the
northwest and northeast of Shanxi, while the influence of
climatic factors was insignificant on NPP in the south and east

FIGURE 6
Spatiotemporal variation characteristics of net primary productivity cold and hot spots in the Loess Plateau from 2000 to 2020.
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FIGURE 7
Local clustering and outlier changes in the Loess Plateau from 2000 to 2020.

FIGURE 8
Spatial distribution of the Pearson correlation results between net primary productivity and precipitation in the Loess Plateau from 2000 to 2020.
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of the LP (Figure 10A). On the LP, 86.31% of the area is heavily
dependent on precipitation for vegetation NPP, whereas only
13.70% of the area relies mainly on temperature. Therefore,
precipitation is the main climatic factor affecting variations in
vegetation NPP on the LP (Figure 10B). Moreover, for provinces
and cities, the areas mainly influenced by temperature were the
Shaanxi Province (Xianyang, Tongchuan, Baoji, Xi’an), Guyuan City
in Ningxia, Pingliang City in Gansu, Xining City in Qinghai, and
Sanmenxia City in Henan, while other areas were mainly influenced
by precipitation factors.

4 Discussion

4.1 Spatiotemporal variation in
vegetation NPP

The interannual variation in NPP had “multi-peak”
fluctuation increases since the implementation of the Grain
for Green project on the LP. These peaks may be attributed to
ecological engineering coupled with the effects of climate change
and human activities. With global warming over the past
20 years, the climate of the LP has gradually increased in
temperature and humidity; temperature and precipitation play
an important role in vegetation growth (Sun et al., 2020).
Additionally, many ecological construction projects have been
implemented, including the natural forest protection project, the
comprehensive management of small watersheds, and the Grain
for Green Project. From artificial afforestation to natural
restoration, the LP has an obvious “greening” trend (Li et al.,
2017; Zhao et al., 2018; Deng and ShangGuan, 2021), thereby
enhancing the carbon sequestration capacity of the vegetation.
Our results are in line with previous findings (Feng et al., 2013;
Jiang et al., 2019).

Interestingly, there are three distinct spikes in the NPP
(2001–2002, 2011–2012, and 2017–2018). On the regional scale,
the sudden increase in NPP from 2001 to 2002 corresponded with
the pilot projects in Shaanxi and Gansu in 1999. After 2000, the pilot
projects of returning farmland to forests were expanded to include
17 provinces in the central and western regions. The wave of forestry
projects has continued, and vegetation growth improved as plants
develop. The extreme NPP during 2011–2012 may be due to two
factors, the implementation of a new round of Grain for Green
Projects and sudden change in extreme temperatures which
accelerated vegetation growth and abundance, improving NPP
(Liu P. et al., 2022). In 2017, the State Council approved the
conversion of Cropland to forests and grasslands in 17 provinces
to expand the scale of agriculture and forestry in the region. The
State Council also initiated rural revitalization and the mountains-
rivers-forests-farmlands-lakes-grasslands program has favorably
promoted the grand vision of “green waters and green
mountains” (Li and Liu, 2022), which led to a sudden rise in
NPP from 2017 to 2018. Moreover, the extreme precipitation
levels correlated with NPP, especially the P-min with NPP,
indicating that extreme precipitation may have strongly
influenced the sudden increase in NPP (Figure 11). Similarly, at
the provincial scale, the timing of sudden increases in vegetation
NPP in each province also clustered with the three stages of distinct
spikes. For example, the NPP in Shaanxi Province increased by
72.21 gCm−2yr−1 from 2001 to 2002, indicating that increased
vegetation effectively controlled soil erosion, reduced carbon loss
from the ecosystem, and enhanced carbon fixation.

The annual average vegetation NPP on the LP had a
significant gradient from southeast to northwest. The area
with an NPP above 400 gCm−2yr−1 gradually increased, and
moved northward, with the main concentration in northern
Shaanxi and southeastern Gansu and the Lüliang mountains
in Shanxi. These results are in line with those of Zhang et al.

FIGURE 9
Spatial distribution of the Pearson correlation results between net primary productivity and temperature in the Loess Plateau from 2000 to 2020.
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(2016). The higher NPP locations are the key restoration areas of
the early pilot sites of the Grain for Green project. The pilot areas
focused on the sub-region with warm temperate deciduous oak
forest, with relatively superior site conditions as identified
through superb afforestation technology, to ensure vegetation
restoration success. However, the poor natural conditions, lack of
water resources, severe drought, and planting a vegetation
monoculture (single species) have allowed unused land to
occupy most of the LP, impacting afforestation attempts in
Inner Mongolia, Gansu, and Ningxia, resulting in slow NPP
growth. In general, a series of large-scale ecological
construction projects implemented over the past 21 years has
changed the ecological environment of the LP and promoted the

sustainable development of the Yellow River Basin; the effect of
the extensive vegetation restoration work was also outstanding.

4.2 Effects of spatial autocorrelation on
climate and human activities

Most previous studies have focused on the linear
relationship and driving factors based on the “first-order
effect,” ignoring the advantage of spatial autocorrelation
which can remove the assumption of sample independence in
classical statistics and performs well with potentially dependent
samples. Presently, few studies have used the spatial

FIGURE 10
Spatial distribution (A) of the most significant correlation coefficients from the t-test results with precipitation and temperature; (B) contributions of
precipitation and temperature to the significant net primary productivity results on the Loess Plateau for 2000–2020.
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autocorrelation method to analyze spatial variation in NPP
(Ren et al., 2020). Therefore, we used the “second-order
effect” via spatial grid to explore the spatial correlation and
heterogeneity of NPP in the LP. Our results reveal that the NPP
of the LP from 2000 to 2020 had a strong spatial positive
correlation (p< 0.01), and an agglomeration effect, indicating
that the ecosystems between the regions are not independent,
yet interrelated with a tendency to gather. To avoid global
autocorrelation masking local anomalies or instability, we
explored the degree of local spatial aggregation on the LP
and observed obvious polarization of cold and hot spots. The
local spatial pattern of the LP is dominated by HH and LL
clustering patterns, with a prominent hot spot area (p< 0.01),
which is similar to previous research (Wang and Gong, 2022).
The HH is dominated by forests and cultivated land with vast
carbon storage and is located in the warm temperate zone,
which allows for an effective carbon sequestration. Focused
conversion of farmland to forests involved sloping farmland
converted into forest and grassland; the net forest area increased
to 4,726 km2 in 2020 (Table 4). Forests promote the
accumulation of forest carbon and areas with high forest
cover have significantly higher NPP than other habitats. In

the past 21 years, Ordos and Bayannur (cities in Inner
Mongolia, northern Ningxia) and Baiyin City in the Gansu
Province remain a LL district (cold spot), as previously
indicated (Ren et al., 2020). The carbon sequestration
services of ecosystems in the northwest of the LP remain
low, with the fragile ecological environments impacting the
success of vegetation restoration in this area.

The transfer matrix revealed the worst land categories
(unused land and grassland) in Inner Mongolia, which
accounted for 79.58% (Table 4) of this land category. In
addition, the location is a temperate desert steppe zone with
serious desertification of Mu Us sandy land. The ongoing coal
mining in the Ordos City has also adversely impacted local
vegetation and caused soil erosion.

Recently, the government has improved the area through
ecological restoration, although vegetation rehabilitation remains
slow (Wu et al., 2022).

To further explore the heterogeneity in the clustering patterns,
we calculated the clustering patterns between counties and
combined the annual average NPP of each county with LULC
data to explore the abnormal changes between HH and LL and
the significance levels of each stage.

The main reason for the disappearance of the LL in Ansai,
Wuqi, Yanchang County, and Yan’an City in the Shaanxi
Province and Shanxi (Xi and Yonghe County) from 2000 to
2005 was the transformation of sloping farmland into forest and
grassland and of unused land into grassland, which increased the
vegetation cover. The reason for the disappearance of the HH in
Shanxi Province may be attributed to the conversion of grassland
to cultivated land and the expansion of cultivated land to
impervious surfaces, including the transfer of 76 km2 in
Yuanping County (from 2000 to 2005).

The main reason for the disappearance of HH from 2005 to
2010 was the transfer of cropland and grassland to impervious
surfaces in some counties in Shanxi Province. For example, 11 km2

of cropland and grassland in Gaoping County was changed to
impervious surfaces. The expansion of urban construction has
accelerated urbanization, thereby reducing the ability for
vegetation to sequester carbon in many arable lands and
grasslands. The emergence of LL is mainly the degradation of
grassland. For example, the grassland was converted into unused
land in Hangjin Banner in Inner Mongolia, creating an additional

FIGURE 11
Association between vegetation net primary productivity and
extreme precipitation levels on the Loess Plateau from 2000 to 2020.

TABLE 4 Land use transfer matrix of the Loess Plateau from 2000 to 2020 (km2).

Land use type 2020

Cropland Forest Grassland Unused land Wetlands Impervious surface Water

2000 Cropland 181,132 1,383 7,279 1,796 654 4,712 464

Forest 276 90,253 308 53 7 30 11

Grassland 11,439 2,880 206,731 4,161 431 1,688 261

Unused land 7,976 1,140 12,596 74,454 509 815 153

Wetlands 58 3 4 33 1,228 4 18

Impervious surface 0 0 0 0 0 8,706 0

Water 37 5 11 4 58 4 1,414
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90 km2 of unused land from 2005 to 2010. The conversion of unused
land to forest and grassland (in 2010–2015) was the main reason for
the disappearance of the LL. Other clusters were less affected by land
use changes. The disappearance of the LL in 2015–2020 and the
expansion of the HH may be related to the transfer of grassland to
cropland.

The local spatial anomaly of the NPP in the LP is driven by
human-land relationship and natural factors. The effect of
temperature on NPP was much smaller than that of
precipitation, which is consistent with the results of Xie et al.
(2014), however, Xie et al. (2014) did not provide the specific
spatial distribution of NPP which is affected by climate
indicators. This study revealed a positive correlation between
NPP and precipitation in 94.09% on the LP, which indicates that
precipitation has a strong synergy with plant photosynthesis
and vegetation growth. The increased precipitation in the
Qinling Mountains did not correspondingly increase the NPP
or reduce vegetation resilience. Northwest China (especially
Inner Mongolia, Gansu, and Shaanxi) is in arid and semi-arid
areas. The lack of precipitation weakens the net primary
production capacity of the vegetation, which might have
caused consistent LL in the area. The quantitative results of
the extreme value analysis revealed that the contribution of
precipitation to NPP reached 86.31%; therefore, precipitation
was the dominant climatic factor affecting variations in NPP in
the LP. Combined with spatial autocorrelation analysis, the cold
spot area was mainly influenced by precipitation, while the
temperature had a stronger correlation with the hot spot
area. This suggests that precipitation plays a decisive role in
vegetation change in arid and semi-arid areas in the northwest
of the LP, which is consistent with previous research on the
impact of climate change on vegetation NPP in China (Ge et al.,
2021). The southeast LP is in a warm temperate zone with
abundant precipitation where vegetation growth is strongly
affected by light conditions.

Our analysis of precipitation impacts identified a very close
synergistic relationship between the interannual variation in NPP
mean and minimum precipitation levels on the LP. There is both
coordination and a tradeoff between the minimum and maximum
precipitation.

The year of the tradeoff between the NPP and maximum
precipitation almost coincides with the abnormal year in the
local clustering model in the Shanxi and Henan provinces, which
indicates that the heterogeneity of this spatial clustering model was
affected by P-max (Figure 11). Hence, future studies should focus on
the impact of extreme precipitation on vegetation restoration
(Fischer et al., 2013).

The spatial autocorrelation model is based on the first law of
geography and regularly applied in various industries. However,
in ecology (especially in the application of remote sensing data)
some mechanistic discussions have not been fully investigated.
For example, Geoda and ArcGIS software is superior to previous
ecological research which has not clearly defined data distance
and the selection and rationality of thresholds, such as NPP.

This study focused on a single variable in the spatial
autocorrelations to reveal the spatial variation in vegetation
NPP on the LP. Future studies should combine multivariate
spatial correlation analysis with economic, natural, and other
indicators to explore the high and low clustering relationship
between the factors and vegetation NPP to advise effective
ecological construction.

Global warming remains a major global challenge. As an
ecologically fragile area, we focused on temperature and rainfall
as the natural factors influencing LP and identified gaps in the
land cover data in a specific year. There may be deficiencies in
our selection of indicators. Previous research has suggested that
altitude and species diversity can also impact vegetation NPP. In
the future, we will increase the diversity of valuable indicators in
our exploration of the driving forces in vegetation carbon
sequestration capacity to achieve the dual-carbon goal in
China and the world.

In general, the vegetation NPP in the LP possessed a strong
spatial autocorrelation. This spatial heterogeneity and
dependence are driven by both natural factors and human
activities. The results reveal that extreme NPP are a response
to natural factors and violent disturbances by human activities
and clarify the driving mechanism underlying vegetation
carbon sequestration on the LP, revealing the spatial
dependence of vegetation NPP and relationships between
regions to support ecological management plans and provide
suggestions to formulate double carbon plans. Future studies
and relevant government departments should focus on fragile
areas for vegetation restoration and, using the results of this
study, accurately identify these vulnerable locations. By
exploring the driving factors in vegetation restoration in each
county, the correlations between the vegetation restoration
impacts on the adjacent areas in space can be
comprehensively explored. The potential future risks are
predicted so that measures can be taken to prevent them.
Reasonable regulation of land resources should solve issues
of optimal allocation of space resources, which is especially
important in the northwest region which has a weak vegetation
carbon sequestration capacity, due to the inferior local
conditions for ecological construction. Our results support
the realization of ecological protection and high-quality
development in the LP.

5 Conclusion

The average annual NPP of the LP showed an increasing
trend with varying degrees. There was a sharp increase in the
NPP over three periods. The spatial distribution pattern of NPP
increased mainly in the middle and southeast of the LP.
Furthermore, the average annual NPP of different types of
vegetation increased significantly, while the unused land had
great potential for carbon sequestration. The NPP of vegetation
in the study area has a strong spatial correlation (p< 0.01), and
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the spatial clustering model is mainly HH and LL. HH accounts
for 16%–22% of the LP, whereas LL accounts for 23%–30%.

Climate has a strong influence on vegetation NPP; however,
recently the frequent land transformation due to human
activities has greatly disturbed the spatial distribution of
vegetation ecosystems. Additionally, changes among HH, LL,
and insignificant areas are greatly affected by LUCC. The
contribution of precipitation to regional NPP is much higher
than temperature. Moreover, there is a strong synergistic
relationship between the minimum value of precipitation and
annual NPP. Future ecological management and decision
makers should consider land planning and the important role
of water resource allocation on vegetation growth. Finally,
addressing problems such as the insufficient vegetation
carrying capacity in the LP, and providing feasible schemes
for green, low-carbon, and high-quality development of the LP
remain to be accomplished.
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